บทที่ 6

ทดสอบและวิจารณ์ผล

ในบทนี้จะเป็นการทดสอบความถูกต้องและประสิทธิภาพของขั้นตอนวิธีทั้งหมดที่ได้ เสนอมาทั้งในจุดเด่น และจุดด้อยของแต่ละขั้นตอนวิธี ซึ่งในการทดสอบนั้นจะมีหัวข้อในการ ทดสอบที่น่าสนใจดังต่อไปนี้

รายละเอียดของเครื่องคอมพิวเตอร์ที่ใช้ในการทดสอบ

1.	หน่วยประมวลผลกลาง	Pentium-90
2.	หน่วยความจำชั่วกราว	8 Mbytes
3.	หน่วยความจำแคช	256 Kbytes

4. ระบบปฏิบัติการ DOS 6.2

ขั้นตอนวิธีที่นำมาทำการทดสอบ

- 1. ขั้นตอนวิธีแบบทั่วไป
- 2. ขั้นตอนวิธีเมตริกซ์แคช
- ขั้นตอนวิธีการแยกตัวประกอบแอล-ยูแบบบางส่วน แบบที่ 1 ที่มีการจัดเรียงส่วน ประกอบทั้ง 3 ของเมตริกซ์เป็น LIN, DYN, PWL
- 4. ขั้นตอนวิธีการแยกตัวประกอบแอล-ยูแบบบางส่วน แบบที่ 2 ที่มีการจัดเรียงส่วน ประกอบทั้ง 3 ของเมตริกซ์เป็น LIN, PWL, DYN

วงจรที่จะทำการทดสอบ

- 1. วงจร RLC2
- 2. 2115 Boost converter
- 3. 2105 Buck converter
- 4. วงจร ZVSQRC

ตัวแปรของการทดสอบที่น่าสนใจ

- 1. เวลาที่ให้หยุดทำการวิเคราะห์ (Tstop)
- 2. ขนาดขั้นเวลาที่โตที่สุดในการวิเกราะห์ (Hmax)
- 3. จำนวนจุดในการทำการจำลอง (NumPts)
- 4. จำนวนตัวแปรของวงจร (NumVar)
- 5. จำนวนอุปกรณ์เชิงเส้นแบบท่อน (NumPWL)
- 6. ขนาดของส่วนประกอบเมตริกซ์ A ชิ้นที่ 1 (A1)
- 7. ขนาคของส่วนประกอบเมตริกซ์ A ชิ้นที่ 2 (A2)
- ขนาดของส่วนประกอบเมตริกซ์ A ชิ้นที่ 3 (A3)
- 9. ปริมาณหน่วยความจำที่ใช้ในการจัดเก็บเมตริกซ์ (TotMem)
- 10. เวลาที่ใช้ในการคำนวณของแต่ละขั้นตอนวิธี (TotTime)
- 11. ก่าเฉลี่ยผลต่างสัมบูรณ์ (AME) จะกำนวณจากสูตร

$$AME_{x} = \frac{\sum_{i=1}^{n} \left| V_{i} - V_{2} \right|}{n}$$

โดยที่ V1 คือ ค่าผลลัพธ์ที่ได้จากการคำนวณที่ใช้การทำ complete pivoting V2 คือ ค่าผลลัพธ์ที่ได้จากการคำนวณในขั้นตอนวิธี X

การทดสอบประสิทธิภาพของขั้นตอนวิธีในด้านต่างๆ

- 1. ความเร็ว และปริมาณหน่วยความจำที่ใช้
- ความแม่นของขั้นตอนวิธี

.....

