บทที่ 4

ผลการวิจัย

จากการดำเนินการทดลองในห้องปฏิบัติการ ตามขั้นตอนที่ได้กล่าวมาแล้วในบทที่ 3 ผู้ วิจัยได้นำเสนอและวิเคราะห์ข้อมูลที่ได้ในรูปแบบของตารางและกราฟ เรียงตามลำดับ ดังนี้

4.1 สมบัติของวัตถุดิบ

4.1.1 สมบัติเบื้องต้นของไม้โกงกาง มีดังต่อไปนี้

- สมบัติทางเคมี				
ความชื้น (M)	ร้อยละ	11.29		
ปริมาณเถ้า (Ash)	ร้อยละ	0.53		
ปริมาณสารระเหย (VCM)	ร้อยละ	55.53		
ปริมาณคาร์บอนคงตัว (FC)	ร้อยละ	43.94		
- สมบัติทางกายภาพ				
พื้นที่ผิวรูพรุนทั้งหมด (S _{вет})	0.1635	ตร.ม./ก.		
4.1.2 สมบัติทั่วไปของไม้โกงกางและถ่านไม้โกงกาง				
ไม้โกงกางก่อนที่จะนำมาคาร์บอไนซ์ จะถูกนำมาเลื่อยเป็นแว่นกลมเล็กๆ ก่อนใส่				

ลงในตะแกรง

ไม้โกงกางหลังการคาร์บอไนซ์ จะเป็นถ่านสีดำ มันวาวและเปราะ ดังรูปที่ 4.2

<u>รูปที่ 4.2</u> ไม้โกงกางหลังการคาร์บอ**ไ**นซ์

4.2 ภาวะที่เหมาะสมในการผลิตถ่านกัมมันต์ โดยแบ่งออกเป็น 2 ขั้นตอน

4.2.1 ภาวะที่เหมาะสมในการคาร์บอไนซ์

ผลจากการคาร์บอในซ์ตัวอย่างไม้โกงกางที่อุณหภูมิ 250,300,350 และ 400 องศา-เป็นเวลา 20,40 และ60 นาที ตามลำดับ จากการวิเคราะห์สมบัติของถ่าน ได้แก่ เซลเซียส ปริมาณความชื้น(M),ปริมาณเถ้า(Ash),ปริมาณสารระเหย(VCM) และปริมาณคาร์บอนคงตัว (FC) แสดงรายละเอียดดังตารางที่ 4.1 และจากข้อมูลที่ได้นำมาสร้างกราฟแสดงความสัมพันธ์ของผล ของอุณหภูมิที่มีต่อสมบัติของถ่านที่ได้ ณ เวลาต่างๆ ดังรูปที่4.3 ถึง 4.6 และกราฟแสดงความ

สัมพันธ์ระหว่างผลของเวลาที่มีต่อสมบัติของถ่านที่ได้ ณ อุณหภูมิต่างๆ ดังรูปที่ 4.7 ถึง 4.10

ชนิดของ	ภาวะการเตรียม				On dry		
วัตถุดิบ	วัตถุดิบ					basis	
	อุณหภูมิ	ระยะเวลา	YC	М	Ash	VCM	FC
	(°C)	(min)	% wt	% wt	% wt	% wt	% wt
โกงกาง	-	-	-	11.29	0.53	55.23	44.24
	250	20	68.46	5.13	5.42	41.71	52.76
ถ่านโกงกาง	250	40	44.27	5.20	5.58	37.66	56.08
	250	60	40.21	6.10	6.26	33.52	60.22
	300	20	48.16	5.07	5.67	35.44	58.89
ถ่านโกงกาง	300	40	42.38	5.37	6.08	30.55	63.37
	300	60	38.07	5.89	5.54	23.02	71.44
	350	20	40.16	6.36	6.93	33.79	59.28
ถ่านโกงกาง	350	40	35.80	4.94	5.96	28.21	65.83
	350	60	27.93	5.38	6.37	20.64	72.99
	400	20	37.41	5.16	5.87	30.31	63.82
ถ่านโกงกาง	400	40	32.78	5.56	5.53	24.42	67.05
	400	60	20.06	6.13	6.64	18.83	74.53

<u>ตารางที่ 4.1</u> แสดงค่าประมาณของไม้โกงกางและถ่านไม้โกงกางที่ได้จากการคาร์บอไนซ์ ณ ภาวะ ต่างๆ

