ADSORPTION KINETICS OF AN ION-EXCHANGE COLUMN

Ms. Anchale Tresattayawed

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2000

ISBN 974-334-116-1

Thesis Title: Adsorption Kinetics of an Ion-Exchange Column

By : Ms. Anchale Tresattayawed

Program : Petrochemical Technology

Thesis Advisors: Prof. James O. Wilkes

Dr. Pramoch Rangsunvigit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

(Prof. Somchai Osuwan)

Thesis Committee:

James O, Wilkes

(Prof. James O. Wilkes)

(Dr. Pramoch Rangsunvigit)

(Dr. Kitipat Siemanond)

Kitipat Siemanand

บทคัดย่อ

นางสาวอัญจารี ตรีสัตยาเวทย์: กลใกการดูคซับของการแลกเปลี่ยนอิออนในคอลัมน์ (Adsorption Kinetics of an Ion Exchange Column) อ. ที่ปรึกษา : ศ. เจมส์ โอ วิลค์ และ คร. ปราโมช รังสรรค์วิจิตร : 62 หน้า ISBN 974-334-116-1

การวิจัยนี้ศึกษากลไกการคูคซับของแคลเซียมไอออนและแมกนีเซียมไอออนจากสาร ละลายใอออนเชิงเคี่ยวและใอออนเชิงผสมต่อไฮโครเจนไอออนบนเรซินที่มีประจุบวก(Dowex50-8x) การศึกษาได้ทำในคอลัมน์แบบฟลูอิดไดซ์เบคที่อุณหภูมิห้อง ความสามารถในการคูดซับของเร ผลการทดลองพบว่าความสามารถในการดูดซับของเรซิน ซินหาจากการทคลองแบบกะ(batch) ประมาณ 1.13 มิลลิอิควิวาเลนท์ต่อมิลลิลิตร นอกจากนี้ได้ตรวจสอบลักษณะการใหลของของเหลว ในคอลัมน์โดยการทคลองแบบไม่มีการคูดซับในคอลัมน์ ผลการทคลองพบว่าลักษณะการไหลของ ของเหลวในคอลัมน์เป็นแบบฟลูอิคไคซ์เบคที่สมบูรณ์ จากผลการทดลองของการดูดซับของ ไอออนเชิงเคี๋ยวพบว่าอัตราการแลกเปลี่ยนระหว่างแคลเซียมไอออนและไฮโครเจนไอออนบนเรซิน สูงกว่าอัตราการแลกเปลี่ยนระหว่างแมกนีเซียมไอออนและไฮโครเจนไอออน ใอออนเชิงผสมซึ่งมีอัตราส่วนของความเข้มข้นเริ่มต้นเท่ากับ 1:1 อัตราการแลกเปลี่ยนระหว่างแคล ้เซียมใอออนและใฮโครเจนใอออนบนเรซินก็ยังสูงกว่ากว่าอัตราการแลกเปลี่ยนระหว่างแมกนีเซียม ใอออนและ ไฮโครเจนไอออน ลักษณะการคูคซับที่ซับซ้อนของระบบปฏิบัติการแบบฟลูอิคไคซ์ แบบจำลองถูกพัฒนาขึ้นโคยมีสมตติฐานที่ว่า เบดในคอลัมน์สามารถอธิบายได้โดยแบบจำลอง ระบบปฏิบัติการสามารถอธิบายได้จาก CSTR PFR และ ระยะเวลาของการตอบสนองของ pH อิเลค โทรค

ABSTRACT

4171003063: PETROCHEMICAL TECHNOLOGY PROGRAM

KEYWORD: Ion exchange/Cation exchanger/Fluidized-bed/Kinetics

Ms. Anchale Tresattayawed: Adsorption Kinetics of an

Ion-Exchange Column.

Thesis Advisors: Prof. James O. Wilkes and Dr. Pramoch

Rangsunvigit, 62 pp, ISBN 974-334-116-1.

