CHAPTER II

HISTORICAL

1. Chemical Constituents of Plants in the Genus Prismatomeris

The chemical constituents of plants in the genus *Prismatomeris* can be classified into three groups, namely anthraquinones, steroids and triterpenoids, as shown in Table 1.

Table 1	Distribution of chemical	constituents in t	he genus	Prismatomeris
---------	---------------------------------	-------------------	----------	---------------

Plant and chemical compound	Category	Part	Reference	
Prismatomeris tetrandra				
subsp. <i>malayana</i> *			Second A. A.	
Rubiadin [1]	Anthraquinone	root	Lee, 1969: 501-503	
Rubiadin-1-methy ether [2]	Anthraquinone	root	Lee, 1969: 501-503	
P. tetrandra	1 C C C L			
Rubiadin [1]	Anthraquinone	root	Tu, Pang, and Bi, 1981:	
		-	631-634	
Rubiadin-1-methy ether [2]	Anthraquinone	root	Tu et al., 1981: 631-634	
2-Methylanthraquinone [3]	Anthraquinone	root	Tu et al., 1981: 631-634	
Damnacanthal [4]	Anthraquinone	root	Tu et al., 1981: 631-634	
β-Sitosterol [5]	Steroid	root	Tu et al., 1981: 631-634	
Unidentified compound	Anthraquinone	root	Tu et al., 1981: 631-634	
Unidentified compound	Triterpenoid	root	Tu et al., 1981: 631-634	

*Davies, 1991: 265.

2. Chemical Constituents of Diospyros montana

The chemicals found in *Diospyros montana* can be classified into six groups, namely naphthoquinones, triterpenoids, steroids, fatty acids, amino acids, and metals, as shown in Table 2.

Plant part and chemical compound	Category	Reference
Bark		
Diospyrin [6]	Naphthoquinone	Kapil and Dhar,
		1961: 498-500
β'-Dihydrodiospyrin [7]	Naphthoquinone	Pardhasaradhi and Sidhu,
	C	1972: 4201-4204
7- Methyljuglone [8]	Naphthoquinone	Lillie, Musgrave, and
		Skoyles, 1976: 2155-2161
Mamegakinone [9]	Naphthoquinone	Lillie et al.,
		1976: 2155-2161
Biramentacenone [10]	Naphthoquinone	Lillie et al.,
		1976: 2155-2161
Isodiospyrin [11]	Naphthoquinone	Lillie et al.,
and the second second	10.4021	1976: 2155-2161
3,5'-O-cyclodiospyrin [12]	Naphthoquinone	Lillie et al.,
		1976: 2155-2161
8'-Hydroxydiospyrin [13]	Naphthoquinone	Lillie et al.,
		1976: 2155-2161
Diosquinone [14]	Naphthoquinone	Lillie et al.,
	1	1976: 2155-2161
Tetrahydrodiospyrin [15]	Naphthoquinone	Pardhasaradhi and
1		Krishnakumari,
		1979: 684-685

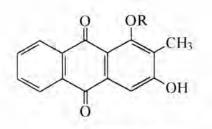
Table 2 Chemical constituents of Diospyros montana

Table 2 (continued)

Plant part and chemical compound	Category	Reference
Lupeol [16]	Triterpenoid	Lillie et al.,
		1976: 2155-2161
Betulinic acid [17]	Triterpenoid	Lillie et al.,
		1976: 2155-2161
Betulin [18]	Triterpenoid	Lillie et al.,
		1976: 2155-2161
Allobetulin [19]	Triterpenoid	Lillie et al.,
		1976: 2155-2161
Oxyallobetulin [20]	Triterpenoid	Lillie et al.,
	1.00	1976: 2155-2161
2'-Chlorodiospyrin [21]**	Naphthoquinone	Lillie et al.,
	1	1976: 2155-2161
3'-Chlorodiospyrin [22]**	Naphthoquinone	Lillie et al.,
		1976: 2155-2161
3'-Chloro-2-hydroxy-	Naphthoquinone	Lillie et al.,
diospyrin [23]**		1976: 2155-2161
Chromenone ester [24]**	Naphthoquinone	Lillie et al.,
10110 10110 10 1 101 2		1976: 2155-2161
Chromenone acid [25]**	Naphthoquinone	Lillie et al.,
		1976: 2155-2161
Wood		
β'-Dihydrodiospyrin [7]	Naphthoquinone	Pardhasaradhi and Sidhu
		1972: 4201-4204
Diospyrin [6]	Naphthoquinone	Lillie et al.,
		1976: 2155-2161
3,5'-O-cyclodiospyrin [12]	Naphthoquinone	Lillie et al.,
		1976: 2155-2161