<u>หมายเหตุ</u>

- 1. % VCM . %FC .%Ash คำนวณจากตัวอย่างอบแห้ง
- 2. %Yield ปอบร่านจากการคาร์บอไนซ์
 - %Y = y/x 100 เมื่อ y = น้ำหนาถ่านก็มมันต์หลังการคาร์บอในซ์ เมื่อ x = น้ำหนักถ่านกัมมันต์การคาร์บอโนซ์

เวลาการคาร์บอในซ์ (min)

<u>รูปที่ 4.3</u> ผลของเวลาการคาร์บอไนซ์ที่มีต่อค่าร้อยละของปริมาณผลิตภัณฑ์ ณ อุณหภูมิต่างๆ โดยใช้ไม้โกงกาง 400 กรัม

เวลาการคาร์บอไนซ์ (min)

<u>รูปที่ 4.4</u> ผลของเวลาการคาร์บอไนซ์ที่มีต่อค่าร้อยละของปริมาณเถ้า ณ อุณหภูมิต่างๆโดยใช้ ไม้โกงกาง 400 กรัม

เวลาการคาร์บอไนซ์ (min)

<u>รปที่ 4.5</u> ผลของเวลาการคาร์บอไนซ์ที่มีต่อค่าร้อยละของปริมาณสารระเหย ณ อุณหภูมิต่างๆโดย ใช้ไม้โกงกาง 400 กรัม

เวลาการคาร์บอไนซ์ (min)

<u>รูปที่ 4.6</u> ผลของเวลาการคาร์บอไนซ์ที่มีต่อค่าร้อยละของปริมาณคาร์บอนคงตัว ณ อุณหภูมิต่างๆ โดยใช้ไม้โกงกาง 400 กรัม

<u>รูปที่ 4.7</u> ผลของอุณหภูมิการคาร์บอไนซ์ที่มีต่อค่าร้อยละของปริมาณผลิตภัณฑ์ ณ เวลาต่างๆโดย ใช้ไม้โกงกาง 400 กรัม

อุณหภูมิการคาร์บอโนซ์ (O C)

<u>รูปที่ 4.8</u> ผลของอุณหภูมิการคาร์บอไนซ์ที่มีต่อค่าร้อยละของปริมาณเถ้า ณ เวลาต่างๆโดยใช้ไม้ โกงกาง 400 กรัม

<u>รูปที่ 4.9</u> ผลของอุณหภูมิการคาร์บอไนซ์ที่มีต่อค่าร้อยละของปริมาณสารระเหย ณ เวลาต่างๆโดย ใช้ไม้โกงกาง 400 กรัม

อุณหภูมิการการ์แอไนข (O C)

<u>รูปที่ 4.10</u> ผลของอุณหภูมิการคาร์บอไนซ์ที่มีต่อค่าร้อยละของปริมาณคาร์บอนคงตัว ณ เวลา ต่างๆ โดยใช้ไม้โกงกาง 400 กรัม

4.2.2 ภาวะที่เหมาะสมในการกระตุ้น

ผลจากการกระตุ้นถ่านไม้โกงกางที่อุณหภูมิ 700,750,800 และ 850 องศาเซลเซียส เป็น เวลา 30,60,90และ 120 นาที โดยนำมาวิเคราะห์สมบัติของถ่านกัมมันต์ ดังนี้ ค่าการดูดซับ ไอโอดีน (IA), ค่าการดูดซับเมทธิลีนบูล (MB), ค่าความหนาแน่นเชิงปริมาตร (BD) และปริมาณ เถ้า (ash) แสดงดังตารางที่ 4.2 นำข้อมูลที่ได้มาเขียนกราฟแสดงความสัมพันธ์ระหว่างผลของ เวลาการกระตุ้นกับสมบัติของถ่านกัมมันต์จากไม้โกงกางที่อุณหภูมิต่างๆ ดังรูปที่ 4.11 ถึง 4.14 และเขียนกราฟแสดงความสัมพันธ์ระหว่างผลของอุณหภูมิการกระตุ้นกับสมบัติของถ่านกัมมันต์ จากไม้โกงกางที่เวลาต่างๆ ดังรูปที่ 4.15 ถึง 4.18

<u>ตารางที่ 4.2</u> สมบัติของถ่านกัมมันต์เมื่อกระตุ้นถ่านที่อุณหภูมิและเวลาต่างๆโดยใช้ถ่านไม้ โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 5l/min,อัตราการป้อนก๊าซคาร์บอนไดออกไซด์ 5 l/min (Air : CO₂ , 1:1) และใช้ไอน้ำร้อนยวดยิ่งที่มากเกินพอ