การทดสอบประสิทธิภาพของเทคนิคแอล-อาร์-ยู

สภาวะแวดล้อมของระบบที่ใช้ในการทดสอบโปรแกรม

- ไม่รวมถึงเวลาที่ใช้ในการติดต่อกับ อินพุด-เอาต์พุด (เขียนข้อมูลที่จอ จานบันทึก ทาง เข้าออก)
- 2. เวลาที่อ้างถึงในการคำนวณหมายถึงเวลาที่ใช้ในการทำการจำลองทางเวลาทั้งหมด
- การทดสอบงับเวลาทำโดยใช้โปรแกรม Borland turbo Profiler 3.0 ซึ่งทำการทดสอบ ในโมด Virtual Profiling รายละเอียดของโปรแกรมนี้ได้แสดงไว้ในภาคผนวกท้าย เล่ม

6.1 การทคสอบประสิทธิภาพค้านความเร็ว และปริมาณหน่วยความจำที่ใช้

วงจรที่ 1 วงจร RLC2

.

.....

รูปที่ 6.1 วงจร RLC2

รูปที่ 6.2 ผลการจำลองทางเวลาของวงจร RLC2

	General Purpose	Matrix Cache	Partial LUfactor	Partial LUfactor
	Algorithm	Algorithm	Algorithm	Algorithm
			(LIN,	(LIN,
			DYN,	PWL,
			PWL)	DYN)
Tstop (ms)	1	1	1	1
Hmax (JLs)	1	1	1	1
NumPts	1,018	1,018	1,018	1,018
Node	9	9	9	9
NumPWL	0	0	0	0
NumVar	15	15	15	15
A1	-	-	9	9
A2	-	-	6	0
A3	-	-	0	6
TotMem (bytes)	-	17,677	4,637	4,611
TotTime (s)	8.8670	0.9754	1.3307	1.3475

ดารางที่ 6.1 ดารางเปรียบเทียบประสิทธิภาพของแต่ละขั้นตอนวิธีสำหรับวงจร RLC2

.

2

รูปที่ 6.4 ผลการคราะห์ทางเวลาของวงจร Boost converter

	General Purpose	Matrix Cache	Partial LUfactor	Partial LUfactor
	Algorithm	Algorithm	Algorithm	Algorithm
			(LIN,	(LIN,
			DYN,	PWL,
			PWL)	DYN)
Tstop (ms)	50	50	50	50
Hmax (ms)	0.05	0.05	0.05	0.05
NumPts	3,007	3,007	3,007	3,007
Node	5	5	5	5
NumPWL	2	2	2	2
NumVar	8	8	8	8
Al	-	-	5	5
A2	-	-	1	1
A3	-	-	2	2
TotMem (bytes)	-	18,462	3,803	2,960
TotTime (s)	5.8937	1.5627	2.1239	2.0780

ตารางที่ 6.2 ตารางเปรียบเทียบประสิทธิภาพของแต่ละขั้นตอนวิธีสำหรับวงจร Boost converter

÷.

รูปที่ 6.6 ผลการจำลองทางเวลาของวงจร Buck converter

	General Purpose	Matrix Cache	Partial LUfactor	Partial LUfactor
	Algorithm	Algorithm	Algorithm	Algorithm
			(LIN,	(LIN,
			DYN,	PWL,
			PWL)	DYN)
Tstop (ms)	4	4	4	4
Hmax (µs)	1	I	1	1
NumPts	6,547	6,547	6,547	6,547
Node	4	4	4	4
NumPWL	2	2	2	2
NumVar	7	7	7	7
Al	-	-	2	2
A2	-	-	2	3
A3	-	-	3	2
TotMem (bytes)	-	10,536	5,189	2,990
TotTime (s)	15.5260	2.6119	4.6410	4.5061

ตารางที่ 6.3 ตารางเปรียบเทียบประสิทธิภาพของแต่ละขั้นตอนวิธีสำหรับวงจร Buck converter

×.

