บทที่ 7

วิธีทดลองและผลการทดลอง

จากระบบเตรียมฟิล์มบางที่กล่าวมาแล้วในบทที่ 6 ได้ทำการทดลองเตรียมฟิล์มบาง คอปเปอร์อินเดียมไดซีลีไนด์ด้วยเงื่อนไขและวิธีการต่างๆ กัน ควบคู่กับการปรับเปลี่ยนส่วน ประกอบของระบบต่างๆ ที่ใช้ในการเตรียมฟิล์มบางโดยอาศัยข้อมูลจากการตรวจสอบฟิล์มบาง สามารถแสดงขั้นตอนการทำงานได้ดังรูปที่ 7.1

งานวิจัยนี้ได้ทำการทดลองเตรียมฟิล์มบางคอปเปอร์อินเดียมไดซีลีไนด์ด้วยกระบวน การที่แตกต่างกันอยู่สองกระบวนการคือ วิธีแรกเป็นการนำผลึกคอปเปอร์อินเดียมไดซีลีไนด์ไป ระเหยภายใต้ระบบสุญญากาศให้ได้ฟิล์มบาง แล้วปรับโครงสร้างของฟิล์มบางนั้นด้วยการ ซีลีไนด์เซชันในระบบแแอนนีลภายใต้บรรยากาศของซีลีเนียมที่อุณหภูมิ 400°C เป็นเวลาไม่เกิน 4 ซม. ส่วนวิธีที่สองเป็นการระเหยฟิล์มบางคอปเปอร์อินเดียมไดซีลีไนด์ภายใต้บรรยากาศของ ซีลีเนียม พร้อมกับจัดโครงสร้างของฟิล์มบางด้วยการปรับอุณหภูมิของแผ่นรองรับให้คงที่ ได้แก่ อุณหภูมิ 250, 300, 350, 400°C

ขั้นตอนการตรวจสอบฟิล์มบางที่เตรียมขึ้นมีดังนี้คือ การวัดความหนาของฟิล์มบาง การตรวจสอบโครงสร้างของผลึกด้วยวิธีการเลี้ยวเบนของรังสีเอ็กซ์ การหาขนาดช่องว่างแถบ พลังงาน ตรวจสอบซนิดการนำไฟฟ้าด้วยวิธีขั้วความร้อน การวัดสภาพต้านทานไฟฟ้าด้วย วิธีแวนเดอเพาว์ การวัดสภาพเคลื่อนที่ได้ของฮอลล์จากระบบฮอลล์ ตามลำดับ

รูปที่ 7.1 ไดอะแกรมแสดงขั้นตอนการทำงาน

การเตรียมฟิล์มบาง

การเตรียมกระจกสำหรับเคลือบฟิล์มบาง

กระจกที่ใช้ในการเคลือบฟิล์มบางมีขั้นตอนการเตรียมดังนี้

 นำกระจกสไลด์มาตัดและขัดรอยตัดด้วยกระดาษทราย ให้ได้ขนาดกว้าง 13 มม. และยาว 25 มม.

2. ล้างคราบไขมันและสิ่งสกปรกบนกระจกด้วยน้ำดีไอออไนซ์ (deionized water) ผสม น้ำยาล้างจาน

3 . แช่กระจกไว้ในน้ำดีไอออไนซ์ผสมน้ำยาล้างจาน แล้วนำใส่ในเครื่องอุลตราโซนิก (ultrasonic bath) เป็นเวลานาน 5 - 10 นาที

4. ล้างน้ำยาล้างจานออกให้หมดในน้ำดีไอออไนซ์ด้วยเครื่องอุลตราโซนิก

5. เป้ากระจกให้แห้งด้วยแก๊สในโตรเจน นำไปแข่กรดโครมิกเข้มข้น (chromic acid) เป็นเวลาไม่ต่ำกว่า 10 ชั่วโมง

6. ล้างกระจกที่แข่กรดโครมิกในน้ำดีไอออในซ์ด้วยเครื่องอุลตราโซนิกจนสะอาด

7. เปากระจกให้แห้งด้วยแก๊สในโตรเจน แล้วไปอบแห้งที่อุณหภูมิ 70 ℃ เป็นเวลา
 45 - 60 นาที

การเตรียมฟิล์มบางคอปเปอร์อินเดียมไดซีลีในด์

ในการเตรียมฟิล์มบางคอปเปอร์อินเดียมไดซีลีไนซ์ด้วยระบบเตรียมฟิล์มบางดังที่ได้ กล่าวมาแล้วในบทที่ 6 นั้น สามารถแยกออกเป็น 2 วิธี ตามไดอะแกรม 7.1 ดังนี้

- การระเหยฟิล์มบางแล้วปรับโครงสร้างด้วยการซีลีในด์เซชัน
- การระเหยฟิล์มบางภายใต้บรรยากาศของซีลีเนียม และปรับอุณหภูมิของแผ่นรองรับ

การระเหยฟิล์มบางแล้วปรับโครงสร้างด้วยการซีลีไนด์เซชัน

ในส่วนของการระเหยผลึกคอปเปอร์อินเดียมไดซีลีไนซ์นี้ จัดเป็นส่วนหลักในการ เตรียมฟิล์มบางของทั้ง 2 วิธี โดยมีขั้นตอนดังนี้คือ

1. ชั่งสารกึ่งตัวน้ำคอปเปอร์อินเดียมไดซีลีในซ์ ขนาดพอเหมาะมีน้ำหนัก 0.3 กรัม

 นำสารใส่ไว้ในเบ้าโมลิบดินัม แล้วปิดแผ่นกั้นการระเหย จากนั้นลดความดันลง ด้วยระบบปั้มสุญญากาศจนภายในห้องสุญญากาศมีความดันประมาณ 2x10⁵ mbar เป็นเวลา ไม่ต่ำกว่า 45 นาที

