CHAPTER III

SEMILATTICE CONGRUENCES AND FACTORIZABLE INVERSE SEMIGROUPS

Let S be a factorizable inverse semigroup. It is shown in this chapter that every congruence on E(S) can be extended to a semilattice congruence on S if and only if S is a semilattice of groups. Moreover, it is also shown that if any such extension of a given congruence on E(S) exists, then it is unique.

The following theorem which has been proved by Chen and Hsieh in [3] shows various properties of a factorizable inverse semigroup.

- 3.1 Theorem [3]. Let S be an inverse semigroup. If S is factorizable as GE, then the following hold:
 - (1) S = EG.
 - (2) S has an identity 1 which is the identity of G.
 - (3) G is the group of units of S.
 - (4) For any g, h \in G and e, f \in E(S), ge = hf implies e = f.
 - (5) E = E(S), the set of all idempotents of S.

A homomorphic image of a semilattice is clearly a semilattice.

Therefore, every congruence on a semilattice S is a semilattice congruence on S.

Let an inverse semigroup S be factorizable as GE(S). Then every congruence on E(S) is a semilattice congruence on E(S). A following interesting problem is raised to be solved: Can every congruence on E(S) be extended to a semilattice congruence on S?

The answer is "No" as shown in the following example :

Example. Let X = {a, b}, and I_X be the symmetric inverse semigroup on the set X. Let 0 and 1 be the zero and the identity of I_X; respectively, and let α_1 , α_2 , α_3 , α_4 , α_5 be one-to-one partial transformations on X defined by $\Delta\alpha_1 = \nabla\alpha_1 = \{a\}$, $\Delta\alpha_2 = \nabla\alpha_2 = \{b\}$, $\Delta\alpha_3 = \{a\}$, $\nabla\alpha_3 = \{b\}$, $\Delta\alpha_4 = \{b\}$, $\nabla\alpha_4 = \{a\}$ and $\Delta\alpha_5 = \nabla\alpha_5 = \{a, b\}$ such that $\alpha\alpha_5 = b$, $b\alpha_5 = a$. Then I_X = {0, 1, α_1 , α_2 , α_3 , α_4 , α_5 } and the multiplicative table is as follows:

	0	1	α_1	α_2	α ₃	α_4	α ₅
0	0	0	0	0	0	0	0
1	0	1	α_1	α_2	^α 3	$^{\alpha}$ 4	α ₅
α1	0	$^{\alpha}$ 1	α_1	0	^α 3	0	α3
α2	0	α_2	0	α_2	0	$^{\alpha}4$	α_4
α3	0	^α 3	0	α ₃	0	α_1	α1
α ₄	0	α_{4}	α_{4}	0	α_2	0	α ₂
α ₅	0	α ₅	$^{\alpha}$ 4	α ₃	$^{\alpha}$ 2	$^{\alpha}$ 1	1

The permutation group on X, G_X is $\{1, \alpha_5\}$ and $E(I_X) = \{0, 1, \alpha_1, \alpha_2\}$. Since X is finite, I_X is factorizable [3, Corollary of Theorem 3.1] and so by Theorem 3.1, $I_X = G_X E(I_X)$. Let $i_{E(I_X)}$ be the identity congruence on $E(I_X)$. Suppose $i_{E(I_X)}$ can be extended to a semilattice congruence ρ on I_X . Because $\alpha_4 \alpha_3 = \alpha_2$, $\alpha_3 \alpha_4 = \alpha_1$ and ρ is a semilattice congruence on I_X , it follows that $\alpha_2 \rho = (\alpha_4 \alpha_3) \rho = (\alpha_3 \alpha_4) \rho = \alpha_1 \rho$. But $\alpha_1, \alpha_2 \in E(I_X)$.