ภาวะของก	ารกระตุ้น				On dry	basis	
อุณหภูมิ	1520	Y	Μ	BD	Ash	IA	MB
С	רוורדו	%	%	g/cm³	%	Mg/g	Mg/g
700	30	35.57	0.67	0.5507	5.49	279.28	7.65
700	60	34.42	0.82	0.5417	5.98	286.11	8.11
700	90	28.88	0.92	0.5268	5.32	287.34	8.48
700	120	27.55	0.88	0.5181	5.71	290.95	8.57
750	30	34.32	0.69	0.5318	5.14	286.23	8.76
750	60	33.61	1.12	0.5229	6.52	289.31	9.13
750	37	29.64	0.87	0.4925	5.87	292.25	9.67
750	i E.	27.19	0.92	0.4878	5.53	298.17	€74
500		3429	0.87	0.4381	6.52	308.30	10.11
800	10 m 10 m 10 m	32.57	1.04	0.4135	6.87	314.66	11.32
800	ą	31.95	0.97	0.3742	7.39	321.61	11.66
600	52	26.77	0.91	C.3740	6.46	330.88	12.55
850	3	33.54	1.11	0.4062	6.83	330.81	12.88
850	60	32.64	0.93	0.3955	6.44	345.89	13.51
850	90	26.81	1.04	0 4532	7.18	351.88	13.65
850	120	25.23	1.21	0.4719	7.02	354.29	16.02

เวลาการกระตุ้น (min)

<u>รูปที่ 4.11</u> ผลของเวลาการกระตุ้นที่มีค่าร้อยละของปริมาณผลิตภัณฑ์ ณ อุณหภูมิต่างๆ โดยใช้ ถ่านไม้โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 5 I/min อัตราการป้อนก๊าซคาร์บอนไดออกไซด์ 5 I/min (Air: CO₂,1:1) ปริมาณไอน้ำร้อนยวดยิ่งที่มากเกินพอ

เวลาการกระตุ้น(min)

<u>รูปที่ 4.12</u> ผลของเวลาการกระตุ้นที่มีต่อค่าความหนาแน่นเชิงปริมาตร ณ อุณหภูมิต่างๆ โดยใช้ ถ่านไม้โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 5 l/min อัตราการป้อนก๊าซคาร์บอนไดออกไซด์ 5 l/min (Air: CO₂,1:1) ปริมาณไอน้ำร้อนยวดยิ่งที่มากเกินพอ

เวลาการกระตุ้น (min)

ร<u>ูปที่ 4.13</u> ผลของเวลาการกระตุ้นที่มีต่อค่าการดูดซับไอโอดีน ณ อุณหภูมิต่างๆ โดยใช้ถ่านไม้ โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 5 l/min อัตราการป้อนก๊าซคาร์บอนไดออกไซด์ 5 l/min (Air: CO₂,1:1) ปริมาณไอน้ำร้อนยวดยิ่งที่มากเกินพอ

<u>รูปที่ 4.14</u> ผลของเวลาการกระตุ้นะวิมีต่อล่าการดูดขับเมทธิลีนบูล ณ อุณหภูมิต่างๆโดยใช้ถ่านไม้ โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 5 I/min อัตราการป้อนก๊าซคาร์บอนไดออกไซด์ 5 I/min

(Air : CO₂, 1:1) ปริมาณไอน้ำร้อนยวดยิ่งที่มากเกินพอ

อุณหภูมิการกระตุ้น(C)

<u>รูปที่ 4.15</u> ผลของอุณหภูมิการกระตุ้นที่มีต่อปริมาณผลิตภัณฑ์ ณ เวลาต่างๆโดยใช้ถ่านไม้ โกงกาง 150 กรัมปริมาณการป้อนอากาศ 5 l/min อัตราการป้อนก๊าซคาร์บอนไดออกไซด์ 5 l/min (Air : CO₂, 1:1) ปริมาณไอน้ำร้อนยวดยิ่งที่มากเกินพอ

อุณหภูมิการกระตุ้น (C

<u>รูปที่ 4.16</u> ผลของอุณหภูมิการกระตุ้นที่มีต่อค่าความหนาแน่นเริงปริมาตร ณ เวลาตางๆ โดยใช้ ถ่านไม้โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 5 l/min อัตราการป้อนก๊าซคาร์บอนไดออกไซด์ 5 l/min. (Air ; CO₂ , 1:1) ปริมาณไอน้ำร้อนยิ่งยวดที่มากเกินพอ

อุณหภูมิการกระตุ้น (C)

<u>รูปที่ 4.17</u> ผลของอุณหภูมิการกระตุ้นที่มีต่อค่าการดูดซับไอโอดีน ณ เวลาต่างๆ โดยใช้ถ่านไม้ โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 5 l/min อัตราการป้อนก๊าซคาร์บอนไดออกไซด์ 5 l/min. (Air ; CO₂ , 1:1) ปริมาณไอน้ำร้อนยิ่งยวดที่มากเกินพอ