 3. เริ่มการระเหยโดยการเปิดเครื่องกำเนิดไฟฟ้า 10 V 200 A ซึ่งเป็นตัวจ่ายกระแส ไฟฟ้าให้แก่เบ้าโมลิบดินัม จากนั้นทำการปรับศักย์ไฟฟ้าของหม้อแปลงไฟฟ้า (Variable transformer) ตามขั้นตอนดังแสดงในรูปที่ 7.2 และได้กระแสไฟฟ้าขาออกของเครื่องกำเนิดไฟฟ้า 10 V 200 A ที่เข้าสู่เบ้าโมลิบดินัมดังแสดงในรูปที่ 7.3

4. เมื่อเข้าสู่นาทีที่ 2 เปิดแผ่นกั้นการระเหย (เริ่มให้ฟิล์มเคลือบบนแผ่นรองรับ)

5. เมื่อหมดนาทีที่ 6 ปิดแผ่นกั้นการระเหย (สิ้นสุดการเคลือบฟิล์มบนแผ่นรองรับ) ซึ่งขั้นตอนการระเหยแบบนี้จะเหมาะสมกับขนาดของผลิก CulnSe₂ ทั้งเล็กและใหญ่

Evaporation CuInSe2 Thin Films Variac Voltage vs. Time

การระเหยฟิล์มบางคอปเปอร์อินเดียมไดซีลีไนด์

รูปที่ 7.3 แสดงกระแสไฟฟ้าขาออกที่เข้าสู่เบ้าโมลิบดินัม

ฟิล์มบาง CulnSe₂ ที่ได้จากการระเหยจะมีโครงสร้างผลึกไม่สมบูรณ์ดังผลจากการ ตรวจสอบด้วยวิธีการเลี้ยวเบนของรังสีเอ็กซ์ที่แสดงในรูปที่ 7.10 จึงจำเป็นต้องปรับโครงสร้าง ของฟิล์มบางด้วยวิธีการซีลีไนด์เซชัน (Selenization) โดยการแอนนีลฟิล์มบาง CulnSe₂ ในแคปซูล สแตนเลส (capsule stainless) ดังรูปที่ 6.12 ภายใต้บรรยากาศของธาตุซีลีเนียมที่มากเกินพอ

การซีลีในด์เซชัน มีขั้นตอนดังนี้

 นำฟิล์มบาง CuInSe₂ ที่ต้องการปรับโครงสร้างมาบรรจุใส่ในรางสแตนเลสโดยให้ สารตัวอย่างอยู่ด้านบน และใส่สารซีลีเนียมประมาณ 1-2 เม็ด (ซีลีเนียมมีน้ำหนัก ≈ 0.06 กรัมต่อ 1 เม็ด) ไว้ในเบ้าควอทซ์หรือเบ้าเซรามิกส์ แล้วสอดไว้กลางรางสแตนเลส จากนั้น บรรจุทั้งรางสแตนเลนเข้าไว้ในแคปซูลขัดอัดฝาปิดลงบนวงแหวนทองแดงให้สนิทนำแคปซูลไปลด ความดันลงด้วยระบบปั้มสุญญากาศจนมีความดันต่ำกว่า 4x10⁻⁵ mbar. เป็นเวลาไม่ต่ำกว่า 4 ชั่วโมง 2. เมื่อได้แคปซูลที่ลดความดันตามต้องการแล้วจึงปิดวาล์ว นำไปเข้าในเตาแอนนีล ของ LINDBREG ดังรูปที่ 6.13 เปิดเตาโดยตั้งอุณหภูมิเตาไว้ที่ 400°C แล้วแอนนีลเป็นเวลาไม่เกิน
 4 ชั่วโมง

 เมื่อแอนนีลเสร็จ ให้ปล่อยแคปซูลไว้จนกลับคืนสู่อุณหภูมิห้องจึงจะสามารถเปิด ออกได้ เพื่อป้องกันอันตรายจากไอของซีลีเนียม

ฟิล์มบางที่เตรียมด้วยวิธีนี้พบว่ามีโครงสร้างผลึกสมบูรณ์ ดังผลการตรวจลอบด้วย วิธีการเลี้ยวเบนของรังสีเอ็กซ์ ซึ่งแสดงในรูปที่ 7.11 ถึง 7.15 แต่ปัญหาที่สำคัญคือการลอก ของฟิล์มบางที่เกิดจากซีลีเนียมที่อยู่ภายในเนื้อฟิล์มสามารถกลายเป็นไอได้ที่อุณหภูมิต่ำกว่า 400°C และจากการเตรียมฟิล์มบางในกระบวนการซ้ำเดิม พบว่าให้ฟิล์มบางที่มีสมบัติทางไฟฟ้า ไม่เหมือนเดิม เช่น การเตรียมบางครั้งได้ฟิล์มบางที่มีสภาพต้านทานไฟฟ้าสูง ชนิดการนำไฟฟ้า เป็นชนิดเอ็น และบางครั้งได้ฟิล์มบางที่มีสภาพต้านทานไฟฟ้าต่ำ ชนิดการนำไฟฟ้าเป็นชนิดพี ส่วนของการแก้ปัญหาฟิล์มลอกด้วยการปรับเปลี่ยนเงื่อนไขในการเตรียมฟิล์มบางนี้

ได้ทำเป็นจำนวนประมาณ 250 ตัวอย่าง ได้แก่ การปรับเปลี่ยนอัตราการเพิ่มของอุณหภูมิใน เตาแอนนีลจากอุณหภูมิห้องไปถึง 400 °C ภายในเวลา 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 ซม. การเพิ่มปริมาณซีลีเนียมในการแอนนีล และการเพิ่มความดันภายในแคปซูลด้วยกาซอาร์กอน เป็นต้น จากปัญหาดังกล่าวทำให้ต้องเปลี่ยนวิธีการเตรียมฟิล์มบางเป็นวิธีการระเหยฟิล์มบาง ภายใต้บรรยากาศของซีลีเนียมโดยมีการปรับอุณหภูมิของแผ่นรองรับ