Table 2 (continued)

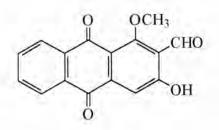
Plant part and chemical compound	Category	Reference
8'-Hydroxydiospyrin [13]	Naphthoquinone	Lillie et al.,
and the set of the set of the		1976: 2155-2161
2'-Chlorodiospyrin [21]**	Naphthoquinone	Lillie et al.,
		1976: 2155-2161
3'-Chlorodiospyrin [22]**	Naphthoquinone	Lillie et al.,
		1976: 2155-2161
Lupeol [16]	Triterpenoid	Lillie et al.,
COLUMN IS		1976: 2155-2161
Betulinic acid [17]	Triterpenoid	Lillie et al.,
	10000	1976: 2155-2161
Betulin [18]	Triterpenoid	Lillie et al.,
	1000	1976: 2155-2161
β-Sitosterol [5]	Steroid	Lillie et al.,
a salar o salar		1976: 2155-2161
Stem		
2,6-Dimethoxy-7-methoxy-	Naphthoquinone	Thomson, 1987: 226
carbonyljuglone [26]		
Fungal-infested stem		100 A 100
Yerrinquinone [27]	Naphthoquinone	Pardhasaradhi and Rao,
		1990: 2355-2356
Leaf		
Diospyrin [6]	Naphthoquinone	Narayan, Row, and
		Satyanarayana, 1978: 345
β-Sitosterol [5]	Steroid	Dutta, Dutta, and
	_	Chakravarti,
		1972: 1180-1181
Stigmasterol [28]	Steroid	Dutta et al.,
		1972: 1180-1181

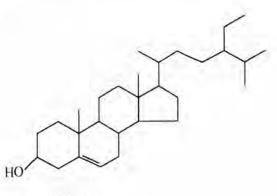

Table 2 (continued)

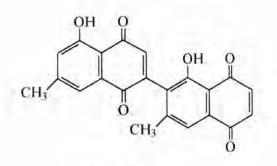
Plant part and chemical compound	Category	Reference	
Epi-uvaol [29]	Triterpenoid	Dutta et al.,	
		1972: 1180-1181	
Oleanolic acid [30]	Triterpenoid	Dutta et al.,	
		1972: 1180-1181	
Betulin [18]	Triterpenoid	Dutta et al.,	
		1972: 1180-1181	
Betulinic acid [17]	Triterpenoid	Narayan et al., 1978: 345	
Lupeol [16]	Triterpenoid	Narayan et al., 1978: 345	
Ursolic acid [31]	Triterpenoid	Zafar, Singh, and Khan,	
		1991: 432-433	
Fruit			
α-amyrin [32]	Triterpenoid	Misra, Nigam, and Mitra	
		1972: 1508-1509	
Betulinic acid [17]	Triterpenoid	Misra et al.,	
		1972: 1508-1509	
Betulin [18]	Triterpenoid	Misra et al.,	
		1972: 1508-1509	
Oleanolic acid [30]	Triterpenoid	Misra et al.,	
		1972: 1508-1509	
Ursolic acid [31]	Triterpenoid	Misra et al.,	
		1972: 1508-1509	
Lupeol [16]	Triterpenoid	Raj and Agrawal,	
		1979: 735-736	
β-Sitosterol [5]	Steroid	Raj and Agrawal,	
		1979: 735-736	
Palmitic acid [33]	Fatty acid	Misra et al.,	
		1972: 1508-1509	

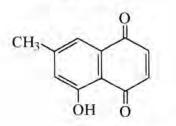

Table 2 (continued)