<u>รูปที่ 4,18</u> ผลของอุณหภูมิการประมันมีมีข่อควารดูดข้บแบบธิลีนบูล ณ เวลาต่างๆ โดยใช้ถ่านไม่ โกงกาง 150 กรัม ปริมาณการป้อนอาจาศ 5 Iomin.อัตราการป้อนก๊าซคาร์บอนไดออกไซล์ 5 I/min. (Air ; CO₂ , 1:1) ปริมาณไอน้ำร้อนยิ่งยวดที่มากเกินพอ

<u>ตารางที่ 4.3</u> สมบัติของถ่านกัมมันต์เมื่อกระตุ้นถ่านขนาดต่างๆ ที่อุณหภูมิ 850 องศาเซลเซียส เป็นเวลา 1 ชั่วโมง โดยใช้ถ่านไม้โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 5 I/min. ปริมาณก๊าซ CO₂ 5 I/min. (ณ อุณหภูมิ 30 ^oC ที่ความดั้นบรรยากาศ) และปริมาณไอน้ำอิ่มตัวยวดยิ่งที่มาก เกินพอ

ขนาดเม็ด	Y	М		(On dry bas	is		
ถ่าน								
(มม.)	%	%	BD	IA	MB	S _{bet}	Micro	Macro
							pores	poes
			ก./ลบ.ชม.	มก./ก.	มก./ก.	ตร.ม./ก.	ตร.ม./ก.	ตร.ม./ก.
2.36-4.75	29.56	0.86	0.3913	505.67	239.69	439.68	277.96	161.72
1.18-2.36	30.79	0.83	0.3729	571.23	244.77	481.80	345.21	136.59
0.60-1.18	27.47	0.80	0.3223	675.14	254.73	639.74	483.24	156.50
0.35-0.60	25.11	0.79	0.3429	615.27	248.25	564.36	392.78	171.58
<0.35	21.42	0.84	0.4317	532.48	240.66	460.11	318.63	141.48

ขนาดอนุภาค(mm.)

<u>รูปที่ 4.19</u> ผลของขนาดอนุภาคที่มีต่อร้อยละของปริมาณผลิตภัณฑ์ เมื่อกระตุ้นที่อุณหภูมิ 850 องศาเซลเซียส เป็นเวลา 1 ชั่วโมง โดยใช้ไม้โกงกาง 150 กรัมปริมาณการป้อนอากาศ 5 I/min. ปริมาณก๊าซ CO₂5 I/min. (T= 30[°]C,P=1 atm) และปริมาณไอน้ำอิ่มตัวยวดยิ่งที่มากเกินพอ

ขนาดอนุภาค (mm.)

<u>รูปที่ 4.20</u> ผลของขนาดอนุภาคที่มีต่อร้อยละของปริมาณความชื้น เมื่อกระตุ้นที่อุณหภูมิ 850 องศาเซลเซียส เป็นเวลา 1 ชั่วโมง โดยใช้ไม้โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 5I/min อัตราการป้อนก๊าซคาร์บอนไดออกไซด์ 5 I/min (T= 30^oC,P=1 atm) ปริมาณไอน้ำร้อนยวดยิ่งที่ มากเกินพอ

ขนาดอนุภาค(mm.)

<u>รูปที่ 4.21</u> ผลของขนาดอนุภาคที่มีต่อร้อยละของปริมาณเถ้า เมื่อกระตุ้นที่อุณหภูมิ 850 องศา เซลเซียส เป็นเวลา 1 ชั่วโมง โดยใช้ไม้โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 5I/min อัตราการ ป้อนก๊าซคาร์บอนไดออกไซด์ 5 I/min (T= 30⁰C,P=1 atm) ปริมาณไอน้ำร้อนยวดยิ่งที่มากเกินพอ

<u>รูปที่ 4.22</u> ผลของขนาดอนุภาคที่มีต่อความหนาแน่นเซิงปริมาตร เมื่อกระตุ้นที่อุณหภูมิ 850 องศา เซลเซียส เป็นเวลา 1 ชั่วโมง โดยใช้ไม้โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 51/min อัตราการ ป้อนก๊าซคาร์บอนไดออกไซด์ 5 1/min (T= 30^oC,P=1 atm) ปริมาณไอน้ำร้อนยวดยิ่งที่มากเกินพอ