การระเหยฟิล์มบางภายใต้บรรยากาศของซีลีเนียม และปรับอุณหภูมิของแผ่นรองรับ

การเตรียมฟิล์มบางด้วยวิธีที่ 2 นี้ จะมีการระเหยผลึกคอปเปอร์อินเดียมไดซีลีไนด์ เหมือนกันกับที่ทำในวิธีที่ 1 เพียงแต่เป็นการระเหยภายใต้บรรยากาศของซีลีเนียมพร้อมกับการ จัดโครงสร้างของฟิล์มบางโดยมีการปรับอุณหภูมิของแผ่นรองรับ

การระเหยธาตุซีลีเนียมนี้ เป็นส่วนที่จะปฏิบัติควบคู่ไปกับการระเหยผลึก CulnSe₂ เพื่อเป็นการเพิ่มซีลีเนียมให้กับฟิล์มบาง CulnSe₂ และอัตราการเคลือบของซีลีเนียมบนแผ่นรองรับ ที่กระแลขนาด 32, 34, 36 A สามารถแสดงได้ดังรูปที่ 7.4

รูปที่ 7.4 แสดงอัตราการเคลือบของชีลีเนียมบนแผ่นรองรับ

ในการปรับอุณหภูมิของแผ่นรองรับนี้จะทำงานร่วมกับการระเหยผลึก CulnSe₂ ภาย ใต้บรรยากาศของซีลีเนียมที่มากเกินพอจากส่วนระเหยธาตุซีลีเนียม โดยธาตุซีลีเนียมส่วนเกิน จากการฟอร์มตัวเป็นโครงสร้างผลึกของ CulnSe₂ จะถูกกำจัดออกจากฟิล์มด้วยความร้อนบน แผ่นรองรับ ความร้อนที่กระจายอยู่บนแผ่นรองรับจะเป็นตัวกำหนดความสม่ำเสมอของฟิล์มบาง ซึ่งในการทดลองจะปรับอุณหภูมิของแผ่นรองรับให้อยู่คงที่เป็นเวลาประมาณ 6 นาที ก่อนการ เตรียมฟิล์มบาง CulnSe₂ ในแต่ละชั้น

ฟิล์มบางที่เตรียมด้วยวิธีนี้มีผิวเรียบ เมื่อดูใต้กล้องจุลทรรศน์จะเห็นเกรน (grain) กระจายสม่ำเสมอ โดยผลการตรวจสอบโครงสร้างด้วยวิธีการเลี้ยวเบนของรังสีเอ็กซ์ จะแสดงใน รูปที่ 7.16 ถึงรูปที่ 7.24 1. การวัดความหนาของฟิล์มบางด้วยเทคนิคโทลานสกี

(Tolansky technique)

รูปที่ 7.5 การวัดความหนาของฟิล์มบางด้วยเทคนิคโทลานสกี (20,24)

การวัดความหนาของฟิล์มบาง CuinSe₂ โดยเทคนิคโทลานสกี สามารถแสดงหลักการ ของวิธีนี้ได้ดังแสดงในรูปที่ 7.5 ซึ่งเป็นการวัดริ้วการแทรกสอดของแสงโซเดียม ดังในรูปที่ 7.6 จากริ้วการแทรกสอดสามารถคำนวณความหนาของฟิล์มบาง โดยอ่านขนาดการ เหลื่อมกันของริ้วการแทรกสอดจากภาพที่ขยายด้วยคอมพิวเตอร์ ซึ่งการอ่านริ้วการแทรกสอดโดย วิธีนี้สามารถคำนวณความหนาของฟิล์มบางได้จากสมการที่ (7.1) และมีความคลาดเคลื่อน ไม่เกินร้อยละ 2.5 ของความยาวคลื่น

$$t = \Delta n \cdot \frac{\lambda}{2}$$
(7.1)

เมื่อ t คือ ความหนาของฟิล์มบาง มีหน่วยเป็นอังสตรอม ∆n คือ ขนาดการเหลื่อมกันของริ้วการแทรกสอด

 λ คือ ความยาวคลื่นของแสงโซเดียม มีหน่วยเป็นอังสตรอม

รูปที่ 7.6 แสดงขนาดการเหลื่อมกันของริ้วการแทรกสอด จากภาพที่ขยายด้วยคอมพิวเตอร์

จากในรูปที่ 7.6 ริ้วการแทรกสอดจาก A1 ไปยัง B1 มีจำนวนสองริ้ว สามารถ เทียบขนาดของการเหลื่อมกันของริ้วการแทรกสอดจาก A1 ไปยัง A2 เนื่องจากความหนาของ ฟิล์มบางได้เป็น 1.77 ริ้ว และได้ความหนาเป็น 5212 อังสตรอม

การวัดความหนาของฟิล์มบางด้วยเครื่องวัดความหนา (Thickness monitor, FTM5)

การวัดความหนาของฟิล์มบาง CulnSe₂ ด้วยเครื่องวัดความหนาที่สำคัญคือ ต้องหา ค่า Tooling factor ซึ่งเป็นอัตราส่วนของความหนาของฟิล์มบางที่เคลือบบนแผ่นรองรับกับความ หนาของฟิล์มบางที่เคลือบบนแผ่นผลึกควอทซ์ และจากการติดตั้งให้แผ่นผลึกควอทซ์อยู่ในแนว รัศมีเดียวกันกับแผ่นรองรับ ได้ผลการสอบเทียบดังนี้คือ ความหนาของฟิล์มบาง CulnSe₂ บนแผ่น รองรับเป็น 5212 อังสตรอม สำหรับบนแผ่นผลึกควอทซ์เป็น 5385 อังสตรอม ได้ผลใกล้เคียง กันคือ มีค่า Tooling factor ประมาณ 1 (โดยค่าความหนาแน่นของ CulnSe₂ = 5.81 g/cm³) acoustic impedance หรือค่า Z-value = 8.83 x 10⁵ g/cm²s) การตรวจสอบโครงผลึกของฟิล์มบางโดยวิธีการเลี้ยวเบนของรังสีเอ็กซ์

