Chapter 111

ERRORS IN' SYSTEM IDENTIFICATION

3.1 Introduction

There are many possible error sources5 in practical experimental
process for the determination of the impulse response of a linear system.
The block diagram of a practical experimental process is illustrated in
Fig. 6.

( process with
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Fig. 6 Anpractical experimental process

For the discrete cross-correlation technique described in the
previous chapter, the errors may be conveniently grouped into two parts,
these depend on whether they are of systematic or random origin1”.

3.1.1 Systematic error

The sources of systematic error are summarised as follows:
(a) the autocorrelation function of the b.m.l.s. input signal;
(b) the number of the sampling points in the output measurement which
depends on the time derivatives of the system impulse response;
(c) the d.c. bias in the b.m.l.s. input signal;
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(d) the input and the output transducers.

3.1.2 Random errors

Random errors are due to uncontrollable fluctuations in the system
and test-equipment environments. There are two cases of random errors
to be considered. These errors are distinguished by their power spectrum
relative to the system frequency response and are summarised as follows:
(a) the random noise whose power spectrum is uniform throughout the band-
width of the system frequency response;
(b) the drift which is occurred in the output signal is the low-order
polynomial of the time t with unknown coefficients.

3.2 Technique for Error Reduction

The error analysesi*>15 are introduced that the systematic errors
can be made suitably small by appropriately choosing the b.m.l.s. length
N and time-bit interval At The output measurement should be sampled
after applying the b.m.ls. input signal at least one period which
should be at least five times the dominant time constant of the system
impulse response.

The autocorrelation function of the b.m.ls. causes the errors
due to the derivative terms of the impulse response and the d.c. offset
in the autocorrelation function. This d.c. offset is inversely propor-
tional to N, but the mean square errors due to wide-band noisel4 are
proportional to N. Thus, the error due to the d.c. offset in the auto-
correlation function cannot be made suitably small by choosing the
large value of N. Acorrection to this error will be described in the
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next section. The methods of minimising the other errors are also
discussed in Section 3.4 and Section 3.5.

3.3 Error due to D.c. Offset in Autocorrelation Function

The d.c. offset in the autocorrelation function of the b.m.Ls.
IS the term -a2/N in Eqns. (6) and (11). This causes the error expres-
sion § AtpEIgAL) In Eqn. (35) and the error expressionnNAE[(lé 25 90At
1A in Eqn. (40). The method for the determination of the impulse
response when the d.c. offset in the autocorrelation function is reduced
IS derived.

Let Abe the system steady-state gain and defined as
A=V g(s)ds (44)

For the discrete method, the system steady-state gain can be
written in the form

A= AtJEQ(jAY) (45)

To evaluate the error expression { AtJZ_OTg(jAt) in Egn. (35),
all derivative terms of the impulse response are first neglected. Thus,
Egn. (35) becomes

Oxy(iAt) = --*+1-Atg(iAt)-] A for i =0
= ———Atg(iAt)-- A otherwise (46)

Applying Trapezoidal rule to Eqns. (44) and (45), and the impulse
response decays to zero within time period NAt we obtain
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A= Atig(0)+22g(jAD)] (47)

Taking the summation over one period on both sides of Eqn. (46),
We have

j:“E”oxy(jAt) = 20N A tfig (0)+ g (jA 1)]- 20N

2

A (48)

Zip

This is the error due to the d.c. offset in the autocorrelation
function of the b.m.l.s. From Eqn. (46), the discrete impulse response
of the system can be determined as

g(iAt) = a2(N+l)AtK y (IAt)+]E Oxy(jJA)1 for 1 =0

= a2 (N+DAttOxy(iAt)+M Oxy(jAt)l Otherwise <49)

Fo" the new method in correlation technique described in Section
2.5, the system steady-state gain is

A= gljAtAY (50)

N

In the same manner, the error due to the d.c. offset in the auto-
correlation of the b.m.l.s. can be evaluated as

I
To avoid the error due to the d.c. offset in the autocorrelation
function of the b.m.l.s., the method of shifting the autocorrelation
function will be used. ( See also Appendix B. ) Let the input, denoted
by x(t) in Fig. 7a, be a b.m.l.s. whose two states are +a and -a and

l
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(A (51)
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X(t) denote the b.m.l.s. whose two state are +a and 0 as shown in Fig. 7h.

+a
ta)  X(t) 0
-4
+a
<b) xd) o, t

Fig. 7 Atypical waveform of x(t) and the corresponding
waveform of x(t)

From Eqn. (12), the system output due to the input signal x(t) is
y(IAt+"At) = At ZIg(jAt)x(IAt4~At-jAt) (52)

The cross-correlation between the output y(t) and Lae b.m.l.s.
X(t) is

0 y(iAD) = A té g(jAt)x_(iAtjAD (53)

where 0, (IAf) is the cross-correlation between x(t) and x(t). ( See also
Appendix B. )
Thus, we have

0 (1At) &ZNV‘AtZg (JA1)6, (IAt-]JAY) (54)
where « (iAt) is the unit rectangular pulse of pulse width At.