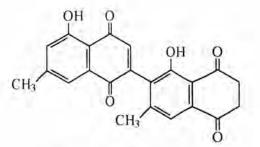
Plant part and chemical compound	Category	Reference	
Stearic acid [34]	Fatty acid	Misra <i>et al.</i> , 1972: 1508-1509	
Zn, Ni, Co, Cr, Fe, Ca, Mg, Cu, K, and Na	Metals	Raj and Agrawal, 1979: 735-736	
Seed			
Betulinic acid [17]	Triterpenoid	Raj and Agrawal, 1979: 735-736	
L-cystine [35]	Amino acid	Goutam and Purohit, 1974: 100-101	
L-arginine [36]	Amino acid	Goutam and Purohit, 1974: 100-101	
L-glutamic acid [37]	Amino acid	Goutam and Purohit, 1974: 100-101	
Glycine [38]	Amino acid	Goutam and Purohit, 1974: 100-101	
L-alanine [39]	Amino acid	Goutam and Purohit, 1974: 100-101	
L-proline [40]	Amino acid	Goutam and Purohit, 1974: 100-101	
L-leucine [41]	Amino acid	Goutam and Purohit, 1974: 100-101	

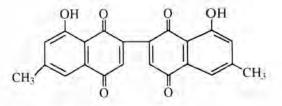

**Artefacts from isolation procedure

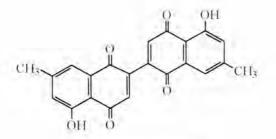

[1] Rubiadin; R=H[2] Rubiadin-1-methyl ether; R=CH₃

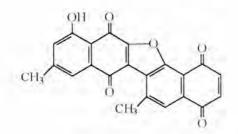

[3] 2-Methylanthraquinone

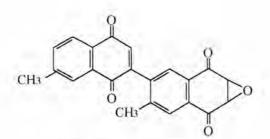

[4] Damnacanthal

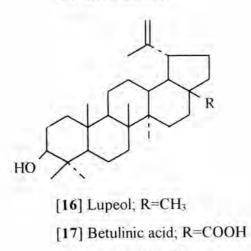

[5] β-Sitosterol

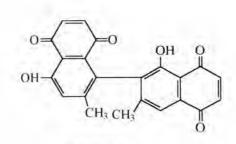

[6] Diospyrin

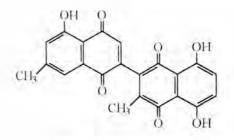

[8] 7-Methyljuglone

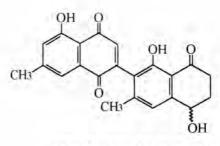

[7] β' -Dihydrodiospyrin

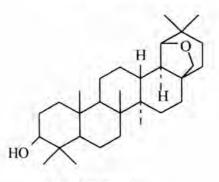

[9] Mamegakinone

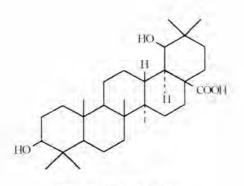

[10] Biramentacenone

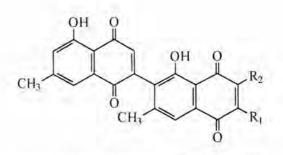

[12] 3,5'-O-cyclodiospyrin

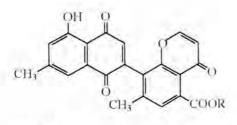

[14] Diosquinone


[18] Betulin; R=OH

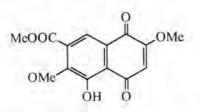

[11] Isodiospyrin


[13] 8'-Hydroxydiospyrin

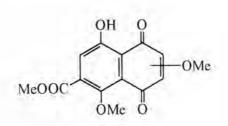

[15] Tetrahydrodiospyrin


[19] Allobetulin

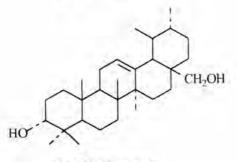
[20] Oxyallobetulin

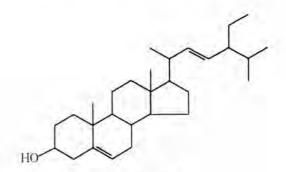


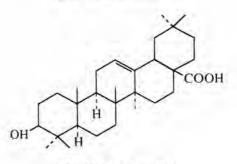
[21] 2'-Chlorodiospyrin; R₁=Cl, R₂=H
[22] 3'-Chlorodiospyrin; R₁=H, R₂=Cl
[23] 3'-Chloro-2'-hydroxydiospyrin; R₁=OH, R₂=Cl