<u>รูปที่ 4.23</u> ผลของขนาดอนุภาคที่มีต่อค่าการดูดซับไอโอดีน เมื่อกระตุ้นที่อุณหภูมิ 850 องคา เซลเซียส เป็นเวลา 1 ชั่วโมง โดยใช้ไม้โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 51/min อัตราการ ป้อนก๊าซคาร์บอนไดออกไซด์ 5 1/min (T= 30^oC,P=1 atm) ปริมาณไอน้ำร้อนยวดยิ่งที่มากเกินเพอ

<u>รูปที่ 4.24</u> ผลของขนาดอนุภาคที่มีต่อค่าการดูดซับเมทธิลีนบูล เมื่อกระตุ้นที่อุณหภูมิ 850 องศา เซลเซียส เป็นเวลา 1 ชั่วโมง โดยใช้ไม้โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 5I/min อัตราการ ป้อนก๊าซคาร์บอนไดออกไซด์ 5 I/min (T= 30^oC,P=1 atm) ปริมาณไอน้ำร้อนยวดยิ่งที่มากเกินพอ

<u>รูปที่ 4.25</u> ผลของขนาดอนุภาคที่มีพื้นที่ผิวรูพรุนทั้งหมด เมื่อกระตุ้นที่อุณหภูมิ 850 องศาเซลเซียส เป็นเวลา 1 ชั่วโมง โดยใช้ไม้โกงกาง 150 กรัม ปริมาณการป้อนอากาศ 51/min อัตราการป้อนก๊าซ คาร์บอนไดออกไซด์ 5 I/min (T= 30^oC,P=1 atm) ปริมาณไอน้ำร้อนยวดยิ่งที่มากเกินพอ

4.3 ศึกษาความจุในการดูดซับสี

4.3.1 ศึกษาการเปลี่ยนแปลง Adsorption spectrum ของสารละลาย K₂Cr₂O₇ เมื่อ pH เปลี่ยน แปลงไป

เตรียมสารละลาย K₂Cr₂O₇ เข้มข้น 1.7x10⁻⁴ M ทำให้มี pH เป็น 1,2,3,5 และ 7 ด้วยสาร ละลาย 0.1 M HNO₃ กับ 0.1 NH₄OH นำไปวัดค่า Absorbance ด้วยเครื่อง Spectrophotometer โดยใช้วิธีการ Scan Spectrum ที่ Wavelength ตั้งแต่ 200 ถึง 900 นาโนเมตร ผลจากการ Scan Spectrum ดังแสดงรูปที่ 4.26

<u>รูปที่ 4.26</u> adsorption spectrum ของสารละลาย K₂Cr₂Oァ เข้มข้น 1.7X10⁻⁴ M เตรียม ณ pH 1,2,3,4,5 และ 7

absorption spectrum ของสารละลาย K₂Cr ₂O₇ ดังรูปที่ 4.26 พบว่าสารละลาย K₂Cr₂O₇ ที่ pH 7 มีการเปลี่ยนแปลงจาก Cr₂O₇²⁻ เป็น Cr₂O₄²⁻ ดังนั้นในการทดลองนี้จะทำการ เตรียมสารละลายกรดในตริกที่มี pH 1,2 และ 3 เท่านั้น หรือมีความเข้มข้น 0.1,0.01 และ 0.001 M ตามลำดับ แล้วนำไปแซ่ถ่านกัมมันต์ที่ผลิตได้ (ถ่านกัมมันต์นี้ต้องเป็นถ่านกัมมันต์ที่ได้จากการ กระตุ้นที่ภาวะที่เหมาะสม คือ ที่ 850 °C ,1 ชั่วโมง ขนาด 0.6-1.18 มิลลิเมตร) เพื่อศึกษาการ เปลี่ยนแปลง pH ของสารละลายกรดในตริก ที่ความเข้มข้นต่างๆ เมื่อนำถ่านกัมมันต์มาแซ่ โดยใช้ ถ่านกัมมันต์ 0.25 กรัม ต่อสารละลายกรดในตริก 25 มิลลิลิตร ดังตารางที่ 4.4

เวลา	0.1 M HNO ₃	0.01 M HNO ₃	0.01 M HNO ₃
	рН = 0.98	рН = 1.97	рН = 2.95
(ขั้วโมง)	0.60-1.18 mm.	0.60-1.18 mm.	0.60-1.18 mm.
1	0.98	2.07	3.68
2	1.01	2.11	4.36
3	1.05	2.24	5.52
4	1.03	2.22	5.60
5	1.02	2.24	5.78
6	1.01	2.26	5.92
7	1.01	2.26	6.10
8	1.00	2.27	6.24
9	0.99	2.29	6.35
10	0.99	2.31	6.40
11	0.99	2.35	6.66
12	1.00	2.37	6.68
13	1.01	2.37	6.69
14	1.01	2.38	6.72
15	1.02	2.38	6.75
16	1.03	2.38	6.75