รูปที่ 6.7 วงจร ZVSQRC

รูปที่ 6.8 ผลการจำลองทางเวลาของวงจร ZVSQRC

	General Purpose	Matrix Cache	Partial LUfactor	Partial LUfactor
	Algorithm	Algorithm	Algorithm	Algorithm
			(LIN,	(LIN,
			DYN,	PWL,
			PWL)	DYN)
Tstop (µs)	20	20	20	20
Hmax (µs)	0.2	0.2	0.2	0.2
NumPts	172	172	172	172
Node	23	23	23	23
NumPWL	6	6	6	6
NumVar	41	41	41	41
A1	-	-	9	9
A2	-	-	13	17
A3	-	-	19	15
TotMem (bytes)	-	310,503	178,224	230,905
TotTime (s)	27.4420	10.5110	4.8772	5.9053

ตารางที่ 6.4 ตารางเปรียบเทียบประสิทธิภาพของแต่ละขั้นตอนวิธีสำหรับวงจร ZVSQRC

.

6.2 การทดสอบประสิทธิภาพด้านความแม่นของขั้นตอนวิธี

วงจรที่ 1 วงจร RLC2

รูปที่ 6.9 วงจร RLC2

ตัวแปรวงจร	General Purpose	Partial LUfactor	Partial LUfactor
	Algorithm	Algorithm	Algorithm
		(LIN, DYN,	(LIN, PWL,
		PWL)	DYN)
V1	0	6.87E-12	6.87E-12
V2	0	0	0
V3	0	1.03E-11	1.03E-11
V4	0	0	0
V5	0	8.41E-11	8.41E-11
V6	0	0	0
V7	0	3.50E-12	3.50E-12
V8	0	9.99E-12	9.99E-12
V9	0	1.05E-11	1.05E-11
V10	0	3.37E-12	3.37E-12
V11	0	7.97E-12	7.97E-12
V12	0	9.40E-12	9.40E-12
V13	0	1.09E-11	1.09E-11
V14	0	1.05E-11	1.05E-11
V15	0	8.42E-11	8.42E-11

ตารางที่ 6.5 ตารางเปรียบเทียบค่าความผิดพลาดในการกำนวณของแต่ละขั้นตอนวิธีเมื่อใช้ประเภท ตัวแปรเป็นแบบความเที่ยงเท่าเดียว ด้วอย่างนี้เป็นการทคลองเพื่อแสดงให้เห็นถึงจุดด้อยของขั้นดอนวิธีการแยกด้วประกอบ แอล-ยูแบบบางส่วนว่า ถึงแม้ว่าขั้นตอนวิธีพิเศษนี้จะสามารถเร่งความเร็วในการคำนวณได้เร็วกว่า ขั้นตอนวิธีแบบทั่วไป แถมยังใช้ปริมาณหน่วยความจำน้อยกว่าขั้นตอนวิธีเมตริกซ์แคช แต่จะมีข้อ ด้อยในเรื่องของความแม่นยำในการคำนวณ ซึ่งความแม่นในการคำนวณนี้อาจวัดได้จาก ค่าเฉลี่ย ผลต่างสัมบูรณ์ (AME) ซึ่งเป็นการเปรียบเทียบค่าความผิดพลาดในการคำนวณของขั้นตอนวิธีการ แยกดัวประกอบแอล-ยูแบบบางส่วนเทียบกับขั้นตอนวิธีแบบทั่วไป ซึ่งได้แสดงไว้ในตารางที่ 6.4 โดยที่ ∨1 ถึง ∨15 คือตัวแปรของวงจร จากตารางที่ 6.4 จะพบว่าถึงแม้ว่าจะมีก่าผิดพลาดที่เกิด จำกการคำนวณขึ้น แต่ก่าผิดพลาดที่เกิดขึ้นมีก่าน้อยมาก (<10⁻¹¹) ถึงแม้กระนั้นก่าผิดพลาดที่เกิด ขึ้นนี้ยังสามารถลดลงได้อีก โดยการเปลี่ยนประเภทของตัวแปรจากแบบความเที่ยงเท่าเดียว (Single precision) เป็นแบบความเที่ยงสองเท่า (Double precision) ดังที่ได้แสดงไว้ในตารางที่ 6.5 ซึ่งผลที่ได้ทำให้ก่าผิดพลาดลดงไปเหลือในลำดับ 10⁻¹⁵

