
Chapter 1

Statem ents of the results

Fix a positive real number t. A Gaussian measure Ht on c d is defined by

‘พ * )  =  ÿ e ~lz]2/t dz

where 2 = ( z i , . . .  ,Zd) and \ z\2 =  \ z i \ 2 +  ■ ■ ■ +  \zd\2. The Segal-Bargmann space, 
denoted by H L 2 (Cd, /It), is the space of all holomorphic functions on c rf which are 
square-integrable with respect to the Gaussian measure Ht- Denote by S O ( d ,  C) 
the special complex orthogonal group, i.e., the group of all d  X d  matrices A  with 
entries in c such that A 1 — A ~ l and det A = 1. Let %  (Cd)5° (<1,c) be the space of 
all SO(d, C)-invariant holomorphic functions on c d, and let

U L 2{C d, H t ) SO(d'C) =  -H(Cd)50(d’c) ก L 2( C d ,Ht)-

Then it is a closed subspace of the Segal-Bargmann space ' H L 2( C d, Ht), and hence 
is a Hilbert space. In this work, we find an orthonormal basis and the reproducing 
kernel of this space. We do this by expressing the space ' H L 2( C d, jUt)s°(d,c) as 
a space of holomorphic functions on c which are square-integrable with respect 
to some non-Gaussian measure. The latter space is easier to work with. So we 
will find its orthonormal basis and the reproducing kernel, and then we transform



everything back to 'HL2(Cd, f i t ) s o ( -d-c '> by a unitarily equivalent map.

The main results of this work are as follows:

1. The following set
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forms an orthonormal basis of rH L 2( C d 1/it)SO(rf,C).
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2. The reproducing kernel for the space ' H L 2( C d , /p)5° (d•'̂  is given by
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3. We have the pointwise bound
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for any F  G ' H L 2( C d,
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