Then $(\alpha_1, \alpha_2) \in \rho \cap (E(I_X) \times E(I_X))$. Since $\rho \cap (E(I_X) \times E(I_X)) = i_{E(I_X)}$, $\alpha_1 = \alpha_2$ which is a contradiction. #

The first theorem of this chapter shows necessary and sufficient conditions of a factorizable inverse semigroup S such that every congruence on E(S) can be extended to a semilattice congruence on S. The following lemmasure required:

3.2 <u>Lemma</u>. Let ρ be a semilattice congruence on a factorizable semigroup S which factors as GE(S). Then for any $g \in G$, $e \in E(S)$, $(ge)\rho = e\rho = (eg)\rho$. Hence, $S/\rho = \{e\rho/e \in E(S)\}$.

<u>Proof</u>: Let $g \in G$ and $e \in E(S)$. Since ρ is a semilattice congruence on S and G is a subgroup of S, G is contained in a single ρ -class of S. Then $G \subseteq f \rho$ where f is the identity of G. By Lemma 1.1, f is a left identity of S, so f e = e. Therefore $(g e) \rho = (g \rho) (e \rho) = (f \rho) (e \rho) = (f e) \rho = e \rho$ and $(e g) \rho = e \rho g \rho = g \rho e \rho = (g e) \rho = e \rho$. #

Let an inverse semigroup S be factorizable as GE(S). By Theorem 3.1(4), for each $x \in S$, there exists a unique $e \in E(S)$ such that x = ge for some $g \in G$, such e will be denoted by e_x . Then the map $x \to e_x$ ($x \in S$) is a map from S onto E(S) and $e_f = f$ for all $f \in E(S)$.

3.3 <u>Lemma</u>. Let S be a factorizable inverse semigroup as GE(S). If Ge = eG for all $e \in E(S)$, then for all x, $y \in S$, $e_{xy} = e_{xy}$; in particular, $e_{x2} = e_{x}$ for all $x \in S$.

 $\underline{\text{Proof}}: \text{ Let } \mathbf{x}, \, \mathbf{y} \in S. \quad \text{Then } \mathbf{x} = \mathbf{ge}_{\mathbf{x}} \text{ and } \mathbf{y} = \mathbf{he}_{\mathbf{y}} \text{ for some}$ $\mathbf{g}, \, \mathbf{h} \in G. \quad \text{Then } \mathbf{x}\mathbf{y} = \mathbf{ge}_{\mathbf{x}}\mathbf{he}_{\mathbf{y}}. \quad \text{By assumption, } Ge_{\mathbf{x}} = \mathbf{e}_{\mathbf{x}}G, \text{ so } \mathbf{e}_{\mathbf{x}}\mathbf{h} = \mathbf{h}^{\dagger}\mathbf{e}_{\mathbf{x}}$ $\mathbf{for some } \mathbf{h}^{\dagger} \in G. \quad \text{Hence } \mathbf{x}\mathbf{y} = \mathbf{gh}^{\dagger}\mathbf{e}_{\mathbf{x}}\mathbf{e}_{\mathbf{y}} = \mathbf{gh}^{\dagger}(\mathbf{e}_{\mathbf{x}}\mathbf{e}_{\mathbf{y}}). \quad \text{But } \mathbf{gh}^{\dagger} \in G \text{ and}$ $\mathbf{e}_{\mathbf{x}}\mathbf{e}_{\mathbf{y}} \in \mathbf{E}(S). \quad \text{By Theorem 3.1(4), } \mathbf{e}_{\mathbf{x}}\mathbf{e}_{\mathbf{y}} = \mathbf{e}_{\mathbf{x}\mathbf{y}}.$

Next, let $x \in S$. From the above proof, $e_x e_x = e_{x^2}$. But $e_x \in E(S)$, so $e_x e_x = e_x$. Hence $e_{x^2} = e_x$. #

3.4 Theorem. Let S be a factorizable inverse semigroup as GE(S). Then any congruence on E(S) can be extended to a semilattice congruence on S if and only if eG = Ge for all $e \in E(S)$.