	1		
ตัวแปรวงจร	General Purpose	Partial LUfactor	Partial LUfactor
	Algorithm	Algorithm	Algorithm
		(LIN, DYN,	(LIN, PWL,
		PWL)	DYN)
V1	0	3.48E-15	3.48E-15
V2	0	0	0
V3	0	8.93E-16	8.93E-16
V4	0	0	0
V5	0	8.61E-15	8.61E-15
V6	0	0	0
V7	0	1.80E-15	1.80E-15
V8	0	8.55E-16	8.55E-16
V9	0	1.08E-15	1.08E-15
V10	0	1.77E-15	1.77E-15
V11	0	3.65E-15	3.65E-15
V12	0	9.69E-16	9.69E-16
V13	0	9.39E-16	9.39E-16
V14	0	1.08E-15	1.08E-15
V15	0	8.56E-15	8.56E-15

ดารางที่ 6.6 ตารางเปรียบเทียบค่าความผิดพลาดในการคำนวณของแต่ละขั้นตอนวิธีเมื่อใช้ประเภท ตัวแปรเป็นแบบความเที่ยงสองเท่า

e.

6.3 <u>การทคสอบประสิทธิภาพของเทคนิคแอล-อาร์-ย</u>

ในข้อกำหนดที่มีปริมาณหน่วยความจำอยู่จำกัดนั้น เมตริกซ์แคชจะมีประสิทธิภาพในการ เร่งความเร็วได้อย่างเต็มที่หรือไม่ ปัจจัยหลักข้อหนึ่งที่สำคัญก็คือหลักการที่นำมาเลือกใช้กัดเลือก ด้วประกอบแอล-ยูทิ้ง เพื่อรองรับตัวประกอบแอล-ยูตัวใหม่ที่ด้องการจะจัดเก็บ โดยที่ในวิทยา นิพนธ์นี้ได้นำหลักการแอล-อาร์-ยูมาใช้ โดยในหลักการจะกัดตัวประกอบแอล-ยูที่ไม่ได้ถูกเรียกใช้ นานที่สุดทิ้ง และการทดสอบนี้จึงมีขึ้นเพื่อทดสอบว่าหลักการแอล-อาร์-ยูนี้เหมาะสมที่จะนำมาใช้ ร่วมกับขั้นตอนวิธีเมตริกซ์แคชหรือไม่ ซึ่งในการทดสอบจะทำโดยการจำกัดปริมาณหน่วยความจำ ที่ใช้ในการเก็บค่าตัวประกอบแอล-ยู แล้วพิจารณาประสิทธิภาพของการเร่งความเร็วจากการก้นพบ ด้วประกอบแอล-ยูในเมตริกซ์แคช

วิธีในการจะทคสอบประสิทธิภาพของหลักการแอล-อาร์-ขูนั้น จะด้องพิจารณาจากใน สภาวะที่หน่วยความจำเริ่มมีจำกัค ซึ่งเมตริกซ์แคชจำด้องเลือกด้วประกอบแอล-ยูบางตัวทิ้งเพื่อรอง รับตัวประกอบแอล-ยูตัวใหม่ ในสภาวะดังกล่าวก็คือวงจรที่ทำการจำลองด้องมีขนาดใหญ่และทำ การจำลองไปเป็นเวลานานเพื่อให้เหลือเนื้อที่หน่วยความจำในส่วนที่เป็นเมตริกซ์แคชน้อย แต่เพื่อ ความสะควกในการทคสอบจะขอเลือกที่จะจำกัดขนาดของเมตริกซ์แคชที่ใช้รองรับดัวประกอบ แอล-ยูให้มีขนาดต่างๆกัน ตั้งแต่ 1 ตัวเพิ่มมากขึ้นเรื่อยๆจนกระทั่งถึงรูปแบบที่มากที่สุดที่จะเกิด ขึ้นของเมตริกซ์ A และในการทดสอบจะทำกับ 3 วงจรคือ Boost converter, Buck converter, ZVSQRC และผลของการทดสอบได้แสดงไว้ในตารางสรุปผล