<u>ตารางที่ 4.4</u> การเปลี่ยนแปลง pH ของสารละลายกรดในตริก ที่ความเข้มข้นต่างๆ เมื่อ equilibrate กับถ่านกัมมันต์จากไม้โกงกาง

เวลา	0.2 M HNO ₃	0.02 M HNO ₃	0.02 M HNO ₃
	рН = 0.98	pH = 1.97	pH = 2.95
(ชั่วโมง)	0.60-1.18 mm.	0.60-1.18 mm.	0.60-1.18 mm.
24	1.14	2.63	7.09
48	1.12	2.75	7.16
72	1.10	2.90	7.33
96	1.13	3.07	7.35
168	1.15	3.03	7.39
172	1.13	3.02	7.41
196	1.19	3.05	7.45

<u>รูปที่ 4.27</u> การเปลี่ยนแปลง pH ของลารละลาย HNO₃ เมื่อผ่านการ equilibrate กับถ่านกัม-มันต์จากไม้โกงกาง ขนาด 0.60-1.18 มิลลิเมตร pH 1,2 และ 3

จากการศึกษาการเปลี่ยนแปลง pH ของสารละลายกรดไนตริกที่ความเข้มข้นต่างๆ เมื่อทำ การ equilibrate กับถ่านกัมมันต์ซึ่งมี pH = 9.43 พบว่าการศึกษาความจุในการดูดซับสีของ Cr₂O₇² ควรใช้สารละลายเริ่มต้นไม่เกิน pH 2 เพราะที่กรดไนตริกที่ความเข้มข้น 0.001 M (pH=3) เมื่อนำมา equilibrate กับถ่านกัมมันต์จะทำให้ pH มีการเปลี่ยนแปลงไปมาก คือ เปลี่ยนแปลง จาก pH 3 เป็น pH 6 ภายใน 6-7 ชั่วโมง ดังนั้นจึงไม่สมควรจะใช้กรดไนตริกที่ ความเข้มข้น 0.001 M (pH=3) มาปรับ pH ของ K₂Cr₂O₇ (โดยใช้ถ่านกัมมันต์จากไม้โกงกางดูดซับ) เพราะจะทำให้ Cr₂O₇² เปลี่ยนเป็น Cr₂O₄² (Cr₂O₇² เปลี่ยนเป็น Cr₂O₄² ที่ pH > 5 , ดังรูปที่ 4.26)

4.3.2 การศึกษาจลนพลศาสตร์

เพื่อศึกษาหาเวลาที่เหมาะสมลำหรับประสิทธิภาพการดูดซับสีของ Cr₂O₇²⁻ บนผิวถ่าน กัมมันต์ที่ผลิตได้ โดยการเตรียมสารละลาย K₂Cr₂O₇ เข้มข้น 2.0X 10⁻³ M (588.4 ppm) ในกรด ในตริก ที่ pH = 1 และ 2 ตามลำดับ นำถ่านกัมมันต์ 0.25 กรัม มาแซ่ในสารละลาย K₂Cr₂O₇ 25 มิลลิลิตร เป็นเวลา 20 นาที, 1,2,3,4,5 และ 24 ชั่วโมง นำสารละลาย Cr₂O₇²⁻ ที่เหลือจากการ ดูดซับด้วยถ่านกัมมันต์มาวัดค่า Absorbance ที่ความยาวคลื่น 350 นาโนเมตร แล้วนำผลของค่า Absorbance ที่วัดได้มาคำนวณหาปริมาณของ Cr₂O₇²⁻ ที่เหลืออยู่ โดยเทียบกันกราฟมาตรฐาน ของ Cr₂O₇²⁻(รายละเอียดการสร้างกราฟมาตรฐาน ; ภาคผนวก ฌ) และสามารถหามิลลิกรัมที่ถูก ดูดซับของ Cr₂O₇²⁻ ได้โดยนำปริมาณ Cr₂O₇²⁻ ที่เหลืออยู่ หักออกจากปริมาณ Cr₂O₇²⁻ เริ่มแรก(ภาค ผนวก ฌ.2) จากข้อมูลที่ได้นำมาสร้างกราฟแสดงความสัมพันธ์ระหว่างผลของ pH ของสารละลาย K₂Cr₂O₇ที่มีต่อการดูดซับ Cr₂O₇²⁻ ด้วยถ่านกัมมันต์จากไม้โกงกาง ณ เวลาต่างๆ ดังรูปที่ 4.25

