
CHAPTER HI 
MODELING

Pressure difference across an interface that isolates a pair of immiscible fluids 
arises from interfacial tension and the pressure difference can be calculated from the 
shape and size of the interface. Consider the static interface (Figure 3.1), static 
pressure is the only stress acting on both sides of the surface. Let Po and Pi(r) be the 
pressure on both sides of the interface, which depends on position. Fa is the net force 
due to interfacial tension. R] and R2 are radii of the curve, which describe the 
curvature of a surface at a point.

Figure 3.1 Interface between two fluids.

Using force balance for the condition of equilibrium of normal stresses across 
a static interface as shown in the figure above yields the so-called Young-Laplace 
equation (Middleman, 1998).

p ,( r ) -p 0 + (31)

In order to relate the liquid height to the static pressures, Pi(r) is the pressure 
just inside the liquid at any position along r axis and p,0 is the pressure on the liquid 
side at the tip of the meniscus (the point where r = A,R, z = H(r = 0)) (Figure 3.2).
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(a) The schematic diagram of the capillary rise method in annular tube.

(b) Boundaries of the system to be used in modeling.

Figure 3.2 Sketch of configuration of annular tube and meniscus.

Applying hydrostatic law to the static interface between two immiscible 
fluids yields

p , - p ,0 =  p g  [ H ( r ) - H ( r  =  X R )] ( 3 . 2 )



10

Despite the fact that the local curvature can be approximated as shown in 
Equation (3.3), it can be reduced to Equation (3.4) by neglecting the slopes dH/dr in 
denominators with the assumption of a small slope, which corresponds to a large 
contact angle near the wall.

1 1
VR 1 R27

d2H /d r2

1 + 'd H ไ2 
, dr ,

3/2
1■ + — - dH/dr

1 + K dr ,
!ๆ/2

(3.3)

1 + J _
VR 1 •2 ;

d H 1 dH
dr2 7 dr

(3.4)

The height of the meniscus can be defined as the difference between 
meniscus height at any position r and a fixed position at the tip of the meniscus, that is

h(r) = H(r) -  Ho(r = A.R) (3.5)

Combining Equations (3.1), (3.2), (3.4) and (3.5) gives the second-order 
linear nonhomogeneous partial differential equation as follows

\_d_
7  dr

f  5h ไ + '  pร 'r — -l  à r j K V y
Po - Plo 

G
(3.6)

The model to be used in this study will be expressed in terms of H(r) and 
hence H(r = À.R) have to be specified by arbitrarily setting one more boundary 
condition. Solving Equation (6) gives,

h(r) = CiJo(ar) + c2Y0(ar) + hp (3.7)

where Jo(ar) = Bessel function of the first kind of order zero 
Yo(ar) = Bessel function of the first kind of order zero 
a = (pg/a)m
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The constants of the above equations, Cl, C2 and hp can be found as follows,
1. At the tip of the meniscus, the slope of the surface curve is equal to zero.

^ - =  0 at r = À R

From Equation (3.7),

(3.8)

-ËL = 0  = -^-[ciJo(ar) + c 2Yo(ar) + hp ] , p (3 9)
*  r = XR *

Differentiating and rearranging the above equation for Cl

c2 ¥ 1 (a A,R)
^  (aÀ,R) 2 (3.10)

2. At the wall of the outer tube

dh
dr = cot 0 at r = R (3.11)

The Equation (3.7) becomes

dh
r=R

= co te  = - ^ - [ciJo(ar) + C2Yo(ar) + hp ] r=R (3.12)

Substituting Cl from Equation (3.10) in the above equation and solving for C2, yields

cotGJ^aÀR)
C2 = a[Yj (aR)J 1 (aXR) - Y! (aÀR)J 1 (aR) J (3.13)

Substituting c2 from Equation (3.13) to Equation (3.10), gives

_ -cotGY^a/^R)
Cl = a [ ¥ 1 (aR)J 1 (aÀR) - ¥ 1 (aXR)J 1 (aR) J (3.14)

3. The other boundary condition is
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h(r) = 0 at r = ÀR (3.15)

From Equation (3.7),

h(r) = 0 = CiJo(aX-r) + c2Y0(a\r) + hp (3.16)

So, hp = - [ciJo(aXr) + c2Y0(a7.r)] (3.17)

where c2 and Cl are given by Equations (3.13) and (3.14), respectively.
4. Ho can be found arbitrarily by setting H(r) = 0 at r = R. From Equation (3.5),

Ho = - h(r) (3.18)

So, Ho = - [ClJo(aR) + c2Y0(aR) + hp] (3.19)

Substituting Equations (3.2) and (3.7) in Equation (3.1), gives

H(r) = Ci[Jo(ar) -  Jo(aR)] + c2[Y0(ar) -  Yo(aR)] (3.20)

The above equation is the analytical model to be used in this study. It implies 
that factors on which the height of the rising liquid depend are the radii of the inner 
and outer tubes (that is the gap distance between the tubes), the density of liquid, 
contact angle and surface tension. Noting that the Young-Laplace equation indicates 
an influence of pressure difference across the interface (Equation (3.6)) but Equation 
(3.20) does not contain the pressure difference term. The reason is that it is 
accounted by the hp term.

Equation (3.20) has been derived from the fact that we avoided to set the 
pressure on the liquid side of the meniscus, p20, equal to the gas side pressure, Po, 
because the interface is curved. In addition, the slopes dH/dr in denominators are 
neglected by assuming that a contact angle near the wall is large. To avoid this
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assumption, Equations (3.1), (3.2), and (3.3) are combined resulting the following 
equation.

d2H 2 — Y - - a  m  + \ 
dr ( f ) 2

dH/dr (3.21)

Equation (3.21) is a non-linear ordinary differential equation and to be 
simulated numerically to predict a shape of a meniscus.

He, Figure 3.2(a), devotes the height of the liquid rise in the annular tube 
from the flat liquid surface (for which pressure drop must be zero) to the bottom of 
the meniscus. By performing force balance, He is then obtained as shown below,

H° = pg(Rf R2)

where Ri and R2 are outer and inner annular tube radius, respectively.

(3.22)
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