MODELING OF CAPILLARY RISE IN AN ANNULAR GEOMETRY

Mr. Wuttinan Panmaluak

A Thesis Submitted in Partial Fulfilment of the Requirements For the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University In Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003

ISBN 974-17-2316-4

Thesis Title:	Modeling of Capillary Rise in an Annular Geometry
By:	Mr. Wuttinan Panmaluak
Program:	Petrochemical Technology
Thesis Advisor:	Prof. Edgar A. O'Rear, III
	Assist. Prof. Pramoch Rangsunvigit
	Dr. Kitipat Siemanond

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science

K. Bunyacint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Spridle Rang

(Prof. Edgar A. O'Rear, III)

Pramoch R

(Asst. Prof. Pramoch Rangsunvigit)

Kitipat Sumanand

(Dr. Kitipat Siemanond)

Boomparach Kitijanen

(Dr. Boonyarach Kitiyanan)

(Dr. Sirirat Jitkarnka)

ABSTRACT

4471039063 PETROCHEMICAL TECHNOLOGY PRIGRAM Mr. Wuttinan Panmaluak: Modeling of Capillary Rise in an Annular Geometry Thesis Advisors: Asst. Prof. Pramoch Rangsunvigit, Dr. Kitipat Siemanond, and Prof. Edgar A. O'Rear III 38 pp. ISBN 974-17-2316-4 Keywords : Annular tube/Capillary rise/Modeling

The presence of water in the small gaps of aluminum rivets and screw fasteners appears to cause million-dollar problems. This problem has been observed, for example, on the fuselage of some aircraft, with significant implications for the lifetime of the plane. Capillary forces draw water into gaps between the rivet or screw and the facing surface causing corrosion problems. Aluminum surface is to be modified to retard or prevent the corrosion by means of minimization of the water uptake. In order to do so, knowing how much water drawn into such gaps is necessary. Modeling of capillary rise in an annular geometry was investigated in this study. Models were developed based on the curvature of the surface and the height of the rising liquid. Experiments on capillary rise in an annulus for water-air was carried out at ambient conditions to validate the model. It was found that the model of the surface shape agreed well with the experimental results. The heights of rising water from the flat water surface to the bottom of the meniscus were 16.14 and 14.32 mm at the right-hand side and left-hand side, respectively, where the height calculated from the model was 18.2 mm. This difference was due to the large annular gap width, which is less accurate than a small gap width.

บทคัดย่อ

วุฒินันทน์ พานมะลึก:แบบจำลองทางคณิตศาสตร์ของการเคลื่อนที่ขึ้นในท่อ Annulus (Modeling of Capillary Rise in an Annular Geometry) อ. ที่ปรึกษา: ผศ. คร. ปราโมช รัง-สรรค์วิจิตร คร. กิติพัฒน์ สีมานนท์ และ ศ. เอดการ์ โอเรีย 38 หน้า ISBN 974-17-2316-4

น้ำที่ขังอยู่ในช่องว่างของหมุดอะลูมิเนียมและเกลียวเป็นสาเหตุทำให้เกิดปัญหาซึ่งสร้าง ความเสียหายมาก อย่างเช่นการสึกกร่อนที่เกิดขึ้นกับปีกเครื่องบินซึ่งส่งผลกับอายุการใช้งานของ เครื่องบิน น้ำถูกดึงเข้าสู่ช่องว่างด้วยแรงคะปิลารี พื้นผิวของอะลูมิเนียมควรมีการปรับปรุงเพื่อลด หรือป้องกันการสึกกร่อนด้วยการลดปริมาณน้ำในช่องว่างให้น้อยที่สุด ดังนั้นจึงจำเป็นต้องทราบ ปริมาณน้ำที่ถูกดึงเข้าไปในช่องว่างในเบื้องต้น งานวิจัยนี้ใด้สร้างแบบจำลองทางคณิตสาสตร์ของ การเคลื่อนที่ขึ้นในท่อ annular ด้วยแรงคะปิลารี แบบจำลองแบ่งเป็นสองส่วนและพัฒนามาจาก ความโค้งของพื้นผิง และความสูงของของเหลวที่เคลื่อนที่ขึ้น ตามลำดับ การเคลื่อนที่ขึ้นในท่อ annular สำหรับระบบ น้ำ—อากาศ ได้ทดลองที่สภาวะบรรยากาศเพื่อตรวจสอบแบบจำลองทาง คณิตสาสตร์ที่ได้สร้างขึ้น พบว่าแบบจำลองสำหรับสันฐานของพื้นผิวนั้นสอดคล้องกับผลการ ทดลองเป็นอย่างดี จากการทดลองพบว่าความสูงของน้ำที่เคลื่อนที่ขึ้นเป็น 16.14 และ 14.32 ม.ม. ทางด้านซ้ายมือและขวามือ ตามลำดับ ในขณะที่ค่าความสูงที่ได้จากแบบจำลองทางคณิตสาสตร์ คือ 18.2 ม.ม. ความคาดเคลื่อนที่เกิดขึ้นคาดว่าเป็นผลเนื่องมาจากช่องว่างระหว่างท่อทั้งสองกว้าง เกินไป ทำให้ความแม่นยำลดน้อยลง

ACKNOWLEDGEMENTS

This thesis could not have been possible without the assistance of the following individuals and organizations. I would like to thank all of them for making this thesis a success.

