Chapter 3

Holomorphic function spaces

In this chapter, we provide some standard results that will be referred to in the next chapter. First, we discuss a reproducing kernel, which exists on any Hilbert space such that each pointwise evaluation is bounded. After that we consider the space of holomorphic functions which are square-integrable with respect to the weight α . We will see that this space also has a reproducing kernel.

Definition 3.1. Let X be a nonempty set. Let H be a Hilbert space of functions defined on X such that the pointwise evaluation

$$\Phi_z \colon H \to \mathbb{F}, \quad f \mapsto f(z),$$

is continuous for each $z \in X$. Then for each $z \in X$, Φ_z is a bounded linear functional on H. So there exists a unique function $\phi_z \in H$ such that

$$f(z) = \Phi_z(f) = \langle \phi_z, f \rangle$$

for all $f \in H$. Define a function $K: X \times X \to \mathbb{F}$ by

$$K(w, z) = \phi_z(w)$$
 for all $w, z \in X$.

K is called the **reproducing kernel** of H and H is said to be a **reproducing kernel Hilbert space**.

Theorem 3.2. Let H be a reproducing kernel Hilbert space. Then the reproducing kernel K of H has the following properties:

- (i) $K(w,z) = \overline{K(z,w)}$ for all $z, w \in X$.
- (ii) For all $z \in X$,

$$|F(z)|^2 \le K(z,z) ||F||^2$$

and the constant K(z, z) is optimal in the sense that for each $z \in X$ there exists a non-zero $F_z \in H$ for which equality holds.

(iii) Given any $z \in X$, if $\psi_z \in H$ satisfies

$$F(z) = \langle \psi_z, F \rangle$$

for all $F \in H$, then $\psi_z(w) = K(w, z)$ for any $w \in X$.

Proof. (i) Let $z, w \in X$. Then

$$K(w,z) = \phi_z(w) = \Phi_w(\phi_z) = \langle \phi_w, \phi_z \rangle.$$

Similarly, $K(z, w) = \langle \phi_z, \phi_w \rangle$. Hence $K(w, z) = \overline{K(z, w)}$ for all $z, w \in X$.

(ii) Let $z \in X$. Then

$$\|\phi_z\|^2 = \langle \phi_z, \phi_z \rangle = \Phi_z(\phi_z) = \phi_z(z) = K(z, z).$$

For any $F \in H$,

$$|F(z)|^2 = |\Phi_z(F)|^2 = |\langle \phi_z, F \rangle|^2 \le ||\phi_z||^2 ||F||^2.$$

Hence, $|F(z)|^2 \le K(z, z)||F||^2$, for all $F \in H$.

(iii) Let $z \in X$. Assume that $\phi_z \in H$ satisfies

$$F(z) = \langle \phi_z, F \rangle$$
 for all $F \in H$.

By the definition of the reproducing kernel and (i), we have

$$F(z) = \langle K(\cdot, z), F \rangle = \langle \overline{K(z, \cdot)}, F \rangle$$
 for all $F \in H$.

Hence, $\langle \overline{K(z,\cdot)} - \phi_z, F \rangle = 0$ for all $F \in H$. Thus $\overline{K(z,\cdot)} - \phi_z = 0$. which implies that $\overline{\phi_z(w)} = K(z,w)$ for all $w \in X$.

Theorem 3.3. Let H be a reproducing kernel Hilbert space of functions defined on a nonempty set X. Let $\{e_n\}_{n=0}^{\infty}$ be any orthonormal basis of H. Then for all $z, w \in X$,

$$\sum_{n=0}^{\infty} |e_n(z)| \overline{e_n(w)}| < \infty$$

and

$$K(z,w) = \sum_{n=0}^{\infty} e_n(z) \overline{e_n(w)}.$$

Proof. Let $\{e_n\}_{n=0}^{\infty}$ be an orthonormal basis of H. For any $F \in H$, by Parseval's identity,

$$\sum_{n=0}^{\infty} \left| \left\langle F, e_n \right\rangle \right|^2 = \|F\|^2.$$

By the Schwarz's inequality, we have for any $f, g \in H$.

$$\sum_{n=0}^{\infty} \left| \left\langle f, e_n \right\rangle \left\langle e_n, g \right\rangle \right| \le ||f|| ||g||.$$

Taking $f = \phi_z$ and $g = \phi_w$ we get

$$\sum_{n=0}^{\infty} \left| e_n(z) \overline{e_n(w)} \right| = \sum_{n=0}^{\infty} \left| \left\langle \phi_z, e_n \right\rangle \left\langle e_n, \phi_w \right\rangle \right| \le \|\phi_z\| \|\phi_w\| < \infty.$$

Now think of the partial sum of $\sum_{n=0}^{\infty} e_n(z) \overline{e_n(w)}$ as a functions of w with z fixed.