วงจรที่ 1 วงจร Boost converter

11

รูปที่ 6.10 รูปวงจร Boost Converter

ถ้านำวงจรนี้ไปทำการจำลองทางเวลาตามตารางที่ 6.2 จะได้ว่าจำนวนรูปแบบของเมตริกซ์ A ที่เกิดขึ้นจริงในการจำลองทางเวลามีทั้งหมด 34 รูปแบบจากที่เป็นไปได้ทั้งหมด 66 รูปแบบดัง แสดงในตารางที่ 6.7

สถานะของอุปกรณ์เชิงเส้นแบบท่อน	Nstep ที่เกิดขึ้นจริง
D1-on, S1-on	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
D1-on, S1-off	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
D1-off, S1-on	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
D1-off, S1-off	0
D1-BrkDwn, S1-on	-
D1-BrkDwn, S1-off	-

ตารางที่ 6.7 ตารางแสคงถึงรูปแบบเมตริกซ์ A ที่เกิดขึ้นจริงในการจำลองของวงจร

Boost Converter

จำนวนตัวประกอบแอล-ยู	ค้นพบ (ครั้ง)	ค้นไม่พบ (ครั้ง)	เปอร์เซนต์การค้นพบ (%)
1	1007	2399	29.56
2	1009	2397	29.62
3	1009	2397	29.62
4	1009	2397	29.62
5	1009	2397	29.62
6	1009	2397	29.62
7	1009	2397	29.62
8	1009	2397	29.62
9	1009	2397	29.62
10	1009	2397	29.62
11	1009	2397	29.62
12	1009	2397	29.62
13	1206	2200	35.41
14	1403	2003	41.19
15	1600	1806	46.98
16	1797	1609	52.76
17	1994	1412	58.54
18	2191	1215	64.32
19	2388	1018	70.11
20	2585	821	75.90
21	2782	624	81.68
22	2979	427	87.46
23	2979	427	87.46
24	2979	427	87.46
25	2979	427	87.46
26	2979	427	87.46
27	2979	427	87.46
28	2979	427	87.46
29	2979	427	87.46
30	2979	427	87.46
31	2979	427	87.46
32	2979	427	87.46
33	2979	427	87.46
34	3372	34	99.00

และในการทคสอบจะทำการจำกัดขนาดของเมตริกซ์แกชให้เก็บด้วประกอบแอล-ยูได้เป็น จำนวนต่างๆกันซึ่งผลของการทคสอบได้แสดงไว้ในตารางที่ 6.8

ตารางที่ 6.8 ตารางแสดงประสิทธิภาพการค้นหาในเมตริกซ์แคชของวงจร Boost Converter

10

วงจรที่ 2 วงจร Buck converter

รูปที่ 6.11 รูปวงจร Buck Converter

ถ้านำวงจรนี้ไปทำการจำลองทางเวลาตามตารางที่ 6.3 จะได้ว่าจำนวนรูปแบบของเมตริกซ์ A ที่เกิดขึ้นจริงในการจำลองทางเวลามีทั้งหมด 24 รูปแบบจากที่เป็นไปได้ทั้งหมด 66 รูปแบบดัง แสดงในตารางที่ 6.9

สถานะของอุปกรณ์เชิงเส้นแบบท่อน	Nstep ที่เกิดขึ้นจริง
D1-on, S1-on	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
D1-on, S1-off	0
D1-off, S1-on	0
D1-off, S1-off	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
D1-BrkDwn, S1-on	-
D1-BrkDwn, S1-off	-

