CHAPTER 111

SEMILATTICE CONGRUENCES AND FACTORIZABLE INVERSE SEMIGROUPS

Let be a factorizable inverse semigroup. It is shown in
this chapter that every congruence on E( ) can be extended to a semi
lattice congruence on if and only if is a semilattice of groups.
Moreover, it is also shown that if any such extension of a given con-
gruence on E() exists, then it is unique.

The following theorem which has been proved by Chen and Hsieh
in [3] shows various properties of a factorizable inverse semigroup.

3.1 Theorem [3]. Let Dbe an inverse semigroup. If is factoriza-
ble as GE, then the following hold :

(1) = EG

(2)  has an identity 1 which is the identity of G.

(3) Gis the group of units of

(4) For any g, h0 Gande, fGE() ge=nhfimplies e = f.
(5) E = E(S), the set of all idempotents of

A homomorphic image of a semilattice is clearly a semilattice
Therefore, every congruence on a semilattice is a semilattice con-
gruence on

Let an inverse semigroup  be factorizable as GE( ). Then
every congruence on E() is a semilattice congruence on E( ). A
following interesting problem is raised to be solved  Can every
congruence en E( ) be extended to a semilattice congruence on ?



The answer is "No" as shown in the following example :

Example. Let X= {a, b}, and | be the symmetric inverse semigroup
on the set X. Let 0 and 1 be the zero and the identity of I ; res-
pectively, and let a , 021a3, A  be one-to-one partial trans-
formations on X defined by Aa = Va* = {a}, Aa2 = Va2 = {b},

M= {a}, Va3 = {b}, Aad ={b}, Va4 = {a} and A5 = Vo_ = {a, b}
such that aa® =b, ba* =a. Then 1" ={o, 1, a" 2, 3, 4»
and the multiplicative table is as follows

1 0 1 al a2 oy a4 ag
al 0 al al 0 a3 0 a3
a2 0 a, 0 a2 0 a4 o,
a3 0 a3 0 a3 0 al oy
a4 0 a4 a4 0 a2 0 a2
as 0 aS a4 a3 a2 al ]!

l — -
The permutation group on X, is {I, a"} and

E(I") = {o, 1, a ,a } Since Xis finite, 1" is factorizable
[3, Corollary of Theorem 3.1] and so by Theorem 3.1, I = GE(l ).
Let iE(I )be the identity congruence on E(ly). Suppose iE(I ) can

be extended to a semilattice congruence Pon I"C Because

a4ad = a2' adad = ai an™ pis a semilattice congruence on 17, it
follows that a2p = (4 3)p = (a"ad)p = ap. But 2£ E(IXM
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Then («1, 02>£ p (Edx) XE(IX . since p (Edx)* E(IX =1 .

a, = a, which is a contradiction. #

The first theorem of this chapter shows necessary and sufficient
conditions of a factorizable inverse semigroup  such that every con-
gruence on E( ) can be extended to a semilattice congruence on . The
following lemmaiare required

3.2 Lemma Let p be a semilattice congruence on a factorizable semi-
group  which factors as GE( ). Then for any g£ G, e £ E(S) 1

(ge)p =ep = (eg)p. Hence, slp = {eple CE ()},

Proof  Let g£ Gand e G E( ). Since p is a semilattice
congruence on and Gis a subgroup of , G is contained in a single
p-class of . Then Gc¢ fp where f is the identity of G, By Lemma 1.1,
fis a left identity of , so fe =e.  Therefore
(9e)p = (gp) (ep) = (fp)(ep)
(eg)p = epgp = gpep = (ge)p

(fe)p = ep and

ep. #

Let an inverse semigroup  be factorizable as GE( ). By
Theorem 3.1(4), for each x£ [ there exists a unique e ¢ E() such
that X = ge for some g 6 G, such e will be denoted by . Then the
map X >  (x£ ) is a map from onto E() and ef = f for all
f€ E()

3.3 Lemma. Let be a factorizable inverse semigroup as GE(S). If
Ge = eG for all ¢ G E( ), then for all X, Ys [ exey=e¢ 4  Par~
ticular, e"2 =ex for all XG
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Proof  Let X, v« s° Then X = ge® and y = he for some
9? hG G Then xy = ge*he®. By assumption, Ge = e"G, so e*h = h]
for some h" 0 G. Hence xy = gh'e"e® = gh'(e”e”). But ghl0 G and
eve 0 E()., By Theorem 3.1(4), By = by

Next, let X0 . From the above proof, exex = ex2- But

y

E( ), so exex =e . Hence er2 = ex“ #

3.4 Theorem. Let Dbe a factorizable inverse semigroup as GE( ).
Then any congruence on E( ) can be extended to a semilattice con-
gruence on if and only if eG = Ge for all e 0 E( ).