The adsorption kinetics of Ca²⁺ and Mg²⁺ from single-ion and mixed-ion solutions on a strong-acid cation resin (Dowex50-X8) was investigated. The process was carried out in the fluidized-bed column at In the beginning, total adsorption capacities were room temperature. determined using batch experiments. The results showed that this resin had the total adsorption capacity about 1.13 meq/ml. A no adsorption test was also carried out to examine the characteristics of the flow in the column. It was found that this system exhibits a good fluidized-bed pattern. The results of the single ion adsorption tests indicated that the exchange rate of Ca²⁺ for H⁺ on the resin was higher than that of Mg²⁺. For the mixed-ion system with a Ca²⁺ and Mg²⁺ initial concentration ratio of 1: 1, the exchange rate of Ca²⁺ for H⁺ on the resin was also higher than that of Mg²⁺. The complicated adsorption behavior of the fluidized-bed operation can be explained using a simple model. The model was developed based on the assumption that the operation can be represented with a mixed flow reactor, a plug flow reactor and the response time of the pH electrode.

ACKNOWLEDGEMENTS

I would like to gratefully give special thanks to my advisor, Professor James O. Wilkes for his constructive criticism and valuable suggestions. I am also deeply indebted to my co-advisors, Dr. Pramoch Rangsunvigit for his intensive suggestions, valuable guidance and vital help throughout this research work.

I greatly appreciate all the professors who have tendered invaluable knowledge to me at the Petroleum and Petrochemical College. Chulalongkorn University.

I wish to express my thanks to all of my friends and to the college staff who willingly gave me warm support and encouragement and to the Petroleum Authority of Thailand for financial support during the period of the study.

Finally, I am deeply indebted to my family for my love, understanding, encouragement, and for being a constant source of inspiration.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	V
	Table of Contents	vi
	List of Tables	ix
	List of Figures	X
CHAPTER		
I	INTRODUCTION	1
II	BACKGROUND AND LITERATURE SURVEY	3
	2.1 Ion-Exchange Equilibrium and Kinetics	3
	2.1.1 Ion-Exchange Equilibrium	3
	2.1.2 Ion-Exchange Kinetics	4
	2.2 Modes of Operation	6
	2.2.1 Batch Operation	6
	2.2.2 Fixed-Bed Operation	6
	2.2.3 Fluidized-Bed Operation	7
	2.3 Model Development	9
	2.3.1 A Model for the Response Time of a pH	
	Electrode	9
	2.3.2 A Model for the Batch Operation with	
	an Adsorption	10

CHAPTER	PA	AGE
	2.3.3 A Model for a Fluidized-Bed Operation	
	without an Adsorption	13
	2.3.4 A Model for a Fluidized-Bed Operation	
	with an Adsorption	14
	2.3.5 Mathematical Procedure	16
Ш	EXPERIMENTAL SECTION	19
	3.1 Equipment Setup	19
	3.2 Experimental Procedure	20
	3.2.1 Resin Preparation	20
	3.2.2 Ion Exchange Experiment	20
	3.2.2.1 pH Calibration	20
	3.2.2.2 Batch Experiment	21
	3.2.2.3 Continuous Flow Experiment	22
IV	RESULTS AND DISCUSSION	23
	4.1 Response Time Experiment	23
	4.2 Batch Operation	24
	4.3 No Adsorption in Fluidized-Bed Ion-Exchange Column	26
	4.4 Adsorption in Fluidized-Bed Exchange Column	27
V	CONCLUSIONS AND RECOMMENDATION	41
	5.1 Conclusions	41
	5.2 Recommendation	42
	REFERENCES	43

CHAPTER	PAGE
APPENDICES	44
CURRICULUM VITAE	62

LIST OF TABLES

TABLE		PAGE	
4.1	The effect of flow rate on the response time constant	24	
4.2	Model parameters in the batch operation with different solutions	25	
4.3	The experimental conditions with adsorption in the fluidized		
	-bed column	27	
4.4	Summary of the rate and equilibrium constants in the fluidized		
	-bed operation	28	
A	Bock setting of Labtech Notebook	44	
B.1	The analysis of response time experiment in batch operation	45	
B.2	The analysis of response time experiment in fluidized-bed		
	column with $v = 1.67 \text{ ml/s}$	46	
B.3	The analysis of response time experiment in fluidized-bed		
	column with $v = 2.17 \text{ ml/s}$	47	
B.3	The analysis of response time experiment in fluidized-bed		
	column with $v = 2.50$ ml/s	48	
C.1	Modeling of the batch adsorption rates for Ca ²⁺	49	
C.2	Modeling of the batch adsorption rates for Mg ²⁺	50	
C.3	Modeling of the batch adsorption rates for Na ⁺	51	
C.4	Modeling of the batch adsorption rates for mixed-ion of Ca ²⁺		
	and Mg^{2+}	52	
D	Modeling of the no adsorption operation	53	
E.1	Modeling of the continuous adsorption rates for Ca ²⁺	54	
E.2	Modeling of the continuous adsorption rates for Mg ²⁺	56	
E.3	Modeling of the continuous adsorption rates for Na ⁺	58	
E.4	Modeling of the continuous adsorption rates for the mixed-ion of Ca ²⁺ and Mg ²⁺	f 60	