ฟิล์มบางคอปเปอร์อินเดียมไดซีลีไนด์ที่เตรียมขึ้นมีขนาด 1 cm². สามารถนำมาตรวจ สอบโครงสร้างผลึกด้วยวิธีการเลี้ยวเบนของรังสีเอ็กซ์ โดยความเข้มของรังสีเอ็กซ์ที่เลี้ยวเบนออก มาจากระนาบต่างๆ ของผลึกในฟิล์มบางจะถูกบันทึกลงเป็นกราฟที่แปรกับค่ามุมสะท้อน (2θ) และจากผลการเลี้ยวเบนของรังสีเอ็กซ์ที่ได้จะนำไปคำนวณหาค่าคงที่โครงผลึกของฟิล์มบางต่อไป สำหรับความยาวคลื่นของรังสีเอ็กซ์ (wavelength, Cu- K_a) ที่ใช้มีค่าเท่ากับ 1.5405 อังสตรอม เมื่อให้รังสีเอ็กซ์เข้าไปในฟิล์มบาง รังสีเอ็กซ์จะตกกระทบอะตอมซึ่งจัดเรียงตัวอยู่บน ระนาบของโครงสร้างผลึก แล้วอะตอมเหล่านี้จะทำให้รังสีเอ็กซ์กระเจิงออกมา โดยหน้าคลื่นของ รังสีเอ็กซ์ที่เลี้ยวเบนออกมาจากระนาบในโครงสร้างผลึก จะมีความสัมพันธ์ดังนี้

$$2d \sin\theta = n\lambda$$
 (7.2)

สำหรับฟิล์มบางคอปเปอร์อินเดียมไดซีลีไนด์มีโครงสร้างแบบซาลโคไพไรท์จัดอยู่ใน ระบบเททระโกนอล (tetragonal system, a = 5 \neq c, $lpha = eta = \gamma = 90^{\circ}$) มีความสัมพันธ์ดังนี้

$$\frac{1}{\binom{2}{d_{hkd}}} = \frac{n^2 + k^2}{a^2} + \frac{1^2}{c^2}$$
(7.3)

จากสมการที่ (7.2) เมื่อ n=1 แล้วแทนใส่ในสมการที่ (7.3) จะได้ความสัมพันธ์ที่ใช้หา ค่าคงที่ของโครงผลึก (a, c) ดังนี้

$$\frac{4\sin^2\theta}{\lambda^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$
(7.4)

ในผลการเลี้ยวเบนของรังสีเอ็กซ์เนื่องจากระนาบ เราสามารถอ่านค่ามุมแบรกก์ (θ)

จากยอดของระนาบ (h, k, l) ต่างๆ ที่ปรากฏ แล้วแทนค่าเหล่านั้นลงในสมการที่ (7.4) แล้วนำผลที่ได้ทั้งหมดมาคำนวณด้วยวิธีกำลังสองน้อยที่สุด (least square method) เป็นค่าคงที โครงผลึก (a, c) ดังนี้

$$\frac{1}{a^{2}} = \frac{\sum_{i} (i_{i}^{2})^{2} \sum_{i} (k_{i}^{2} + k_{i}^{2}) D_{i} - \sum_{i} (k_{i}^{2} + k_{i}^{2}) i_{i}^{2} \sum_{i} (i_{i}^{2}) D_{i}}{\sum_{i} (k_{i}^{2} + k_{i}^{2})^{2} \sum_{i} (i_{i}^{2})^{2} - \left(\sum_{i} (k_{i}^{2} + k_{i}^{2}) i_{i}^{2}\right)^{2}}$$

$$\frac{\sum_{i} (k_{i}^{2} + k_{i}^{2})^{2} \sum_{i} (i_{i}^{2}) D_{i} - \sum_{i} (k_{i}^{2} + k_{i}^{2}) i_{i}^{2} \sum_{i} (k_{i}^{2} + k_{i}^{2}) D_{i}}{\sum_{i} (k_{i}^{2} + k_{i}^{2})^{2} \sum_{i} (i_{i}^{2})^{2} - \left(\sum_{i} (k_{i}^{2} + k_{i}^{2}) i_{i}^{2}\right)^{2}}$$

$$\frac{1}{k^{2}} \frac{1}{2} = \frac{\sum_{i} (k_{i}^{2} + k_{i}^{2})^{2} \sum_{i} (i_{i}^{2})^{2} - \left(\sum_{i} (k_{i}^{2} + k_{i}^{2}) i_{i}^{2}\right)^{2}}{\sum_{i} (k_{i}^{2} + k_{i}^{2})^{2} \sum_{i} (i_{i}^{2})^{2} - \left(\sum_{i} (k_{i}^{2} + k_{i}^{2}) i_{i}^{2}\right)^{2}}$$

$$(7.6)$$

จากแพทเทิร์นการเลี้ยวเบนของรังสีเอ็กซ์ของฟิล์มบาง CulnSe₂ ที่เตรียมด้วยวิธีที่ 1 ดังแสดงในรูปที่ 7.10 ถึง 7.15 พบว่าฟิล์มบาง CulnSe₂ ที่ได้จากการระเหยมีโครงสร้างผลึก ไม่เป็นแบบซาลโคไพไรท์ และหลังจากปรับโครงสร้างผลึกด้วยกระบวนการซีลีไนด์เซชันโดยการ แอนนีลที่อุณหภูมิ 400^oC นาน 0.5, 1.0, 1.5, 3.0, 3.5 ซม. พบว่าฟิล์มบาง CulnSe₂ มีการ ปรับโครงสร้างผลึกเป็นแบบซาลโคไพไรท์ที่มีค่าคงที่โครงผลึกใกล้เคียงกัน คือ

ค่า a ≈ 5.7847 - 5.7947 A , c ≈ 11.5863 - 11.6156 A และ c/a ≈ 2.0008 - 2.0101 ผลการคำนวณค่าคงที่โครงผลึกของฟิล์มบาง CuInSe₂ ที่เตรียมด้วยวิธี ที่ 1 นี้ แสดงไว้ในตารางที่ 7.1

