Chapter 4

50(d, C)-invariant holomorphic
function spaces

In this chapter, we consider the subspace of the Segal-Bargmann space which is
invariant under the action of the special complex orthogonal group. Our objective
is to find an orthonormal basis and the reproducing kernel of this space. This will
yield a pointwise hound of functions in this pace.

Lemma 4.1. 1£f,g 6 %{C0) are such that /|Ri= <[Rd, then f —g on Cd.
Proof. It suffices to show the following statements:
for any holomorphic functions / on Cd, /|Rd= 0 implies / = 0 on c .

We prove this by induction on degree d. Let p(d) denote the above statements.
Then P(l) holds by analytic continuation. Assume that p (d —1) holds. We will
show that p(d) holds. Let/ € be such that / [Ri= 0. For any x GR,
define /1: cd-l —¢ hy

fx{X.,.. .£d=) = f{x. ..., xd-ux)
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for all (x1....X-1) G € “H Thus f1 G PI(Ca~l) and /riflid-i = 0. By the
induction hypothesis we have that f1=10. Hence, for any XGR, fx = 0. For any
N Xrf-) Ged 1, define f(IL..1LD: ¢ ->¢ by

S0 a1 rdQin = 0. By the induction hypothesis /@1 ,.11) = o. and hence
rat. X)) = 0forall (e1....GCa-1 . Therefore, for any (Xi....wnnnns rd) Ged

o XD s nl)oy 0
Hence / = 0. 0
Lemma 4.2. £ | GH{Cd) be such that
f(Ax)=1(r). for al A GSO(d) and all X GRad.
Then f(Az) =/ ) for all T GSO(d.C) and all Ge.
Proof. Let / G4f(Cr) be such that

f(Ax) =/ ) forall 4GSO(d) and all XGRH.
For any 4 GSO(d), define 0.4 :cd—rc by
oa(C) = {{Az) forall Gcd.

Then o4 is holomorphic. By the assumption, we have that oalay = /|Rl Hence,
by Lemma 4.1, b4 =/ for all 4 Gso id). Sowe have that

f(Az) =f{) forall 4GSO(d) and all Gcd.



16
Forany z G . define gz,hz:50( ,C) —=c by
9%{A) =f{Az) and hz(A) = [ (2)

for all 4 G50( ,C). Then £2and hz are holomorphic and gz\so() — hso(d)-
From{[HI], Lemma 5, p-111], it follows that gz — hz for all z G . Hence,
f{Az) = f(z),forall A G50( ,C)and all z Ge. I

Definition 4.3. Let F be a holomorphic function oil . We say that F i
50( . C)-invariant if

F(Az) =F(z) forallA G50( ,C) and all zG .

Notation. Define 77( )so(cto be the set of all 50( . C)-invariant holomorphic
functions on , 1.,

T1( )sofde) = {f6? () 1/ 1s50( ,C)-invariant }.
Then it is a linear subspace of 77( ). We write
71, ARde =77 )sdQ (7).
Theorem 4.4, 77 ( ,*)5°(dc) a closed subspace of FLL2( , pt).

Proof. We will show that 77 ( , *)5°(dQ is a subspace of 77 ( ,Pt). Let
[,(GTT ( ,pt)s°(dCc>and a G¢. Then/ +g, af G77 ( ,*). Moreover,

(M +#)(H2) =1 (M2) +g(a2) =1 (2) + 90 = (/ + p)(2), and
(a)(.42) = af(A7) = af{z) = (al)(2).

forall T G50(,C)andailzG . Thus/ +gat G771 ( ,/It)so(d’
Hence, 77 ( ,/it)s°(dC) is a subspace of 77 ( ,/it). Next, we will show that
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'H'2(Cd, ") 5°D,C) is closed. Let (/,,) be a sequence in *HL2(Cd, pt)s°®(d'C) which is
convergent to / in UL2(Cd5Pt). Then by Theorem 3.8 we have that,

I1fn(z) - f{z) R< efzgl2i]fn- MM2-»0 as ->00

for all 2 6 € . Therefore fn(z) —f(z) for all 2 G CL Let 4 G SO(d, C). For any
2GCL

(&) Un /L4

= ligyfn(2)

= /(2 )
Hence, / G "HL2(CL £if)s°(ckeb  This implies that "HL2(Cd," ) so(<Q ig a closed
subspace of HL2(<td, Pt). 0

Notation. Define H(fC)ewen to be the space of all complex-even holomorphic func-
tions on C, i.e.,

H(cren= {9GH(C) | (-2)= (2)forall2GC}
Form now on. we fix the dimension d > 2

Theorem 4.5, 77ie map (x H(Cd)s®(dt) " %(<Eyven defined by
<Kf)(x) = f(x,0,... ,0)

Jor all f GH(Cd)so(d,c* and all X6 C, is a linear isomorphism whose inverse is
given by

j{0)z) = 9(\Zm )
for all g GH{C)awen and all - GeL
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Note that since 2 h>sjz is a double-valued function, we have to make a choice
of the branch we use. However, this Is irrelevant in our situation because we are
interested in complex-even function. We may and will choose the branch with a
larger argument.