Proof  Assume that any semilattice congruence on E() can
be extended to a semilattice congruence on . To show eG = Ge for
all e0 E( ), lete0 E() Let X0 Ge. Then X = ge for some g G G,
By Theorem 3.1(1), X = fh for some h 0 G, f0 E( ). Thus ge = fh.
Let iE() be the identity congruence on E( ). By assumption, there
exists a semilattice congruence, p on  such that
pn (E() XE()) = iE()' By Lemma 3.2, (ge)p = ep and (fh)p = fp.
Therefore ep = (ge)p = (fh)p = fp. It follows that
(e, f)o p (E() XE()). Butpo (E() XE()) =1E(s)f so e =f.
Thus X = fh =eh 0 eG. This proves GeC eG. similarly, we can show
that eG C Ge. Hence eG = Ge.

Conversely, assume that for any e 0 E( ), G = Ge. Let p be
a congruence on E( ). Let p be the relation on defined as follows

xpy if and only if ByPe, -



Because p is an equivalence relation  E( ), it is clearly seen
that p is an equivalence relation on . To show p is compatible,
let X, y, z£ such that xpy. Then e*pe”. Because p is a con-
gruence on E() and ez0 E(S), ezexpezey and exezpeyez™ Since
Ge = ¢G for all e £, E( ), by Lemma 3.3, we have e ey = e,
BEy T By 7 T B and Byez = &y Hence BaxPeay and Bxz Py
Therefore zxpzy and xzpyz.

Hence p is a congruence on

Because e = f for all f£ E( ), it follows that for any f,
f'S E(), (f, f1)6 pif and only if (f, f') = (ef, ef)£ p.
Hence pn (E() XE()) =p.

To show p is a semilattice congruence on , let X, y£ .
Since is an inverse semigroup and e”, E( ), exey = eyex®
Thus, by Lemma 3.3,exy =Ry TEfx ey Also, by Lemma 3,3,
By2 = By pis reflexive on E( ), so BxyPeyx and ey2pey”  Thus
Xypyx and x2px.

Hence the theorem is completely proved. #

3.5 Corollary. Let be a factorizable inverse semigroup. If the
identity congruence on E() can be extended to a semilattice con-
gruence on , then every congruence on E() can be extended to a
semilattice congruence on

Proof  Let hbe factorizable as GE( ), From the first
part of the proof of Theorem 3.4, it is shown that if the identity
congruence on E( ) can he extended to a semilattice congruence on
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From Theorem 3.4; if eG = Ge for all
e0 E(), then every congruence  E(s) can be extended to a semi-

lattice congruence on .
Therefore, the corollary is proved. #

The Green relations cL and Jx on any semigroup  are right
compatible and left compatible; respectively. Then, if3?-fton a
semigroup , thenie  -% is a congruence on .

Let be an inverse semigroup. Then everyoC-class of  and
every -class of  contains exactly one idempotent. Then

=eoE(g)Le = eME(S)Re Mich are disjoint union* Suppose that
for all e£ E( ). Then™ -~ = K is a congruence on , and
moreover, = e£E(g)He which is a disjoint union of groups.

It has been proved by Chen and Hsieh in [3] that if an inverse
semigroup is factorizable as GE( ), then Lg = Ge and R* = ¢G for all
ef E()

Suppose that is a factorizable inverse semigroup which fac-
tors as GE( ), and assume thatJ is a congruence on S To show
Ge =¢eG for all ef E( ), let ef E( ). Since G=H where 1is the
identity of , gtfi for all gf G Because*Cis a congruence on
gé’e and egjCe for all g£ G Hence Gec H and eG C Hy, But
Ge=Lg2 Hyand eG = Re2 Hy. Therefore Ge = Hs = eG.  This proves
that if « is a congruence on , then Ge =¢G for all e£ E() and
Hy = Ge for all ef E( ).