ฟิล์มบาง	แอนนีลที่ T=400 °C	a (Å)	c (Å)	c/a	
CISP12	ก่อนแอนนีล	ไม่มีโครงสร้าง			
CISP06	0.5 ซม.	5.7899	11.6071	2.0047	
CISP42	1.0 ซม.	5.7947	11.5997	2.0017	
CISP13	1.5 ฮ ม .	5.7784	11.6156	2.0101	
CISP15	3.0 ฃม.	5.7905	11.5863	2.0008	
CISP43	3.5 ฃม.	5.7847	11.5873	2.0031	

ตารางที่ 7.1 แสดงค่าคงที่โครงผลึกของฟิล์มบาง CuinSe₂ โดยการแอนนีล ที่อุณหภูมิ 400°C ตามช่วงเวลาต่างๆ

จากแพทเทิร์นการเลี้ยวเบนของรังสีเอ็กซ์ของฟิล์มบาง CuinSe₂ ที่เตรียมด้วยวิธีที่ 2 ดังแสดงในรูปที่ 7.16 ถึง 7.24 ในฟิล์มบาง CuinSe₂ ชุดที่เตรียมภายใต้บรรยากาศของซีลีเนียม Ise = 32 A Se = 1 shot/quartz โดยเปลี่ยนอุณหภูมิของแผ่นรองรับเป็น 250, 300, 350, 400^oC พบว่ามีโครงสร้างผลิกแบบซาลโคไฟไรท์ที่มีค่าคงที่โครงผลึกใกล้เคียงกัน คือ

ค่า a ≈ 5.7883 - 5.7938 A , c ≈ 11.5748 - 11.5860 A และ c/a ≈ 1.9992 - 2.0005 สำหรับระนาบ (112) จะมีความเข้มมากขึ้นตามอุณหภูมิของแผ่นรองรับซึ่งแสดงถึงความสมบูรณ์ ของผลึกในฟิล์มบางที่มีมากขึ้นตามอุณหภูมิของแผ่นรองรับ

ส่วนฟิล์มบาง CuinSe₂ ชุดที่เตรียมโดยอุณหภูมิของแผ่นรองรับคงที่ (Tsub = 300⁰C) โดยเปลี่ยนอัตราการเคลือบของซีลีเนียมตามในรูปที่ 7.4 พบว่าค่าคงที่โครงผลึกมีแนวโน้มเพิ่ม ขึ้นตามอัตราการเคลือบของซีลีเนียมที่สูงขึ้น และระนาบ (112) จะมีความเข้มมากขึ้นตามอัตรา การเคลือบของซีลีเนียมที่สูงขึ้นด้วย

ผลการคำนวณค่าคงที่โครงผลึกของฟิล์มบาง CulnSe₂ ที่เตรียมด้วยวิธีที่ 2 นี้ แสดงไว้ในตารางที่ 7.2

ฟิล์มบาง	Tsub (°C)	lse (A)	Se (shot/quartz)	a (Å)	c (Å)	c/a
CISAA1	250	32	1	5.7920	11.5845	2.0000
CISAB1	300	32	1	5.7883	11.5748	1.9997
CISAC1	350	32	1	5.7938	11.5835	1.9992
CISAD1	400	32	1	5.7914	11.5860	2.0005
CISAH1	300	34	1	5.8002	11.6043	2.0006
CISAG1	300	36	1	5.8001	11.6001	2.0000
CISAF1	300	32	2	5.7922	11.5848	2.0000
CISAJ1	300	34	2	5.7945	11.5937	2.0007
CISAI1	300	36	2	5.7976	11.5949	1.9999

ตารางที่ 7.2 แสดงค่าคงที่โครงผลึกของฟิล์มบาง CuinSe₂ ที่เตรียมภายใต้บรรยากาศ ของซีลีเนียมและมีการปรับอุณหภูมิของแผ่นรองรับในกรณีต่างๆ

ขนาดช่องว่างแถบพลังงาน

การหาขนาดช่องว่างแถบพลังงานของฟิล์มบางคอปเปอร์อินเดียมไดซีลีไนด์ที่เตรียม ได้ โดยศึกษาขอบการดูดกลืนพื้นฐานซึ่งเป็นพลังงานที่น้อยที่สุดของแสงที่จะสามารถทำให้ อิเล็กตรอนมีการย้ายสถานะพลังงานจากสูงสุดของแถบวาเลนซ์ขึ้นไปยังจุดต่ำสุดของแถบนำ พลังงานค่านี้จะเท่ากับขนาดของช่องว่างแถบพลังงาน การศึกษาขอบการดูดกลืนแสงโดยการวัด สัมประสิทธิ์การดูดกลืนแสงที่เปลี่ยนไปตามพลังงานของแสงที่ตกกระทบ และทะลุผ่าน สารกึ่งตัวนำที่เป็นแผ่นบางๆ ดังที่ได้กล่าวมาแล้วในบทที่ 4