Proof. First, we will show that 0 is well-defined. Let / G PL(C{l)so{d'D). It is clear
that 0(/) G PL(C). Moreover, for any Xc C,

where A = diag(—1,—1,1,1,...,1). Thus 0 is well-defined. Next, we will show
that 0 is a linear map. Let .. .. GPL(Cd)so<d,c1and a GC. Then /1+ /2 afi G
7{(Cd)sa(d’). For any XG C, we have
01+ = (M+13(*0,. .0
= f1(x,0,... .0) + [2(x,0......0)
= o ()N +
and
0(tt/i)(x) = (afi)(x,0.....0)
afi(x, 0,... ,0)
= a(f{f])(x).

So O(/i +/2) = 0(/i) + 0(02) and 0(o/i) = a0(/i). Hence, 0 is linear map.
Define 0; : THCr" A (Cd)5°(Q by

1Qg)iz) = 9 (y (ht))
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for all s G U{C)even and all 2 G cd. Then for each g G (C)even. we have
Xp(g) G H(Cd) and

(0)(A) = g[yl(Az.AZ) )
9 (y{z.1))
Toe)z)

for all A G SO(d, C) and . G cd. Thus Ip is well-defined. To show that X is a
linear map, let 91,52 £ H(C)aen and 0 Gc. Then gi + s2, %si G 'H(C)even. For
any zecd,

1+ 92)(z) = (5+52) (y (7))

= (V(ZA) ) + 92 (\/(*,Z) )

= 1p{9)(2) + s:H2)
and

1Qpi)(z)= (Pgi) (VI(z.7))
091 (V(z'2))
Py(gi}z).
Thus Ips1 +52) = ‘051 + 52) and ip{Ogi) = Oip(g\). Hence, 4pis a linear map.
Claim that (po lp—idWceerc and 'po (= iIdWQ)S (). To prove the claim, let
5 G H{C)even. Then for all X G,
(poip(g)(x) = (p{ip{g)Kx)

Ip(@)(x,0,..., 0)
= 5(\( (x,0,...,0),(x,0,...,0)))

= 90



20

50 o(Qb- id*(Ceen. Let / Gn(Cd)so(dc). Then for any Xora

PO(N)()(x) = TE)K
> (V(x, m)
/ 1,0)
- [(x), by Lemma 28,

Hence, i 0<E()[Kd= /|RL By Lemma 41, <) = /. S0ir = idWQISOKS)
Ul

Corollary 4.6. For each / G %(Cd)s *%) and each r G c. inye (,C),
then / (X) = 1(y).

Proof. Let / G7i(Cd)so*'c)and r Ge. By Theorem 45, there exists a function
g Gn{C)even Such that

[(z) =g (yl(z,2)) forall2G¢€ .

Hence, for all X,y 6 ,.(,C),
[0 = gyl ) = 9 (V(Fy)) =Hy)

Denote by 84 the Borel <algebra in Cdand by B the Borel (7-algebra in ¢. Define
< (Cd,Bd1iat) —(C. B) to be the branch of yj(z, z) with a larger argument. For
each € e B, define

AE) = to(*-I{E)).

Then Ais a measure on (C, B) and for any measurable function g,

/ gd\ = / go®duy.
JE JoO-(E)
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Notation. We write
ULAC, X)een =n{C)aen 12(C, A
It is easy to see that it is a closed subspace of PIL2(C. A).
Theorem 4.7. PLL{Cd./at)SO( 0 and'HL2(c, X)een are unitarily equivalent.
Proof. From Theorem 45 we have that the function
n{cyyn->' )

I a linear isomorphism. We consider the restriction of 'ipto the space "HL2(c, Ajeven.
Let G Qﬂ'ﬂ’land [ea{) s°(d’Q be such that / = Ip(g). Thus

[gar = [, BoS( 2Nt

2 1o \/(TT))Jth(')er
= [ () b
. JHz)tg) oo

Sowe have, 1 (0) = Il/lloov,)- Hence. / G7iL2{CAd Y
0 G PLL2(C, X)even. This shows that I is a unitary map from TLL2{C, xywen onto

H L 2{Cd,Ht)so{d’C). [
Theorem 4.8. The set {x2} 0 forms an orthogonal basis for HL2(C.X)even.
Proof. Foreach GN {0}, define § . C —=>C by

on(x) =xn  forall xGC.