ตารางที่ 6.9 ตารางแสดงถึงรูปแบบเมตริกซ์ A ที่เกิดขึ้นจริงในการจำลองของวงจร Buck Converter

จำนวนตัวประกอบแอล-ยู	ค้นพบ (ครั้ง)	ค้นไม่พบ (ครั้ง)	เปอรเซนด์การค้นพบ (%)
1	4947	1921	72.03
2	4948	1920	72.04
3	5159	1709	75.12
4	5159	1709	75.12
5	5159	1709	75.12
б	5159	1709	75.12
7	5159	1709	75.12
8	5159	1709	75.12
9	5159	1709	75.12
10	5159	1709	75.12
11	5159	1709	75.12
12	5159	1709	75.12
13	5159	1709	75.12
14	5317	1551	77.42
15	5475	1393	79.72
16	5633	1235	82.02
17	5791	1077	84.32
18	5949	919	86.62
19	6107	761	88.92
20	6265	603	91.22
21	6423	445	93.52
22	6581	287	95.82
23	6739	129	98.12
24	6844	24	99.65

และในการทคสอบจะทำการจำกัดขนาดของเมตริกซ์แคชให้เก็บตัวประกอบแอล-ยูได้เป็น จำนวนต่างๆกันซึ่งผลของการทคสอบได้แสดงไว้ในตารางที่ 6.10

ดารางที่ 6.10 ดารางแสดงประสิทธิภาพการค้นหาในเมตริกซ์แคชของวงจร Buck Converter

· · ·

รูปที่ 6.12 รูปวงจร ZVSQRC

ถ้านำวงจรนี้ไปทำการจำลองทางเวลาตามตารางที่ 6.4 จะได้ว่าจำนวนรูปแบบของเมตริกซ์ A ที่เกิดขึ้นจริงในการจำลองทางเวลามีทั้งหมด 64 รูปแบบจากที่เป็นไปได้ทั้งหมด 3564 รูปแบบ ดังแสดงในตารางที่ 6.11

สถานะของอุปกรณ์เชิงเส้นแบบท่อน	Nstep ที่เกิดขึ้นจริง
(S1, S2, D1, D2, D3, D4)	
on-on-off-on-0n	1, 2, 3, 6, 8, 10
on-on-off-on-on-on	1, 2, 3, 6, 8, 10
on-on-off-off-on-on	3, 4
on-on-off-off-on-off	4, 5, 6, 7, 8, 9, 10
on-on-off-off-on	4, 5, 6, 7, 8, 9, 10
on-off-off-on-on-on	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
on-off-off-on-on	0
on-off-off-off-on	0, 1, 4, 5, 9, 10
off-on-on-off-on-on	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
off-on-off-off-on-on	0, 1
off-on-off-on-off	0, 1, 4, 5, 9, 10

ดารางที่ 6.11 ดารางแสดงถึงรูปแบบเมตริกซ์ A ที่เกิดขึ้นจริงในการจำลองของวงจร ZVSQRC

5

จำนวนตัวประกอบแอล-ยู	ค้นพบ (ครั้ง)	ค้นไม่พบ (ครั้ง)	เปอร์เซนต์การค้นพบ (%)
1	118	67	63.78
3	118	67	63.78
5	118	67	63.78
7	118	67	63.78
9	118	67	63.78
11	118	67	63.78
13	118	67	63.78
15	118	67	63.78
17	118	67	63.78
19	118	67	63.78
21	118	67	63.78
23	118	67	63.78
25	118	67	63.78
27	119	66	64.32
29	119	66	64.32
31	119	66	64.32
33	119	66	64.32
35	119	66	64.32
37	119	66	64.32
39	119	66	64.32
41	119	66	64.32
43	119	66	64.32