ระบบการทดลองและวิธีการวัดสัมประสิทธิการดูดกลินแสง

รูปที่ 7.7 แสดงระบบการวัดสัมประสิทธิ์การดูดกลืนแสง

การวัดค่าสัมประสิทธิ์การดุดกลืนแสงของฟิล์มบางคอปเปอร์อินเดียมไดซีลีไนด์ ได้จัดเครื่องมือดังในรูปที่ 7.7 แสงจากแหล่งกำเนิดแสงจะถูกสะท้อนโดยกระจกเว้า M1 ผ่าน ตัวตัดแสง (chopper) C ไปยังช่องแคบเดี่ยว (single slit) S1 แสงที่ออกจากช่องแคบเดี่ยวถูก สะท้อนต่อโดยกระจกเว้า M2 ไปยังเกรตติง (grating) G ภายในเครื่องกำเนิดแสงเอกรงค์ โดย เกรตติงจะแยกแสงออกเป็นความยาวคลื่นต่างๆ ตกกระทบลงบนกระจกเว้า M3 สะท้อนไปยัง ชิ้นผลึก โดยผ่านช่องแคบเดี่ยว S2, แผ่นกรองแสง (filter) F และกระจกเว้า M4 ซึ่งหัววัดแสง (detector) D จะคอยวัดแสงที่ผ่านฟิล์มบาง (sample) ออกมา สัญญาณที่ได้จากหัววัดแสงจะถูก ขยายให้ได้สัญญาณโตขึ้นด้วยเครื่องขยายสัญญาณขั้นต้น (pre-amplifier) และส่งเข้าเครื่อง ลอคอินแอมปลิไฟเออร์ (lock-in amplifier) เครื่องลอคอินแอมปลิไฟเออร์จะคัดเลือกแต่สัญญาณ ที่มีความถี่เดียวกันกับตัวตัดแสงเท่านั้น และขยายสัญญาณให้อยู่ในช่วง 0-1 V สัญญาณนี้จะถูก ส่งผ่านระบบเชื่อมโยงให้แก่คอมพิวเตอร์ เพื่อเก็บรวบรวมข้อมูลและนำไปวิเคราะห์ต่อไป

การวัดค่าสัมประสิทธิ์การดูดกลืนแสงของฟิล์มบางคอปเปอร์อินเดียมไดซีลีไนด์ ทำการวัดในช่วงความยาวคลื่น 9000 ถึง 18000 อังคสตรอม ที่อุณหภูมิห้อง โดยใช้หัววัดแบบ เยอร์มาเนียม (Ge) ซึ่งสามารถตอบสนองได้ดีในช่วงความยาวคลื่นใกล้แสงใต้แดง (near infrared) กรองแสงที่ใช้สามารถขจัดแสงที่มีความยาวคลื่นต่ำกว่า 10500 อังคสตรอม และแหล่งกำเนิด แสงเป็นหลอดทั้งสเตนเฮไลน์ขนาด 250 W

สัญญาณความเข้มแสงที่ผ่านฟิล์มบาง CuinSe₂ (I₁) และสัญญาณความเข้มแสงที่วัด โดยไม่มีฟิล์มบาง (I₀) จะถูกนำมาคำนวณหาค่าสัมประสิทธิ์การดูดกลืนแสงดังสมการ

$$\alpha = \frac{1}{d} \ln \left(\frac{I_0}{I_t} \right)$$
(7.7)

ความหนาของฟิล์มบาง CuinSe₂ คือ d = 2.5 μm. ในการทดลองค่าสัมประสิทธิ์ การดูดกลืนที่คำนวณได้จะต้องลบออกด้วยค่าสัมประสิทธิ์การดูดกลืนแสงพื้นหลัง (α₀) ซึ่งหาได้ จากการคาดหมาย (extrapolation) ค่าสัมประสิทธิ์การดูดกลืนอาจจะเกิดมาจากการดูดกลืน อันเนื่องมาจากพาหะอิสระ หรือจุดบกพร่อง defect) ที่ได้รับพลังงานจากภายนอกมากระตุ้น ให้เกิดการย้ายสถานะพลังงานของอิเล็กตรอนจากแถบวาเลนซ์ไปยังแถบนำ(interband transition) และได้ค่าสัมประสิทธิ์การดูดกลืนเป็น (α–α₀)

2. การหาขนาดช่องว่างแถบพลังงาน

สำหรับฟิล์มบาง CuinSe₂ มีการย้ายสถานะพลังงานแบบตรง โดยความสัมพันธ์ ระหว่างค่าสัมประสิทธิ์การดูดกลืนที่บริเวณขอบเขตการดูดกลืนแสงพื้นฐานกับขนาดช่องว่างแถบ

พลังงาน ดังที่ได้กล่าวมาแล้วในบทที่ 4 สมการที่ (4.9) คือ

$$((\alpha - \alpha_0)hU)^2 = A^2(hU - Eg)$$
(7.8)

ตามความสัมพันธ์ของเส้นกราฟระหว่าง ((α – α_o)hU)² กับ hU ในช่วงของ การย้ายสถานะพลังงานของอิเล็กตรอนจากแถบวาเลนซ์ไปยังแถบนำจะมีลักษณะเป็นเส้นตรง ตัดแกน hU ที่จุด Eg

จากการทดลองวัดค่าสัมประสิทธิ์การดูดกลืนและการหาค่าซ่องว่างแถบพลังงานของ ฟิล์มบาง CulnSe₂ ที่เตรียมด้วยวิธีที่ 2 ดังแสดงในรูปที่ 7.25 ถึง 7.33 ในฟิล์มบาง CulnSe₂ ซุดที่เตรียมภายใต้บรรยากาศของซีลีเนียม Ise = 32 A Se = 1 shot/quartz โดยเปลี่ยนอุณหภูมิ ของแผ่นรองรับเป็น 250, 300, 350, 400°C พบว่าค่าสัมประสิทธิ์การดูดกลืนต่ำสุดที่ Tsub= 400°C และค่าซ่องว่างแถบพลังงานจะเพิ่มขึ้นตามอุณหภูมิของแผ่นรองรับ

ส่วนฟิล์มบาง CulnSe₂ ชุดที่เตรียมโดยอุณหภูมิของแผ่นรองรับคงที่ (Tsub = 300[°]C) โดยเปลี่ยนอัตราการเคลือบของซีลีเนียมตามในรูปที่ 7.4 พบว่าค่าสัมประสิทธิ์การดูดกลืนเพิ่ม ขึ้นตามอัตราการเคลือบของซีลีเนียมที่สูงขึ้นและช่องว่างแถบพลังงานมีค่าคงที่ประมาณ 1.01 eV.

