Chapter 2

Some properties of complex
orthogonal groups

In this chapter, we consicler briefly fundamental definitions and some properties
of the complex orthogonal group and special complex orthogonal group that will
be used in later chapters.

Let de N. Let F be the field R or c. Denote by Md(F) the set of all d x d
matrices with entries in F and by GL(d, F) the set of all invertible ¢ x ¢ matrices
with entries in F. Then 6L(d, F) is a group under multiplication. We can regard
Md( ) as the vector space Fri2 so it has an inherited topology from the usual
topology on d2

Definition 2.1. Let (An) be a sequence of d x d matrices in M d(F). We say that
(A9 converges to a matrix A if and only if each entry of An converges to the
corresponding entry of A in F, i.e., if (An)ij converges to Aij for all 1<i,j <.

Consider the map (¢, ¢) :Fdx Fd—F given by

(xy) = Xiyl + —nxdyd
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for all x = (xi,..., xa), y = (Jfi,..., xd) GFd. This map is a symmetric bilinear
form. 1f F = K, then this defines a positive inner product on rd. However, if
F = ¢, this is not an inner product because

but ( ,0...,0 0 WhenF=c, we define a hermitian inner product on c d
by
(x,y) = Ai"hXiyi for all x, y GCH.

If we write x G¥d as a column matrix, then we have
(x, N=xly forall x yGwmayi(¥) = ¥d.
From this, we have
(A, Y) = (AX)ly = X'A'y = x, Aly)
for all x, y G¥d and all .4 G Md(F).

Lemma 2.2. The bilinear form (-, *) is non-degeneratelie., (X Y) = O0for all
y Gedimplies X = 0.

Proof. Let x G cifbe such that (x,y) = 0 forall yGed Thenforall .- 1,..., 4,
XI = (x,ef) - 0
where {ei,..., ed} Is the standard basis for cd. Hence x = 0. [

Definition 2.3. An invertible d x ¢ matrix A which preserves the bilinear form
(+)0), I-&.
(Ax, Ay) = (x,y)  forall x yG¥d.

is called an orthogonal matrix. Denote »v 0{d. F) the set of all d x d orthogonal
matrices and by so(d.¥) the set of all Ain 0( . F) with detA=1
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Lemma 2.4. Let A GGL(d. F). Then 4 is an orthogonal matrix if and only if
AL= A-l.

Proof. (%) Assume that A is an orthogonal matrix. Then

(X,Y)= {Ax.Ay) = (x,AlAy)

for all .y G¥d. It follows that 1 — A*A, and that A1= A-1.
(<= Assume that At = A-1. Then

(AX,AY) = (cAtAY) = (x,y)
for all x,y GFrf Hence, A is an orthogonal matrix, [

Lemma 2.5. 0( .C) and s0(d, C) are closed subgroups of GL(d,C).

Proof. First, we will prove that 0( , C) is a subgroup of L(d. C). It is clear that
1 GO( ,C). LetA.B Go(d.c). ThenAB GGL(dX) and Ad=A~\ Bf=B-~I.
Moreover,

(AS)4=BtAt=B"A-1= (AB)-1 and
(A-1)4= (Ad4=4 = (A-])-1

By Lemma 2.4, we have that A~1:A8 GO( ,C). Hence, 0{d. C) is a subgroup of
OL( ,C). Similarly, we have that 50( , C) is a subgroup of OL( ,C). Next, we
will show that 0( , C) is closed in GL(d,c). Define

T:GL(,C)->mdc) bv'lI'A)=nra1
for all AGGL( ,C). Then 4 is a continuous function. But

0( ,C) = {AaecL{dx) I1AAJ=/}= -1{ })-



Hence. o(d, C) is a closed subgroup of GL(d, C). Denote by
det : Md(C) -> ¢

the determinant function. Then det is a polynomial function, so it is continuous.
Moreover,

s0{d. C) = 0(d,c) det 1({l}).

Thus so(d, C) is a closed subgroup of L(d, C). I

Definition 2.6. The set of all ¢ 1 d complex orthogonal matrices is called the
complex orthogonal group 0(d,C) and the set, of all d 1+ d complex orthogonal
matrices with determinant one is called the special complex orthogonal group
so(d, C). The set ofd1 d real orthogonal matrices is called the (real)orthogonal
group 0(d). The set of d 1 d real orthogonal matrices with determinant one is
called the special (real)orthogonal group so(d). Then o(d) and so(d) are
subgroups of o(d, C), and hence of GL(d,c). Moreover, they are closed sub-
groups of L(d, C). Geometrically, an element of o(d) is either a rotation, or a
combination of rotation and reflection. An element of so(d) Is just a rotation.

Lemma 2.7. Every element A of 0(2) s of one of the two forms
C0S6  singn
-§iNg oS 9J

0S9 Sin9g
siN9  —C0S9J

If A s of the first form, then detA — 1, %e 4 GSO(2): if 4 is of the second
form, then det 4= —1.
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proof, Let 4= : GO0(2). Then 4 1=at1and det(4) 1. IfdetH=1

then ve
1d -1 (
Boaczas & °
\.¢c &/ Ko df
Thus a = d and ¢ — —b, 1.,
O ft"'
4
\-b

Since AR =/, a2+ b2=1 SoaG[-1.1], Hence there exists 9 G[0,27] such
that a = c0s9. 1., b = sin# Then

o Mcosk sin®
O sing oo

1. we have
e cos# sin# N
ASing - cos#

Notation.
or(d,C) . {zGcd 1 (2,2 =r} forallrGe and
or(d) .= {XGRd I (x,x) :r} forallr GR+ {0}.
Lemma 2.8. For each d > 2, SO(d) acts transitively on Sr(d) for all r GR*.
Proof. Letr GR+. Forall 4 G50(d), XGsr(d). we have
(A, AEC) = (X, /4bAx) =(x,x) =T,

This show that 50(d) acts on 5r(d) by left-multiplication. Next, we will show
that this is a transitive action. First we will show that 50(d) acts transitively
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on s\(d). Let be aunit vector of Rd. If and Q are linearly dependent, then
= qgelwhere 1= 1 If and elare linearly independent, let

ei=/l, and ;2= - (,£D).

Then fI T2 and span{ £1, } = span}/1,/-}. By Gram-Schmidt orthogonaliza-
tion process, there exists an orthonormal basis 80 = {/1/2,ss......fd } of Rd. Let
p be a matrix transition from the basis JXto the standard basis. Then P G So[d)
andpPv =[]0 S0

a0 1
0 /,dz/
~ loos@ - sinB) AN .
where 4 = IS-a matrix which rotates [].. to [el}.. in the
sing oS
{I1,12}-plane. Therefore
= g OAPGSO{d).
o Id2

Hence. so(d) acts transitively on stid). Ifr ” L then

p~I £ Pv = \Ir £1.

0 1d2

Hence. so{d) acts transitively on 1(d) for any r GR+. O
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