<u>Proof</u>: Assume that any semilattice congruence on E(S) can be extended to a semilattice congruence on S. To show eG = Ge for all e ∈ E(S), let e ∈ E(S). Let x ∈ Ge. Then x = ge for some g ∈ G. By Theorem 3.1(1), x = fh for some h ∈ G, f ∈ E(S). Thus ge = fh. Let $i_{E(S)}$ be the identity congruence on E(S). By assumption, there exists a semilattice congruence ρ on S such that $\rho \cap (E(S) \times E(S)) = i_{E(S)}$. By Lemma 3.2, $(ge)\rho = e\rho$ and $(fh)\rho = f\rho$. Therefore $e\rho = (ge)\rho = (fh)\rho = f\rho$. It follows that $(e, f) \in \rho \cap (E(S) \times E(S))$. But $\rho \cap (E(S) \times E(S)) = i_{E(S)}$, so e = f. Thus e = f and f is proves f is f. Thus f is f is

Conversely, assume that for any $e \in E(S)$, eG = Ge. Let ρ be a congruence on E(S). Let ρ be the relation on S defined as follows

 $\mathbf{x} \mathbf{p} \mathbf{y}$ if and only if $\mathbf{e} \mathbf{p} \mathbf{e} \mathbf{v}$.

Because ρ is an equivalence relation on E(S), it is clearly seen that $\bar{\rho}$ is an equivalence relation on S. To show $\bar{\rho}$ is compatible, let \mathbf{x} , \mathbf{y} , \mathbf{z} \in S such that $\mathbf{x}\bar{\rho}\mathbf{y}$. Then $\mathbf{e}_{\mathbf{x}}\rho\mathbf{e}_{\mathbf{y}}$. Because ρ is a congruence on E(S) and $\mathbf{e}_{\mathbf{z}}\in$ E(S), $\mathbf{e}_{\mathbf{z}}\mathbf{e}_{\mathbf{x}}\rho\mathbf{e}_{\mathbf{z}}\mathbf{e}_{\mathbf{y}}$ and $\mathbf{e}_{\mathbf{z}}\mathbf{e}_{\mathbf{z}}\rho\mathbf{e}_{\mathbf{y}}\mathbf{e}_{\mathbf{z}}$. Since $\mathbf{e}_{\mathbf{z}}\mathbf{e}_{\mathbf{y}}\mathbf{e}_{\mathbf{z}}\mathbf{e}$

Hence $\bar{\rho}$ is a congruence on S.

Because $e_f = f$ for all $f \in E(S)$, it follows that for any f, $f' \in E(S)$, $(f, f') \in \bar{\rho}$ if and only if $(f, f') = (e_f, e_f) \in \bar{\rho}$. Hence $\bar{\rho} \cap (E(S) \times E(S)) = \bar{\rho}$.

To show ρ is a semilattice congruence on S, let \mathbf{x} , $\mathbf{y} \in S$. Since S is an inverse semigroup and $\mathbf{e}_{\mathbf{x}}$, $\mathbf{e}_{\mathbf{y}} \in E(S)$, $\mathbf{e}_{\mathbf{x}} \mathbf{e}_{\mathbf{y}} = \mathbf{e}_{\mathbf{y}} \mathbf{e}_{\mathbf{x}}$. Thus, by Lemma 3.3, $\mathbf{e}_{\mathbf{x}\mathbf{y}} = \mathbf{e}_{\mathbf{x}} \mathbf{e}_{\mathbf{y}} = \mathbf{e}_{\mathbf{y}} \mathbf{e}_{\mathbf{y}} = \mathbf{e}_{\mathbf{y}} \mathbf{e}_{\mathbf{y}}$. Also, by Lemma 3.3, $\mathbf{e}_{\mathbf{x}\mathbf{y}} = \mathbf{e}_{\mathbf{x}} \mathbf{e}_{\mathbf{y}} \mathbf$

Hence the theorem is completely proved. #

3.5 <u>Corollary</u>. Let S be a factorizable inverse semigroup. If the identity congruence on E(S) can be extended to a semilattice congruence on S, then every congruence on E(S) can be extended to a semilattice congruence on S.

 $\underline{\operatorname{Prcof}}$: Let S be factorizable as $\operatorname{GE}(S)$. From the first part of the proof of Theorem 3.4, it is shown that if the identity congruence on $\operatorname{E}(S)$ can be extended to a semilattice congruence on S,

Then eG = Ge for all e \in E(S). From Theorem 3.4, If eG = Ge for all e \in E(S), then every congruence on E(S) can be extended to a semilattice congruence on S.