The above equation can be rewritten, in the similar way as the
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derivation of Eqn. (24), as

Vo for i =0
= AN A[g(IAY +g: 2zj(2j+1) 9@ (IAY)] otherwise  (55)

This method may be used for the determination of the impulse res-
ponse by the new method of correlation technique described in Section 2.5.

3.4 Error due to Derivative Terms

The error due to the derivative terms of the system impulse res-
ponse occurs in the determination of the impulse response because the
discrete autocorrelation of the input signal is a rectangular pulse.

Since the sampled points of the cross-correlation function $Xy(t) obtained
by the discrete cross-correlation method or the new method of correlation
technique are uniformly spaced, the difficulty of reduction the error due
to the derivative terms can be overcome by the use of digital computer.
The method of removal the derivative terms of the impulse response is
presented below.

From Eqns. (35) and (39), we may write

gliAY) - K(iAt)-g 7“>(0) for i =0

I Ko dt)" fj $“J (»4t)  Otherwlse (%)

When the value of m= 1, and K(At) denotes the first expression
in the right hand side of Eqn. (35), then Eqn. (56) represents Eqn. (35).
When the value of m> 1, and K(gAt) denotes g, (JAt+pAl) evaluated by
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Eqns. (40), (41), (42) and (43), then Eqn. (56) represents Eqn. (39).
As a first approximation, the coefficients of the derivative terms are
negligible. The first approximate impulse response denoted by g("At)
is equivalent to K(ZAt). The series expression of the derivative terms
can be calculated from the value of the first approximate impulse res-
ponse. ( See Appendix ¢. )

Thus, for the case 2 * i <mN-3 as an example, the second appro-
ximate impulse response is

g2(mAY) = K(mAt)+0-1010417g 1(*A1)-0. 0534722{g L(i*At)+g 1 * AY)}
+0.0029514{g }(= At)+g:( AD} (57)

In general, the ntl th. approximate impulse response can be

expressed in term of the th. approximate impulse response as
o) K(0)+0.435162g (0)-0.8004541g (FA!)+0.64707569_(FAY)

-0.4067899_A1)+0.148358g (7AD-0.0233519g (*AY)  (58)
G, (M) K(AD-0.0387153g (0)+0.0715278g (2At)
0.0239583g_(PAY)-0.0118056g (2AD)+0.00251489 (2AY)  (59)
4 (AY) = K(CA+0.0010417g, (~:A1)-0.0534722(g, . At)+g, (" At) }
+0.0029514{g_( 1 At)+g (i£7A1) } (60)
gn+1 (nfr*At) = K(if :AA1)-0.0446181gn (2:-1A1)+0.0951389gn (I : At
00593759 (1 FAY)+0.0118056g, (A 1)

0.0029514g (H"A) (61)
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Gt £ AY) = Kl 1A1)-0.1220486g (5AAH)+0.3631944g (A A
03989583 (5 Al)+0.1965278; £ MA )

003871539 (-, Al (62)

This process may be repeated until the value of gn+1(£\t) is very
close to gn(iAt) for every value of i = 0,1,2,..., mN~-1. Then gn+1(EAt)
Is the good approximate value of the system impulse response.

This process can also be applied to remove the derivative terms
of the impulse response when the shifted autocorrelation function is
used

3.5 Error due to Polynomial Drift in Output®

The error due to the polynomial drift in the output signal is one
of the random errors described in Section 3.1.2.  When the polynomial
drift in the output signal is considered, the output signal can be
expressed as

y(t) = ng(S)X(t-s)ds+Zd = (63)

J=o

where d is the coefficient of the time variable of power j.

Let Abe the system steady-state gain and defined as

N-1 M-4

A= [gs)ds = Iac > > g(jatHiat) (64)

o J=0 r=0

Applying Trapezoidal rule as in Egn. (47) to Eqn. (64), we obtain

N-1 m-}

A=atx > g(j At+-0t) ~52(0) (65)

d=° r=0
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A technique for determining the parameters d. of the polynomial
drift terms hinges on the fact that the integral of a b.m.l.s. taken over
one complete period is known, aAt. The integral of the measured output
signal over one complete period can be expressed as

Pou> ¢ - ()0 Ix()dt+2: 111 djtht

- AaAtdOT+HE dj[ ™ lik h ] (66)
where 1 =0,1,2, .
For a b.m.l.s., T =NAt thus Eqn. (66) becomes
B By aadtY2 pg < pansdp
i1 (67,

It can be seen that, for i =0,1,2,.....k, Egqn. (67) provides k+l
simultaneous linear equations. If g is the highest order of the polyno-
mial drift to be eliminated, the parameters d., where j =0,1,2,....,q,
can be solved from g+l simultaneous equations obtained by substituting
1 =0,1,2,....,q into Egn. (67). The value of q may be chosen to meet
the accuracy in the estimation of the impulse response.