Then the series is orthogonal and

$$\sum_{n=0}^{\infty} \|e_n(z)\overline{e_n}\|^2 = \sum_{n=0}^{\infty} \|\langle \phi_z, e_n \rangle e_n\|^2$$

$$= \sum_{n=0}^{\infty} |\langle \phi_z, e_n \rangle|^2 \|e_n\|^2$$

$$= \sum_{n=0}^{\infty} |\langle \phi_z, e_n \rangle|^2$$

$$= \|\phi_z\|^2 < \infty.$$

Hence, $\sum_{n=0}^{\infty} e_n(z)\overline{e_n}$ is absolutely convergent in H, which implies that $\sum_{n=0}^{\infty} e_n(z)\overline{e_n}$ is convergent in H. For any $F \in H$, we have that for all $z \in X$

$$F(z) = \langle \phi_z, F \rangle$$

$$= \sum_{n=0}^{\infty} \langle \phi_z, e_n \rangle \langle e_n, F \rangle$$

$$= \sum_{n=0}^{\infty} e_n(z) \langle e_n, F \rangle$$

$$= \sum_{n=0}^{\infty} \langle \overline{e_n(z)} e_n, F \rangle$$

$$= \langle \sum_{n=0}^{\infty} \overline{e_n(z)} e_n, F \rangle.$$

By Theorem 3.2(iii), $\sum_{n=0}^{\infty} \overline{e_n(z)} e_n(w) = K(z, w)$ for all $z, w \in X$. Hence, for all $z, w \in X$

$$K(z, w) = \sum_{n=0}^{\infty} e_n(z) \overline{e_n(w)}.$$

Next, we review some basic concepts of a holomorphic function space. All of these results appeared in [H2].

Definition 3.4. Let d be a positive integer and U a nonempty open set in \mathbb{C}^d . A function $f: U \to \mathbb{C}$ is **holomorphic** if f is continuous and holomorphic in each

variable with the other variables fixed. Let $\mathcal{H}(U)$ be the space of holomorphic functions on U.

Definition 3.5. Let α be a continuous strictly-positive function on a nonempty open set U in \mathbb{C}^d . Denote by $\mathcal{H}L^2(U,\alpha)$ the space of L^2 -holomorphic functions with respect to the weight α . In other words,

$$\mathcal{H}L^2(U, lpha) \ = \ \left\{ \ F \in \mathcal{H}(U) \ \middle| \ \int_U |F(z)|^2 \ lpha(z) \ dz \ < \infty \
ight\}.$$

Theorem 3.6. (i) $\mathcal{H}L^2(U,\alpha)$ is a closed subspace of $L^2(U,\alpha)$, which implies that it is a Hilbert space.

(ii) The pointwise evaluation $\phi_z \colon F \mapsto F(z)$ is continuous for each $z \in U$. Hence, $\mathcal{H}L^2(U,\alpha)$ is a reproducing kernel Hilbert space.

Definition 3.7. The **Segal-Bargmann space** is the holomorphic function space $\mathcal{H}L^2(\mathbb{C}^d, \mu_t)$, where

$$\mu_t(z) = (\pi t)^{-d} e^{-|z|^2/t}$$

Here. $|z|^2 = |z_1|^2 + \cdots + |z_d|^2$ and t is a positive number.

Theorem 3.8. The reproducing kernel of $\mathcal{H}L^2(\mathbb{C}^d, \mu_t)$ is given by

$$K(z,w) = e^{\langle w,z \rangle/t}$$

Hence, we have the pointwise bound

$$|F(z)|^2 \le e^{|z|^2/t} ||F||^2$$

for any $F \in \mathcal{H}L^2(\mathbb{C}^d, \mu_t)$.