<u>หมายเหตุ</u> สูตรการคำนวณความเข้มข้นที่ถูกดูดซับ (ppm) และมิลลิกรัม Cr₂O₇² ต่อกรัมของถ่าน

 ความเข้มข้นที่ถูกดูดซับ (ppm) = ความเข้มข้น Cr₂O₇² เริ่มต้น -ความเข้มข้น Cr₂O₇² ที่เหลืออยู่
2.มิลลิกรัม Cr₂O₇ ต่อกรัมของถ่าน = [Cr₂O₇]เริ่มต้น -[Cr₂O₇]ที่เหลือ × 0.025 น้ำหนักตัวอย่าง(กรัม) <u>ตารางที่ 4.5</u> แสดงค่าการดูดซับ Cr₂O₇² บนผิวถ่านกัมมันต์จากไม้โกงกางขนาด 0.6-1.18 มิลลิเมตร ในสารละลาย K₂Cr₂O₇ เข้มข้น 2.0 X10⁻³ M (588.4 ppm) pH = 2 โดยวัดค่า Absorbance ณ ความยาวคลื่น 350 นาโนเมตร

เวลา	ปริมาณของ Cr ₂ O ₇
(ชั่วโมง)	ที่ถูกดูดซับ, mg/g
20 นาที	28.82
1	32.21
2	34.75
3	36.94
4	40.79
5	44.40
6	45.27
7	47.04
8	47.04
9	47.03
24	50.84

<u>ตารางที่ 4.6</u> แสดงค่าการดูดซับ Cr₂O₇²⁻ บนผิงถ่านกัมมันต์จากไม้โกงกางขนาด 0.6-1.18 มิลลิเมตร ในสารละลาย K₂Cr₂O₇ เข้มข้น 2.0 X10⁻³ M (588.4 ppm) pH = 1 โดยวัดค่า Absorbance ณ ความยาวคลื่น 350 นาโนเมตร

เวลา	ปริมาณของ Cr₂O ₇ ⁼
(ชั่นในปี)	ที่ถูกดูดซับ, mg/g
20 นาที	30.28
1	32.73
2	34.77
3	38.61
4	42.27
5	46.32
6	47.61
7	47.69
8	47.85
9	48.15
24	51.99

<u>รูปที่ 4.28</u> Kinetic studies ของการดูดซับ Cr₂O7²⁻ บนถ่านกัมมันต์จากไม้โกงกางขนาด 0.6-1.18 mm. ณ สารละลายเข้มข้น 588.4 ppm (mg/l) ที่ pH = 2

<u>รูปที่ 4.29</u> Kinetic studies ของการดูดซับ Cr₂O₇² บนถ่านกัมมันต์จากไม้โกงกางขนาด 0.6-1.18 mm. ณ สารละลายเข้มข้น 588.4 ppm (mg/l) ที่ pH = 1

จากผลการทดลองศึกษาจลนพลศาสตร์ หาเวลาที่เหมาะสม เพื่อใช้ศึกษาประสิทธิภาพ การดูดซับสี Cr₂O₇²⁻ บนผิวถ่านกัมมันต์ขนาด 0.6-1.18 มิลลิเมตร เมื่อปรับ pH ของสารละลาย Cr₂O₇²⁻ เริ่มต้นเป็น 2.12 และ 1.09 ตามลำดับ พบว่า สารละลาย Cr₂O₇²⁻ จะเข้าสู่สมดุลของการ ดูดซับที่เวลาประมาณ 7 ชั่วโมง ดังนั้นจะใช้เวลาดังกล่าวไปหาความจุในการดูดซับสีต่อไป

4.3.3 การศึกษา Adsorption Isotherm เป็นการศึกษาหาความสัมพันธ์ระหว่าง Cr₂O₇² ที่ถูกดูดชับ มก./ก. กับความเข้มข้นของ Cr₂O₇² ที่เหลืออยู่

เตรียมสารละลาย K₂Cr₂O₇ ให้มีความเข้มข้นต่างๆกัน 2 ซุด มี pH 2 และ 1 นำมา equilibrate กับถ่านกัมมันต์จากไม้โกงกาง โดยใช้ถ่าน 0.25 กรัม ต่อสารละลาย K₂Cr₂O₇ 25 มล. เป็นเวลา 7 ชั่วโมง (ซึ่งเป็นเวลาที่ระบบเข้าสู่สมดุลจากผลของ Kinetic studies) แล้วนำ Cr₂O₇²⁻ ที่เหลือจากการดูดซับไปวัดค่า Absorbance ณ ความยาวคลื่น 350 nm. นำค่า Abs. ที่ได้ไปเทียบ กับกราฟมาตรฐาน แล้วคำนวณหามิลลิกรัมการดูดซับ Cr₂O₇²⁻ ต่อกรัมของถ่าน รายละเอียดแสดง ดังตารางที่ 4.7 และ 4.8 จากข้อมูลที่ได้นำมาสร้างกราฟ เพื่อหาความสัมพันธ์ระหว่าง Cr₂O₇²⁻ ที่ ถูกดูดซับ มก./ก. กับ ความเข้มข้น Cr₂O₇²⁻ ที่เหลืออยู่ ดังรูปที่ 4.30 และ 4.31