และในการทคสอบจะทำการจำกัดขนาดของเมตริกซ์แคชให้เก็บตัวประกอบแอล-ยูได้เป็น จำนวนต่างๆกันซึ่งผลของการทคสอบได้แสดงไว้ในตารางที่ 6.12

ดารางที่ 6.12 ดารางแสดงประสิทธิภาพการค้นหาในเมตริกซ์แคชของวงจร ZVSQRC

6.3 <u>วิจารณ์ผลการทคสอบ</u>

จากการทดสอบใน 3 หัวข้อข้างต้นใด้นำรายละเอียดของข้อมูลบางส่วนมาแสดงไว้ใน ดารางที่ 6.13 ซึ่งเป็นสิ่งยืนยันได้อย่างดียิ่งว่า ทั้ง 2 ขั้นตอนวิธีคือ ขั้นตอนวิธีเมตริกซ์แคช และ ขั้นตอนวิธีแยกตัวประกอบแอล-ยูแบบบางส่วน นั้นมีประสิทธิภาพขึ้นมากกว่าขั้นตอนวิธีแบบทั่ว ไปในด้านของกวามเร็วในการจำลองทางเวลา

2495	ตัวแปร	General Purpose	General Purpose	General Purpose
		algorithm	algorithm +	algorithm +
			Matrix cache	Partial LUfactor
		(วินาที)	(วินาที)	(วินาที)
Boost converter	8	5.8937	1.5627	2.1239
Buck converter	9	15.5260	2.6119	4.6410
RLC2	15	8.8670	0.9754	1.3307
ZVSQRC	41	27.4420	10.5110	5.9053

ดารางที่ 6.13 ดารางเปรียบเทียบเวลาที่ใช้ในการคำนวณของแต่ละขั้นตอนวิธี

จากตัวเลขของเวลาที่ใช้ในการคำนวณของแต่ละขั้นดอนวิธีสามารถนำมาอธิบายได้ว่า ทั้ง สองขั้นดอนวิธีกือ ขั้นดอนวิธีเมตริกซ์แคช และ ขั้นตอนวิธีแยกตัวประกอบแอล-ยูแบบบางส่วน นั้นล้วนแต่ใช้เวลาน้อยกว่าขั้นตอนวิธีแบบทั่วไปทั้งสิ้น แต่สิ่งที่น่าสนใจก็คือในวงจรปกติทั่วไป แล้วขั้นตอนวิธีแยกดัวประกอบแอล-ยูแบบบางส่วนนั้นใช้เวลามากกว่าขั้นตอนวิธีเมตริกซ์แคชใน การจำลองเหตุผลก็เนื่องจากว่า ขั้นตอนวิธีแยกตัวประกอบแอล-ยูแบบบางส่วนนั้นค้องเสียเวลา ส่วนหนึ่งในการนำเมตริกซ์ทั้ง 3 ชิ้นมาเรียงต่อกันในขณะที่ขั้นตอนวิธีเมตริกซ์แคชนั้นใช้วิธีจัด เก็บเมตริกซ์ทั้งก้อนจึงทำเพียงการสลับค่าตัวชี้ในการจัคเก็บเท่านั้น แต่อย่างไรก็ดี ถ้าขนาดของวง จรมีขนาดใหญ่ขึ้นมากๆดังวงจรสุดท้ายในตาราง 6.13 ซึ่งมีขนาด 41 โนด ขั้นตอนวิธีเมตริกซ์แคชนั้นใช้วิธีจัด เนื่องจากขั้นตอนวิธีเมตริกซ์แคชใช้การจัดเก็บหน่วยความจำแบบไม่ประหยัดทำให้ด้องทิ้งตัว ประกอบแอล-ยูไปเป็นจำนวนมาก ขณะที่ขั้นตอนวิธีแยกดัวประกอบแอล-ยูแบบบางส่วนนั้น สามารถจัดเก็บตัวประกอบแอล-ยูได้มากกว่าทำให้เร่งเวลาขึ้นได้มากกว่า