Therefore, the corollary is proved. #

The Green's relations $\mathcal L$ and $\mathcal R$ on any semigroup S are right compatible and left compatible; respectively. Then, if $\mathcal L=\mathcal R$ on a semigroup S, then $\mathcal R=\mathcal L=\mathcal R$ is a congruence on S.

Let S be an inverse semigroup. Then every \mathcal{L} -class of S and every \mathcal{R} -class of S contains exactly one idempotent. Then $S = \bigcup_{e \in E(S)} L_e = \bigcup_{e \in E(S)} R_e \text{ which are disjoint union. Suppose that } L_e = R_e \text{ for all } e \in E(S). \text{ Then } \mathcal{H} = \mathcal{L} = \mathcal{R} \text{ is a congruence on S, and moreover, } S = \bigcup_{e \in E(S)} H_e \text{ which is a disjoint union of groups.}$

It has been proved by Chen and Hsieh in [3] that if an inverse semigroup is factorizable as GE(S), then $L_e = Ge$ and $R_e = eG$ for all $e \in E(S)$.

Therefore, we have

3.6 Lemma. Let S be an inverse semigroup which factors as GE(S). Then \mathcal{H} is a congruence on S if and only if $H_e = Ge = eG$ for all $e \in E(S)$.

From Lemma 3.6 and Theorem 3.4, the following proposition is directly obtained:

3.7 Proposition. Let S be a factorizable inverse semigroup. Then every congruence on E(S) can be extended to a semilattice congruence on S if and only if the Green's relation $\mathcal H$ on S is a congruence on S.

Recall that a semigroup S is said to be a semilattice of groups if there exists a semilattice, Y such that $S = \bigcup_{\alpha \in Y} G_{\alpha}$ is a disjoint union, where G_{α} 's are subgroups of S, and $G_{\alpha}G_{\beta} \subseteq G_{\alpha\beta}$ for all α , $\beta \in Y$. Therefore, a semigroup S is a semilattice of groups if and only if S has a semilattice congruence ρ such that each ρ -class forms a subgroup of S.

Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} . For each $\alpha \in Y$, let e_{α} denote the identity of the group G_{α} . Because for each $\alpha \in Y$, G_{α} is a maximal subgroup of S, $G_{\alpha} = H_{e_{\alpha}}$ for all $\alpha \in Y$. Let $a, b, c \in S$ such that all b. Then there exist α , $\beta \in Y$ such that a, $b \in G_{\alpha}$ and $c \in G_{\beta}$. Thus ac, bc, ca, $cb \in G_{\alpha\beta}$ and hence $ac \not\vdash bc$ and $ca \not\vdash bc$. Therefore $ac \not\vdash bc$ is a congruence on $ac \not\vdash bc$ and $ac \not\vdash bc$ and $ac \not\vdash bc$. Therefore $ac \not\vdash bc$ is a congruence on $ac \not\vdash bc$ and $ac \not\vdash bc$ anall $ac \not\vdash bc$ and $ac \not\vdash bc$ and $ac \not\vdash bc$ and $ac \not\vdash bc$ and

We show in the next theorem that a factorizable inverse semigroup S has the following property: Every congruence on E(S) can be extended to a semilattice congruence on S if and only if S is a semilattice of groups.

3.8 <u>Theorem</u>. Let S be a factorizable inverse semigroup. Then every congruence on E(S) can be extended to a semilattice congruence on S if and only if S is a semilattice of groups.

 \underline{Proof} : Because S is a factorizable inverse semigroup S = GE(S) where G is the group of units of S.

Assume that every congruence on E(S) can be extended to a semilattice congruence on S. By Proposition 3.7, $\mathcal H$ is a congruence on S. By Lemma 3.6, $H_e = Ge = eG$ for all $e \in S$. Decause $S = e \in E(S)$ and $Ge = H_e$ for all $e \in E(S)$, every $\mathcal H$ -class of S is a subgroup of S. To show $\mathcal H$ is a semilattice congruence on S, let a E(S). Then E(S) is a subgroup of S and E(S) and E(S) incomplete E(S). Since E(S) is a subgroup of S and E(S) and E(S) is a subgroup of S and E(S) and E(S) is a semilattice on E(S). But E(S) is a semilattice of groups.