LIST OF FIGURES

FIGURE		PAGE
2.1	Representation of the response time experiment	9
2.2	Notation for the diffusion in the resin particle	10
2.3	Representation of ion-exchange column without adsorption	13
2.4	Representation of ion-exchange column with adsorption	14
2.5	A diagram of the numerical method	18
3.1	Schematic of the continuous operation	20
3.2	Experimental setup for batch operation	21
4.1	The comparison of the experimental and modeled response	
	times by measuring the hydrogen concentration in a batch	
	system with mixing rate of 750 rpm	30
4.2	The comparison of the experimental and modeled response	
	times by measuring the hydrogen concentration in the	
	fluidized-bed operation with flow rate 1.67 ml/s	30
4.3	The comparison of the experimental and modeled response	
	times by measuring the hydrogen concentration in the	
	fluidized-bed operation with flow rate 2.17 ml/s	31
4.4	The comparison of the experimental and modeled response	
	times by measuring the hydrogen concentration in the	
	fluidized-bed operation with flow rate 2.5 ml/s	31
4.5	The concentration of desorbed hydrogen ions for different	
	cationic salts with the total initial concentration 0.2 N	32
4.6	The concentration of desorped hydrogen ions for mixed-ion	
	solution of Ca ²⁺ and Mg ²⁺ with total initial concentration 0.2 N	32

FIGURE	
4.7 The cation adsorbed on the $resin(q)$ as a function of tin	ne for
various cationic salts	33
4.8 The comparison of the experimental and theoretical ba	tch
adsorption rates for Ca ²⁺	33
4.9 The comparison of the experimental and theoretical ba	tch
adsorption rates for Mg ²⁺	34
4.10 The comparison of the experimental and theoretical ba	tch
adsorption rates for Na ⁺	34
4.11 The comparison of the experimental and theoretical bar	tch
adsorption rates for mixed-ion of Ca ²⁺ and Mg ²⁺	35
4.12 The comparison of the experimental and theoretical bar	tch
adsorption rates for Ca ²⁺ in mixed-ion solution	35
4.13 The comparison of the experimental and theoretical bar	tch
adsorption rates for Mg ²⁺ in mixed-ion solution	36
4.14 The comperison of no adsorption experiment and mode	el
with one CSTR and one PFR in series	36
4.15 The comperison of no adsorption experiment and mode	el
with two CSTRs and one PFR in series	37
4.16 The comperison of no adsorption experiment and mode	el
with three CSTRs and one PFR in series	37
4.17 The comparison of the experimental and theoretical va	lues
of the hydrogen concentration leaving the PFR in an	
adsorption operation with CaCl ₂	38
4.18 The comparison of the experimental and theoretical val	lues
of the hydrogen concentration leaving the PFR in an	
adsorption operation with MgCl ₂	38

FIGURE		PAGE
4.19	The comparison of the experimental and theoretical values	
	of the hydrogen concentration leaving the PFR in an	
	adsorption operation with NaCl	39
4.20	The comparison of the experimental and theoretical values	
	of the hydrogen concentration leaving the PFR in an	
	adsorption operation with mixed-ion solution of Ca^{2^+} and Mg^{2^+}	39
4.21	The comparison of the experimental and theoretical values	
	of the hydrogen concentration leaving the PFR in an	
	adsorption operation with Ca ²⁺ in mixed-ion solution	40
4.22	The comparison of the experimental and theoretical values	
	of the hydrogen concentration leaving the PFR in an	
	adsorption operation with Mg ²⁺ in mixed-ion solution	40