Therefore, we have
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3.6 Lemma Let be an inverse semigroup which factors as GE(S).
Then is a congruence on if and only if = Ge = ¢G for all
ef E()

From Lemma 3.6 and Theorem 3.4, the following proposition
Is directly obtained i

3.7 Proposition. Let Dbe a factorizable inverse semigroup. Then
every congruence on E() can be extended to a semilattice congruence
on if and only if the Greenl relation”® on s a congruence on

Recall that a semigroup is said to be a semilattice of

thAava Aviaa A Aanmiladéian \/ Aaiinhlh +lh A+ -

groups 1f thare exists a semiiattice, Y such that s oz(:._UYGO‘ IS d

disjoint union, where G, 's are subgroups of S, and G G, C G_, for all a,
3 Gy. Therefore, a semigroup s a semilattice of groups if and
only if has a semilattice congruence p such that each p-class forms
a subgroup of
Let S = UGy be a semilattice Y of groups G,. For each

agy ¢
o €Y, let e, denote the identity of the group G,. Because for each

gG Y, (39 Is a maximal subgroup of Ga = Hea for all aGY. Let
a, b, £ such that aftb. Then there exist a, 3G Y such that a,
b£G0 and ¢ Q Gg. Thus ac, be, ca, ch GGy and hence ac™bc and
ca% ch. Therefore &is a congruence on and for each a0 Y, (&
Is an% -class of

We show in the next theorem that a factorizable inverse semi-
group  has the following property  Every congruence on E() can
be extended to a semilattice congruence on if and only if s a
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semilattice of groups.

3.8 Theorem. Let he a factorizable inverse semigroupl Then every
congruence on E( ) can be extended to a semilattice congruence on
if and only if is a semilattice of groups.

Proof : Because is a factorizable inverse semigroup.
= GE( ) where Gis the group of units of
Assume that every congruence on E( ) can be extended to a
semilattice congruence on . By Proposition 3.7, "6 is a congruence
on . By Lemma 3.6, = Ge=¢G for all e G . Because
= e and Ge =  f°r all ef E()>every*-class of s a
subgroup of . To show"Cis a semilattice congruence on , let a
b0 . Then a0 for some e, £9 E(). Since E 15 a
subgroup of and a 0 HN a*f . Thus a"Ca2. Because a" e,
b'X'f andJCis a congruence on , it follows- that ab ef and
ba% ,fe, Bum ef = fe. Then ab 3£ba. This proves”™ is a semilattice
congruence on and each”-class is a subgroup of . Hence, s
a semilattice of groups.
Conversely, if is a semilattice of groups, then is a con-
gruence on , and hence, by Proposition 3.7, every congruence on
E() can be extended to a semilattice congruence on . #

Recall that in any semigroup , the minimum semilattice con-
gruence on always exists and it is the intersection of all semi-
lattice congruences on
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3.9 Proposition. Let Dbe a factorizable inverse semigroup. If
the identity congruence on E() can be extended to a semilattice
congruence on , then the extension is the minimum sem ilattice con-
gruence on

Proof  Let Dbe factorizable as GE( ). Let p be a semi-
lattice congruence on  which is an extension of iE( . where )
Is the identity congruence on E( ). Let Dbe the minimum semilat-
tice congruence on . Then {C p.

Let (x, y)g p. Because =ocE(S), X =ge and y = hf for

some g, h€ G, e, fEE( ). By Lemma 3.2, xp =ep and yp = fp and
so (e, f) £ p. Because e, f£e() and p & XEE) =i(¢,5",
(e, f) £ E() and hence e = f. Thus (e, f) & . But xn = en and

yn = fn by Lemma 3.2. Hence (x, y) 6
Therefore =p. #

We end this chapter by showing that for any factorizable
inverse semigroup , for any given congruence p on E( ), if a semi-
lattice congruence on extending p exists, then the extension is
unique.

3.10 Theorem. Let be a factorizable inverse semigroup as GE( ),
and p be a congruence on E( ). If p can be extended to a semilattice
congruence on , then the extension is unique.

Proof : Let p and p be semilattice congruences on  which
are extensions of p. To show p = p, let (x, y)E p. Because
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S=GE( ), X=ce and y = hf for some g, hEG, e, f 6E(S). By
Lemma 3.2, X3 =ep, yp =fp, xp =ep and yp = fp. Then @, f)E P
since (x, y)e p. ButpO (E(s) XE(s)) =P, and s0 ¢, f) £ p.
Since p=pn (E(s) XE(s)), (e, f)£ p. But xp = ep and yp = fp.
Hence (x, y) £ p. Therefore p¢ p. similarly, we can show that
2¢ p. Thus, p = p.

Hence, the theorem is completely proved. #
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