Out of sense of gratefulness, I would like to express my deepest gratitude to Asst. Prof. Pramoch Rangsunvigit, Dr. Kitipat Siemanond and Prof. Edgar A. O'Rear, III for their helpful advises, support and kindness.

I sincerely exhibit my appreciation to all professors who guided me through their courses establishing the knowledge base I used in this work. I am indebted to The Petroleum and Petrochemical College and all of staff for their assistance.

This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Finally, I would like to extend my whole-hearted gratitude to my family and my friends for their love, encouragement, and measureless support.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	V
Table of Contents	vi
List of Tables	ix
List of Figures	xi

CHAPTER

I	INTRODUCTION	1
п	BACKGROUND AND LITERATURE SURVEY	3
	2.1 Surface Tension: The Young-Laplace Equation	3
	2.2 Capillary Rise in a Cylinder	5
	2.3 Literature Survey	6
ш	MODELING	8
IV	EXPERIMENTAL	14
	4.1 Materials and Equipment	14
	4.1.1 Deionized Distilled Water	14
	4.1.2 Capillary Tubes	14
	4.1.3 Annular Tubes	14
	4.1.4 Cathetomete	14
	4.2 Experimental Conditions	15
	4.3 Methodology	15
	4.3.1 Glassware Cleaning	15
	4.3.2 Capillary Rise in an Annular Tube	15

CHAPTER		PAGE
V	RESULTS AND DISCUSSION	17
VI	CONCLUSIONS AND RECOMMENDATIONS	30
	REFERENCES	32
	APPENDICES	34
	Appendix A Meniscus Heights from Mathematical	
	and Experimental Solutions	34
	Appendix B Algorithms of Solving the Surface	
	Curvature and the Height of the Rising	
	Water	35
	CURRICULUM VITAE	38

LIST OF TABLES

.

TABLE		PAGE
4.1	Tube sizes used in the experiment	14
5.1	Contact angles of water for various solids as determined	
	from directed contact angle measurements (CA) and from	
	thin layer wicking (TW) (Chibowski and Perea-Carpio,	
	2002)	24
Al	Heights of meniscus at various radii with a contact angle	
	of 22.9°	34
A2	Heights of meniscus at various radii with a contact angle	
	of 12.2°	34

viii

LIST OF FIGURE

FIGUE	GURE	
2.1	Surface forces on molecules in bulk and at interface.	3
2.2	(a) The curved surface of a cylinder. (b) Differential area	
	in the surface separating two immiscible fluids.	4
2.3	The schematic diagram of the capillary rise in a cylinder	
	method.	6
3.1	Interface between two fluids.	8
3.2	Sketch of configuration of annular tube and meniscus. (a)	
	The schematic diagram of the capillary rise method in	
	annular tube. (b) Boundaries of the system to be used in	
	modeling.	9
4.1	Experimental set up for a capillary rise in an annular tube.	16
5.1	Shape of a meniscus from the analytical solution in the	
	annulus of R = 1 mm, κ = 0.98, and λ = 0.99.	18
5.2	Shape of a meniscus from the analytical solution in the	
	annulus of R = 5 mm, κ = 0.98, and λ = 0.99.	19
5.3	Shape of a meniscus from the analytical solution in the	
	annulus of R = 10 mm, $\kappa = 0.98$, and $\lambda = 0.99$.	20
5.4	Shapes of a menisci from the analytical solution in the	
	annulus with various annular gap widths with a constant	
	outer tube radius, R, of 10 mm.	21
5.5	Shapes of menisci in the annulus comparing between H_0	
	solved by setting $H(r) = 0$ at $r = \kappa R$ and $r = R$.	22
5.6	Shapes of menisci from the analytical solution in the	
	annulus with various positions of a meniscus tip with a	
	constant outer tube radius, R, of 10 mm.	23

5.7	Menisci for the water-air system at 20°C. (The contact	
	angle might not appear to be exact to values in Table 5.1	
	because the perpendicular axis is expanded relatively to	
	the horizontal axis.)	25
5.8	Menisci of different liquids. (Contact angles: water-air =	
	10° (Middleman, 1998), mercury-air = 140° (Fox and	
	Macdonald, 1994))	25
5.9	Shape of a meniscus resulted from the experiment.	26
5.10	Shapes of menisci resulted from the experiments (a and b)	
	showing that the experiments are reproducible.	28
5.11	Comparison between experimental and simulation results	
	of a contact angle of 12.2° at the RHS, and 22.9° at the	
	LHS	29
Bl	Block diagram for an analytical solution.	35
B2	Block diagram for numerical slutions.	36
B3	Block diagram for the height of a rising water.	37