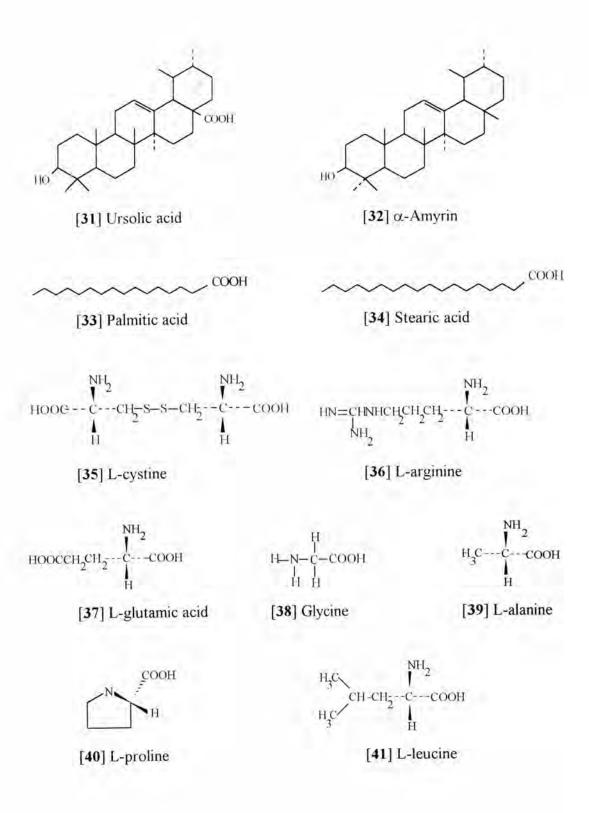


[24] Chromenone ester; R=Et


[25] Chromenone acid; R=H


[26] 2,6-Dimethoxy-7-methoxycarbonyljuglone


[27] Yerrinquinone


[29] Epi-uvaol

[28] Stigmasterol

[30] Oleanolic acid

3. Biogenesis of Naturally Occurring Quinones

Like other secondary metobolites, the quinones are derived from a few key intermediates, principally acetate, shikimate and mevalonate, by a series of reactions which lead to the formation of benzenoid compounds. It is assumed that the last stages involve the oxidation of a phenol. Probably most quinone arise by the acetate-malonate pathway, particularly those elaborated by fungi, but the extent to which shikimate is involved is still a matter for conjecture. It does, however, appear to be an important intermediate in the formation of many quinones in higher plants. Wholly terpenoid quinones are relatively few but some quinones of mixed origin posses a side chain or ring derived from mevalonate (Thomson, 1971: 5)

3.1 Anthraquinones

In monocotyledons, anthraquinone derivatives are found only in the Liliaceae and Xyridaceae. Among dicotyledons they occur in the Rubiaceae, Leguminosae, Polygonaceae, Rhamnaceae, Ericaceae, Euphorbiaceae, Lythraceae, Saxifragaceae, Scrophulariaceae and Verbenaceae. They appear to be absent from the Bryophyta, Pteridophyta and Gymnosperms but occur in certain fungi and lichens (Evans, 1996: 232-233). In animals, a few occur in insects (Coccidae only) and in feather stars (Crinoidea) (Thomson, 1971:1).

Substances of the anthraquinone type were the first to be recognized, both in the free state and as glycosides. Further work showed that natural products also contained reduced derivatives of the anthraquinones (oxanthrones, anthranols, and anthrones) and compounds formed by the union of two anthrone molecules (i.e. the dianthrones) (Evans, 1996: 232).

Natural anthraquinones are either synthesized via the acetate-malonate pathway or derived from shikimate and mevalonate (Evans, 1996: 233). The majority of anthraquinones present in Rubiaceous plants are substituted in only one benzenoid ring and may be totally devoid of a carbon side chain or hydroxyl groups (Thomson, 1971; 9).

3.2 Naphthoquinones

The distribution of the naphthoquinones is sporadic. Nearly half of them occur in higher plants, scattered through some twenty families. They have been found in leaves, flowers, wood, bark, root, and fruit (Thomson, 1971: 2).

Natural naphthoquinones occur in a number of plants commonly in the reduced and glycosidic forms. In some heart-wood, e.g. *Diospyros spp.* (Ebenaceae) naphthoquinones occur as monomers, complex dimers and trimers (Evans, 1996: 248).

Naphthoquinones have been shown to be biosynthesized via a variety of pathways including acetate and malonate (plumbagin of *Plumbago spp.*), shikimate / succinyl CoA combined pathway (lawsone) and shikimate / mevalonate combined pathway (alkannin) (Evans, 1996: 248).