ผลการหาคำนวณค่าสัมประสิทธิ์การดูดกลืนและการหาขนาดช่องว่างแถบพลังงาน ของฟิล์มบาง CuinSe, (เฉพาะฟิล์มในชุดที่เลือกมาแสดง) จะแสดงผลไว้ในตารางที่ 7.3

ฟิล์มบาง	Tsubstrate	lse	Se	Eg (eV)	α
	(°C)	(A)	(shot/quartz)	±0.005 eV	(1/ cm)
CISAA1	250	32	1	1.004	5.40E+05
CISAB1	300	32	1	1.007	6.00E+05
CISAC1	350	32	1	1.006	6.40E+05
CISAD1	400	32	1	1.012	4.80E+05
CISAH1	300	34	1	1.010	8.55E+05
CISAG1	300	36	1	1.010	8.40E+05
CISAF1	300	32	2	1.010	8.30E+05
CISAJ1	300	34	2	1.010	8.50E+05
CISAI1	300	36	2	1.009	8.50E+05

ตารางที่ 7.3 แสดงขนาดช่องว่างแถบพลังงานและค่าสัมประสิทธิ์การดูดกลืน ของฟิล์มบาง CuinSe₂ ที่เตรียมภายใต้บรรยากาศของซีลีเนียม และมีการปรับอุณหภูมิของแผ่นรองรับในกรณีต่างๆ

การตรวจสอบลักษณะเฉพาะทางไฟฟ้า

 การตรวจสอบชนิดการนำไฟฟ้าด้วยวิธีขั้วความร้อน (hot probe method)

การตรวจสอบชนิดการนำไฟฟ้าของฟิล์มบางคอปเปอร์อินเดียมไดซีลีไนซ์ด้วยวิธีขั้ว ความร้อนนี้เป็นวิธีที่สะดวกและรวดเร็ว มีขั้นตอนในการปฏิบัติดังนี้คือนำฟิล์มบางที่ต้องการตรวจ สอบชนิดการนำไฟฟ้ามาต่อขั้วเข้ากับขั้วบวกและขั้วลบของโวลต์มิเตอร์ จากนั้นจี้หัวแร้งบัดกรีไป ที่บริเวณเหนือฟิล์มบางที่ต่อกับขั้วบวกของโวลต์มิเตอร์โดยไม่สัมผัสกับเนื้อฟิล์มบาง ถ้าเข็มของ โวลต์มิเตอร์ซี้ไปทางบวก แสดงว่าฟิล์มบางนั้นเป็นชนิดเอ็น เนื่องจากอิเล็กตรอนซึ่งเป็นพาหะข้าง มากเมื่อได้รับพลังงานความร้อนจะแพร่กระจายมายังขั้วซึ่งเย็นกว่า ซึ่งป็นขั้วลบของโวลต์มิเตอร์ ทำให้เข็มของโวลต์มิเตอร์ซี้ไปทางบวก แต่ถ้าฟิล์มบางเป็นชนิดพีเข็มของโวลต์มิเตอร์จะซี้ไปทาง ลบ เนื่องจากโฮลซึ่งเป็นพาหะข้างมากเมื่อได้รับพลังงานความร้อนจะแพร่กระจายมายังขั้วเย็น ซึ่งเป็นขั้วลบของโวลต์มิเตอร์ทำให้เข็มของโวลต์มิเตอร์ซี้ไปทางลบ ดังรูปที่ 7.8

รูปที่ 7.8 การตรวจสอบชนิดการนำไฟฟ้าของฟิล์มบางโดยวิธีขั้วความร้อน

2. การวัดสภาพต้านทานไฟฟ้าโดยวิธีแวนเดอเพาว์

การวัดสภาพต้านทานไฟฟ้าของฟิล์มบางคอปเปอร์อินเดียมไดซีลีไนด์ พบว่าการใช้ขั้ว สัมผัสกดลงบนฟิล์มบางโดยตรง กระแสไฟฟ้าไหลผ่านฟิล์มบางได้น้อยมากเพราะเกิดความต่าง ศักย์ตกคร่อมที่รอยต่อของปลายเข็มที่ใช้ทำขั้วสัมผัสกับฟิล์มบาง เพื่อให้การวัดสภาพต้านทาน ไฟฟ้าได้ค่าถูกต้อง จึงต้องทำรอยต่อแบบโอห์มมิกขึ้นบนฟิล์มบาง โดยใช้กาวเงินทำรอยต่อบน ฟิล์มบางทั้งสี่จุด แล้วจึงใช้ขั้วสัมผัสกดลงบนกาวเงินทั้งสี่จุด วัดกระแส I_{MN} และวัดความต่าง ศักย์ V_{PO} ค่าต่างๆ รวมทั้งค่ากระแส I_{NO} และความต่างศักย์ V_{MP} แล้วนำข้อมูลที่วัดได้มาเขียน กราฟเพื่อหาค่า R_{MN,OP} และ R_{NO,PM} จากความขันของกราฟตามลำดับ และจากความหนา ของฟิล์มบางเป็น (d) สามารถหาค่าสภาพต้านทานไฟฟ้า ดังสมการ

$$\rho = \frac{\pi_d}{\ln 2} \frac{(R_{MN,OP} + R_{NO,PM})}{2} f(\frac{R_{MN,OP}}{R_{NO,PM}})$$
(7.9)

3. การวัดสภาพเคลื่อนที่ได้ของฮอลล์จากระบบฮอลล์

ในการวัดสภาพเคลื่อนที่ได้ของฮอลล์ของฟิล์มบาง CuInSe₂ ได้ทำการวัดด้วยระบบ ฮอลล์ของสมฤทธิ์ [22] เป็นระบบวัดและเก็บข้อมูลที่ควบคุมด้วยคอมพิวเตอร์ แสดงผังการทำ งานได้ดังรูปที่ 7.9

รูปที่ 7.9 แสดงระบบการวัดสภาพเคลื่อนที่ได้ของฮอลล์

สำหรับฟิล์มบาง CuinSe₂ ที่เตรียมด้วยวิธีที่ 2 เป็นฟิล์มบางที่มีผิวเรียบจึงสามารถ นำมาวัดสภาพต้านทานไฟฟ้าได้ ส่วนการวัดสภาพเคลื่อนที่ได้ของฮอลล์จะสามารถวัดได้เฉพาะ ฟิล์มบางที่มีความต้านทานไม่เกิน 15 MΩ (วัดได้จากขั้วไฟฟ้าในแต่ละคู่ของฟิล์มบาง) ฟิล์มบางซุดที่เตรียมภายใต้บรรยากาศของซีลีเนียม Ise = 32 A Se = 1 shot/quartz โดยเปลี่ยนอุณหภูมิของแผ่นรองรับเป็น 250, 300, 350, 400°C พบว่าที่อุณหภูมิต่ำคือ 250, และที่อุณหภมิสูงคือ 350, 400°C ฟิล์มบาง CulnSe₂ มีชนิดการนำไฟฟ้าเป็นแบบพี สภาพต้าน ทานไฟฟ้าต่ำ (< 1 Ωcm.)