It is clear that gn G . Claim that {g } 0is an orthogonal subset of
'HL2{C,X)even. To prove the claim, let a be a positive real number. Define
DIr={.G |1 <aforallj=1..d} and
Dh:= {x6C x<a}l
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Next, let
Ma{, k) = [ x2xke~x\(7Tt)~l dx
\] J e2iBU-k)r2j+2k+le-r*/t(Irtyl dr d9g
It follows that
() Maj,k) = 0ifJr k
(i) Ma(k,k) = t2K(2K)\ as a =00

In other words,
J x2x & dijLi(z) = Ski2k(2k)\.
Foranym, GN {0},

J{dzz (z,2)nHt(z) 2
= J {2\ + oot 2Dm {2\ H——harfnetfz) dz

( E 7 NE%—

Jl+ -+jd=rn / \feH —\-kd-n
AN ' %
JiH--Trid=m ﬁH—ﬁﬁd:
= 00
AE-Tven ik Tie=, I

Thus it follows from (i) that

-0 = ifm +
J[Cgm HdX =0, ifmzt .
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If =m, we have
[ On2adx=" *2  Ma(ki,k1)---Ma(kd,kd)
fH--thd=
= t2a (2/ci)! ---t2d(2kd)\
folH—hkd=
=th v (/o) ---(2kd)\

Thus forany 6 N {0},

199ll(CA) = & ﬁHﬁW‘ (2% )1 oo (2% (41)
Hence, {gVijLo is an orthogonal subset of ‘HL2{c. A)asg'. Next, we will show
that {g } LOis an orthogonal basis of "HL2(C, AJCE". Let € Ti(C)even. Then

g(x) = = 0 for each X € c, where an € ¢ forall GN {0} But
g(x) = ( ), s0 an —0 for each odd positive integer . Thus

E
n=
g
Since this power series converges uniformly on the set o a, we have

O{\/{z,2))2M z) dz
/Jooﬂazn( " 1P a2z, mlita) dz

=] EE @By oo

‘Emﬁm Ef Ef 2

EE«« E E a 7)) (ty 2

D wnp x1 Ma(kiki)-“ Ma(kd ko
— AlH---hkd=n
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Next, using the monotone convergence theorem, we have

Jo fedx = J g $(c)i2fitlz) o
=Jim J \g{V(z-2))\20t(z) dz
= Jim Y 1°2n)2 Y MAh, Al)"'MAh, h)

=0 Al e i—

= 1522 v 2K eee((2(2

n=0 fcH----- hkci—n

Y (M 220 Y (2R e (2ki)\).
n=0 foxH—\-kj=n ‘
Therefore, iIf is square-integrable with respect to A then

Yooz X1 @A) ---(2kd) = \glzd\<oo.

=0 kl-~ fkd=n
Define a sequence (F,1) to be

Fn(x) : =Y a'mX2m

m=0
for any X £ ¢. Then (Fn) is a Cauchy sequence in L2{c. A). To see this, notice
that, for >,

Fn —Fnjiaca | IFm- Fnl2d)
i Y imen ke

= Y 29272 (2Ag)! ---(2kd\ =0 as , —>oc.

fc=+1 fctH  her=fe
Thus (Fn) converges in F2(C. A to some function h. and hence it has a subsequence

which converges pointwise almost everywhere to h . But (Frl) converges pointwise
to ¢, so we have that h = g ae[A], Therefore h =g in L2(C, A). so (Fn) converges
to g in L2C.A). Thus g £ spanf( | £ N}. This show that {a2'}"=0 forms an
orthogonal basis for HL2{c, A). 0
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Corollary 4.9. The following set
pij C

(12'E*+.. 4% = (2%0)1---(2% )12 ),,=0°
forms an orthonormal basis for PLL2(C, xy\e".
Proof. This follows from Theorem 48 and identity (4.1). I

Corollary 4.10. The following set

r

(11 |
[ 77 =, (oo o[ T J =0
forms an orthonormal besis for 27L2(CH. §it)s°(deK

Proof. This follows from Theorem 4.7 and Corollary 4.9. I

It is easy to see that a closed subspace of a reproducing kernel Hilbert space is
also a reproducing kernel Hilbert space. Thus 'HL2(Cy has a reproducing
kernel.

Corollary 4.11. The reproaucing kemel for the space PLL2(E /i1)so ) 1= QIven

) (o)
N - A P G ¥
A} fbyZ’ T+, OW 'mmtime
Hence we have the pointwise bound
- > ) |
S0 TN

for any F GPLL{cd pt)a<dc>

Proof. This follows from Theorem 3.3 and Corollary 4.10 m
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