<u>ตารางที่ 4.7</u> แสดงค่าการดูดซับ Cr₂O₇² บนถ่านกัมมันต์จากไม้โกงกาง ขนาด 0.6-1.18 มม.ใน สารละลาย K₂Cr₂O₇ ที่ความเข้มข้นต่างๆ pH = 2 เป็นเวลา 7 ชั่วโมง โดยวัดค่า Absorbance ณ ความยาวคลื่น 350 นาโนเมตร

Ci	₂ 0 ₇ ² เริ่มต้น	ความเข้มข้นที่เหลือของ	Cr ₂ O ₇ ² ที่ถูกดูดซับ, mg/g
		Cr ₂ O ₇ ^{2,} , mg/l	
	294.22	41.50	25.07
	367.75	57.07	30.76
	420.29	74.53	34.18
	588.40	123.26	45.76
	653.78	174.00	47.39
	735.50	212.36	51.45
	1176.80	582.58	58.81
	1471.00	907.69	55.27

Cr ₂ O ₇ ²⁻ เริ่มต้น	ความเข้มข้นที่เหลือของ	Cr ₂ O ₇ ² ที่ถูกดูดซับ, mg/g
	Cr ₂ O ₇ ^{2.} , mg/l	
294.22	10.05	28.20
367.75	26.42	33.53
420.29	28.91	46.72
588.40	43.09	54.25
653.78	86.35	56.07
735.50	155.38	57.29
1176.80	533.47	63.37
1471.00	812.09	65.42

<u>ตารางที่ 4.8</u> แสดงค่าการดูดซับ Cr₂O₇² บนถ่านกัมมันต์จากไม้โกงกาง ขนาด 0.6-1.18 มม.ใน สารละลาย K₂Cr₂O₇ ที่ความเข้มข้นต่างๆ pH = 1 เป็นเวลา 7 ชั่วโมง โดยวัดค่า Absorbance ณ ความยาวคลื่น 350 นาโนเมตร

<u>รูปที่ 4.31</u> Adsorption isotherm ของการดูดซับ dichromate ion บนถ่านกัมมันต์ผลิตจากไม้ โกงกางขนาดอนุภาค 0.6-1.18 มม. ที่ pH =1

จากการดูดขับ dichromate ion บนผิวถ่านกัมมันต์ที่ผลิตจากไม้โกงกาง ขนาดอนุภาค 0.6-1.18 mm. ณ pH=2 และ pH=1 ดังรูปที่ 4.30 และ 4.31 ได้ถูกนำมาพล๊อตตาม Langmuir equation (Felix A., 1995) เพื่อหา Adsorption Capacity ของแต่ละภาวะ ดังสมการ

$$\frac{Ce}{Qe} = \frac{1}{kXm} + \frac{Ce}{Xm}$$

Q_e = dichromate ion ที่ถูกดูดชับ , mg/g

 $C_e = equilibrium concentration , mg/l$

X ู = mg dichromate ion ที่ถูกดูดชับ ณ monolayer / กรัมของถ่านกัมมันต์

k = ค่าคงที่ที่ขึ้นกับ adsorption enthalpy

Langmuir plot ของการดูดซับ ณ pH=2 และ 1 ของถ่านกัมมันต์ขนาด 0.6-1.18 mm. ดัง รูปที่ 4.32 และ 4.33

<u>รูปที่ 4.32</u> Langmuir plot ในการศึกษา Adsorption isotherm ในการดูดซับ dichromate ion บน ถ่านกัมมันต์จากไม้โกงกางขนาด 0.6-1.18 มม. ที่ pH =2 เป็นเวลา 7 ชั่วโมง

<u>รูปที่ 4.33</u> Langmuir plot ในการศึกษา Adsorption isotherm ในการดูดซับ dichromate ion บน ถ่านกัมมันต์จากไม้โกงกางขนาด 0.6-1.18 มม. ที่ pH =1 เป็นเวลา 7 ชั่วโมง