Consider the case when g = 2 for an example of a low-order poly-
nomial dg+d1t+d2t2. Thus, for i =0,1,2, we have

hkffhOAtUMNAL) . NAt(>0)+® fel 2(At)2dl
+ 01 13(41) 3d2 (68)
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] 2N m- l 2_ 2
1 o e At+r+1/2 £y im NAt(Aa+d )+(2N+1) (N+1) (At)2d
m j=N+y r-o 2
+1) 3 3
+(21\'1) 3(N+1) (at)3d, (69)
L ¥ r+1/2 Aa (2N+2) 2 - (N+2) 2 5
= J%z =, v (GAt——=At) = NAt(+do)+ 5 (at)4d

(2H+2)3-0,+2)3(A0 3z (70)

If the value of N, At and the summations in the left hand side of
Eqns. (esy, (69) and (70) are known, the values of "+d0, di, and d2
can be evaluated by solving these three simultaneous equations. The new
output signal can be obtained by subtracting the output polynomial drift
from Eqn, (63) as

y(£) = fog(s)‘f Ctes)ds-2 (71)

The cross-correlation between the input signal and the above output
signal is

. mN-1 A
OXy(IAH"ﬁAt) I;At = g(Aot)8_ (1At+£At-lA )-A—a-lzx(JAt)
J’ J=°
. 2
- aAtJZ-%) g(ac)g (iAt+I% vy -A8 (72)

From Eqns. (36), (38), and (64), then Egn. (72) can be rewritten as

: 2 (N+1 L 2 Ag2 -
¢xy(1/\t+r%At) - 'a—(-———mI\I)At[%ge( =At)- 2g (0)]——N ﬁ"\Q fOI‘ | = 0
a2 -
(NH)AtZ & (1At+—At)—é§- _é_é_lz for i EQ (73)
mN r=0

where gh(IAt+"At) is previously defined and expressed by Egn. (39).
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Thus5 we have

g (0) = 55752%752[¢xy(°>+é§?+%§§] (74)

ge(iAt) = gizﬁg%jzz[@Xy(ﬁﬂt)-¢xy(g;}At)] for w10 vy m-1 (75)

g, (At) = ;zzﬁf%YZE[¢xy(At)—¢Xy(9;}At)]+ége(0) (76)
ge(iAt+$At) = a2(Nzﬁ)At[@Xy(iAR+£At)—¢xy(iAt+!£}At)]

+g, (IA-AAY) otherwise (77)

From the set of the above equations, it is seen that the error
due to the system steady-state gain, A, is included in the values of
ge(iAt+%At) when £ = 0 and'i = 0,1,2,...., N-1. Since the system impulse
response decays to zero within the time period NAt and the coefficients
of the derivative terms are first neglected, then the first approximate
impulse response s

Qi(IAtHRAL) = g, (IAttpAL)-g {(N-DAt=AL - for | =0, 1 =0,1,..N-|
- Be(ist+ist) Otherwise (78)

Now applying the iteration method for determination of the impulse
response, the step by step is described as follows
1 St. Step Calculate the value of A fror the previous approximate
impulse response by using Eqn. (65).
2nd. Step Calculate g,(s0\t) which is equivalent to K(GAt) in Egn. (56)
by using Eqns. (74), (75), (76), and (77).
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3 rd. Step Remove the error due to the derivative terms of the impulse
response by using Eqns. (58), (59), (60), (61), and (62).

4 th. Step Compare the new approximate values of the impulse response
with the former approximate values point by point. If one
of the differences between the corresponding points is not
in the allowed range, the 1 St. to the 3 rd. step must be
repeated again,

It is suitable to use digital computer to estimate the discrete
impulse response from the discrete cross-correlation function by apply-
ing this iteration process to reduce the errors described in the pre-
vious sections.

This process is applied to the ordinary discrete cross-correlation
method when fi = 1, and is applied to the new method of correlation tech-
nique when m> 1,

When the systematic error due to the d.c. bias in the b.m.ls.
input signal is considered, the steady-state output is

T L &

y(t) = Ig(s)x(t—s)ds+cfg(s)ds+£ djtj
o =P

o

= (;(s)x(t—s)ds+cA+£ dj ¢d (79)
o J=e

where ¢ is the d.c. bias in the b.m.l.s. input signal and Ais the system
steady-state gain.

It can be seen that the value of cAis eliminated at the same time
as do.
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