สำหรับค่าสภาพเคลื่อนที่ได้ของฮอลล์จะมีค่าลดลงและความหนาแน่นของพาหะมีค่า มากขึ้นเมื่ออุณหภูมิของแผ่นรองรับสูงขึ้น

สำหรับฟิล์มบาง CuinSe₂ ชุดที่เตรียมโดยอุณหภูมิของแผ่นรองรับคงที่ (Tsub = 300°C) โดยเปลี่ยนอัตราการเคลือบของซีลีเนียมตามในรูปที่ 7.4 พบว่าค่าสภาพต้านทานไฟฟ้า จะเพิ่มขึ้นและชนิดการนำไฟฟ้าเปลี่ยนจากแบบเอ็นไปเป็นแบบพี ตามอัตราการระเหยของ ซีลีเนียม

ผลการวัดขนิดของการนำไฟฟ้า สภาพต้านทานไฟฟ้า สภาพเคลื่อนที่ได้ของฮอลล์ ของฟิล์มบาง CuinSe, (เฉพาะในชุดที่เลือกมาแสดง) จะแสดงผลไว้ในตารางที่ 7.4

ฟิล์มบาง	Tsubstrate	lse	Se	type	ρ	μ	n
	(⁰ C)	(A)	(shot/quartz)		(ohm-cm)	cm²/V.s	1/(cm ³)
CISAA2	250	32	1	n	525.4079	77.5926	1.4402E+14
CISAB2	300	32	1	n	825.9660	***	* * *
CISAC2	350	32	1	р	0.1142	9.3874	4.2455E+17
CISAD2	400	32	1	р	0.0165	1.1344	3.4636E+20
CISAH2	300	34	·> 1	р	1323.4035	***	***
CISAG2	300	36	1	n	4.3231	***	* * *
CISAF2	300	32	2	n	741.7706	***	***
CISAJ2	300	34	2	р	717.8233	***	
CISAI2	300	36	2	р	14418.7526	***	

•••• ไม่สามารถวัดได้เนื่องจากความต้านทานสูง

ตารางที่ 7.4 แสดงลักษณะเฉพาะทางไฟฟ้าของฟิล์มบาง CuinSe₂ ที่เตรียมภายใต้ บรรยากาศของซีลีเนียมและมีการปรับอุณหภูมิของแผ่นรองรับในกรณีต่างๆ

ฟิล์มบาง CISP06 แอนนีลที่ T=400^⁰C นาน 0.5 ชม.

ฟิล์มบาง CISP13 แอนนีลที่ T=400°C นาน 1.5 ชม.

ฟิล์มบาง CISAA1 Tsub=250°C Ise=32 A Se=1 shot/quartz

ฟิล์มบาง CISAB1 Tsub=300⁰C Ise=32 A Se=1 shot/quartz

ฟิล์มบาง CISAD1 Tsub=400⁰C Ise=32 A Se=1 shot/quartz

ฟิล์มบาง CISAH1 Tsub=300°C Ise=34 A Se=1 shot/quartz

ฟิล์มบาง CISAG1 Tsub=300°C Ise=36 A Se=1 shot/quartz

รูปที่ 7.23 แสดงแพทเทิร์นการเลี้ยวเบนของรังสีเอ็กซ์ ฟิล์มบาง CISAJ1 Tsub=300ºC Ise=34 A Se=2 shot/quartz

รูปที่ 7.25 แสดงสัมประสิทธิ์การดูดกลิ่นแสงและช่องว่างแถบพลังงาน ของฟิล์มบาง CISAA1 Tsub=250⁰C Ise=32 A Se=1 shot/quartz

รูปที่ 7.26 แสดงสัมประสิทธิ์การดูดกลื่นแสงและช่องว่างแถบพลังงาน ของพีล์มบาง CISAB1 Tsub=300℃ Ise=32 A Se=1 shot/quartz

รูปที่ 7.27 แสดงสัมประสิทธิ์การดูดกลิ่นแสงและช่องว่างแถบพลังงาน ของฟิล์มบาง CISAC1 Tsub=350℃ Ise=32 A Se=1 shot/quartz

รูปที่ 7.28 แสดงสัมประสิทธิการดูดกลิ่นแสงและช่องว่างแถบพลังงาน ของฟิล์มบาง CISAD1 Tsub=400°C Ise=32 A Se=1 shot/quartz

รูปที่ 7.30 แสดงสัมประสิทธิ์การดูดกลื่นแสงและช่องว่างแถบพลังงาน ของฟิล์มบาง CISAG1 Tsub=300°C Ise=36 A Se=1 shot/quartz

รูปที่ 7.31 แสดงสัมประสิทธิ์การดูดกลื่นแสงและช่องว่างแถบพลังงาน ของฟิล์มบาง CISAF1 Tsub=300⁰C Ise=32 A Se=2 shot/quartz

Absorption CuinSe2:AJ1

รูปที่ 7.32 แสดงสัมประสิทธิ์การดูดกลื่นแสงและช่องว่างแถบพลังงาน ของฟิล์มบาง CISAJ1 Tsub=300°C Ise=34 A Se=2 shot/quartz

รูปที่ 7.33 แสดงส้มประสิทธิ์การดูดกลื่นแสงและช่องว่างแถบพลังงาน ของฟิล์มบาง CISAI1 Tsub=300⁰C Ise=36 A Se=2 shot/quartz