Conversely, if S is a semilattice of groups, then \mathcal{H} is a congruence on S, and hence, by Proposition 3.7, every congruence on E(S) can be extended to a semilattice congruence on S. #

Recall that in any semigroup S, the minimum semilattice congruence on S always exists and it is the intersection of all semilattice congruences on S.

3.9 <u>Proposition</u>. Let S be a factorizable inverse semigroup. If the identity congruence on E(S) can be extended to a semilattice congruence on S, then the extension is the minimum semilattice congruence on S.

<u>Proof</u>: Let S be factorizable as GE(S). Let ρ be a semilattice congruence on S which is an extension of $i_{E(S)}$, where $i_{E(S)}$ is the identity congruence on E(S). Let η be the minimum semilattice congruence on S. Then $\eta \in \rho$.

Let $(x, y) \in \rho$. Because S = GE(S), x = ge and y = hf for some $g, h \in G$, $e, f \in E(S)$. By Lemma 3.2, $x\rho = e\rho$ and $y\rho = f\rho$ and so $(e, f) \in \rho$. Because $e, f \in E(S)$ and $\rho \cap (E(S) \times E(S)) = i_{E(S)}$, $(e, f) \in i_{E(S)}$ and hence e = f. Thus $(e, f) \in \eta$. But $x\eta = e\eta$ and $y\eta = f\eta$ by Lemma 3.2. Hence $(x, y) \in \eta$.

Therefore $\eta = \rho$. #

We end this chapter by showing that for any factorizable inverse semigroup S, for any given congruence ρ on E(S), if a semi-lattice congruence on S extending ρ exists, then the extension is unique.

3.10 Theorem. Let S be a factorizable inverse semigroup as GE(S), and ρ be a congruence on E(S). If ρ can be extended to a semilattice congruence on S, then the extension is unique.

<u>Proof</u>: Let $\bar{\rho}$ and $\hat{\rho}$ be semilattice congruences on S which are extensions of ρ . To show $\bar{\rho} = \hat{\rho}$, let $(x, y) \in \bar{\rho}$. Because

S = GE(S), \mathbf{x} = ge and \mathbf{y} = hf for some g, h \in G, e, f \in E(S). By Lemma 3.2, $\mathbf{x} \bar{\mathbf{y}} = \mathbf{e} \bar{\mathbf{p}}$, $\mathbf{y} \bar{\mathbf{p}} = \mathbf{f} \bar{\mathbf{p}}$, $\mathbf{x} \hat{\mathbf{p}} = \mathbf{e} \hat{\mathbf{p}}$ and $\mathbf{y} \hat{\mathbf{p}} = \mathbf{f} \hat{\mathbf{p}}$. Then (e, f) \in $\bar{\mathbf{p}}$ since (\mathbf{x} , \mathbf{y}) \in $\bar{\mathbf{p}}$. But $\bar{\mathbf{p}} \cap$ (E(S) \mathbf{x} E(S)) = $\bar{\mathbf{p}}$, and so (e, f) \in $\bar{\mathbf{p}}$. Since $\bar{\mathbf{p}} = \hat{\mathbf{p}} \cap$ (E(S) \mathbf{x} E(S)), (e, f) \in $\hat{\mathbf{p}}$. But $\mathbf{x} \hat{\mathbf{p}} = \mathbf{e} \hat{\mathbf{p}}$ and $\mathbf{y} \hat{\mathbf{p}} = \mathbf{f} \hat{\mathbf{p}}$. Hence (\mathbf{x} , \mathbf{y}) \in $\hat{\mathbf{p}}$. Therefore $\bar{\mathbf{p}} \subseteq \hat{\mathbf{p}}$. Similarly, we can show that $\hat{\mathbf{p}} \subseteq \bar{\mathbf{p}}$. Thus, $\bar{\mathbf{p}} = \hat{\mathbf{p}}$.

Hence, the theorem is completely proved. #