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CHAPTER I

INTRODUCTION

This chapter explains the study of data analysis using clustering concept

which includes the importance of data analysis, the process of data analysis, and

the concept of a clustering method. Moreover, the motivation to propose the clus-

tering algorithm and the overview of this algorithm are described in this chapter.

1.1 Importance of Data Analysis

Data analysis is widely used in various fields such as engineering, business,

and medical. Examples of success in data analysis are the credit card spending to

pay for goods and services. These customer activities are recorded in the database

for analyzing and they are also available for other business benefits such as the

provision of appropriate travel insurance for cardholders to pay for tickets, the

collection of points in the card to exchange is the goods and services, and the

promotion of the product that customers spend on a regular basis. Analysis of the

data in the supermarket makes it possible to offer promotions that suit individual

customers. This analysis can increase the chances of selling items, such as getting

special discounts for target list. It is also used in the bank such as risk modeling,

fraud prediction, and customer segmentation. In addition, data analysis is also

used in the medical such as genetic analysis, trials of new drugs, and epidemic

control, see examples in Figure 1.1.
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Figure 1.1: Examples of data analysis in business, supermarket, bank, and medical.

In a variety of fields, raw data are collected and recorded continuously. There

is a demand to extract useful information from the rapidly increasing data. The

process of analyzing the data, also known as Knowledge Discovery in Databases

(KDD) has emerged.

1.2 Knowledge Discovery in Database

This section gives an overview of data analysis via Knowledge Discovery in

Databases process and presents an analytical approach to gain useful knowledge.

1.2.1 Knowledge Discovery in Databases Process

The KDD process was published in 1996 [1]. This process is one of the most

commonly cited and published for analyzing the data. The overall of KDD process

is shown in Figure 1.2. It consists of five main steps from left to right, which are

described in the next paragraphs.

Figure 1.2: The process of the knowledge discovery in database. (adapted from [2])
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The first step of the KDD process starts with the understanding of the data

that needs to be analyzed. It identifies the goals and end result after achiev-

ing knowledge, such as increasing sales volume, dividing customers by interest,

forecasting the rainfall in the next three days.

The second step is the preparation of data to provide the data quality and

leads to the results that meets the goals. It divides into three subsections:

• The selection is the gathering data from the database to be prepared for

data mining.

• The preprocessing is an important step to process the target data before

data mining. It includes data cleaning, removing noise, and missing data

treatment.

• The transformation is the conversion and summarizes data to a suitable

format depending on its goal.

The fourth step is to interpret the patterns that have been analyzed through

the data mining for further use, such as creating illustrations and models from

these patterns.

The last step is the examination and presentation of the knowledge. The

KDD process is referred to as data mining process because data mining is an

important step of the KDD process. It contains many tasks for data analysis and

these tasks are described next.

1.2.2 Data Mining Tasks

In the data mining process, there are several ways to handle the data for

descriptions and predictions. The well-known methods of data mining tasks consist

of the following four methodologies [3], as shown in Figure 1.3.
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Figure 1.3: Four well-known methodologies in data mining tasks.

Clustering is the segmentation of data into clusters based on similarities of

data points. The data points in the same cluster are more similar than those in

different clusters while the data points in different clusters should be as deviant as

possible. Example of clustering customers in the bank to understand its customers

and provide more suitable products and services.

Association rule is the searching of the relationship between data to analyze

the behavior of these data. Example of association rules in the supermarket to

study the consumer choice behavior. The retailers can plan their items on the

shelves in the store according to the customer’s behavior.

Classification is learning a function that classifies a data point into one of

several classes. Example of classification in the financial to identify loan applicants

as low, medium, or high credit risks.

Anomaly detection is the identification of events or data that do not corre-

spond to other data points in the dataset. Example of anomaly detection in the

medical that used to detect the cancerous pixels in the image.

The clustering in data mining process is studied in this thesis to propose a

new clustering algorithm. Therefore, the clustering concept is described in the

next topic.
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1.2.3 Clustering Concept

Clustering is one of the important methods for data mining. It is the process

of analyzing a large number of data to obtain useful information that is hidden.

The clustering algorithm is a method for grouping data points, in such a way that

data points within a cluster are very similar, while data points are quite distinct

from different clusters. In order to understand the clustering, a set of examples

of the dataset are given for clustering as shown in Figure 1.4. The details of this

figure show the images and data of 11 fruits consisting of three attributes: shape,

color, and taste.

Figure 1.4: An example of clustering method with a dataset containing 11 fruits.
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(a) Shape (b) Color (c) Taste

Figure 1.5: An example of a clustering method (a) Samples are grouped into 2 clusters
according to fruit shapes and (b) Samples are grouped into 4 clusters according to fruit
colors, and (c) Samples are grouped into 4 clusters according to fruit taste.

From the dataset in Figure 1.4, it records three fruit attributes: shape, color,

and taste. The fruits are grouped according to shape, color, and taste as shown

in Figure 1.5. The first attribute covers 4 tastes which are sweet, sour, sweet

sour, and little sweet as shown in Figure 1.5(a). The second attribute covers 4

colors which are red, orange, yellow, and green as shown in Figure 1.5(b). The

last attribute covers 2 shapes which are oval and sphere as shown in Figure 1.5(c).

Since the task of clustering is used for achieving the various goals. Ev-

ery methodology uses a different concept for defining the similarity between data

points. Three methods according to the clustering model are explained in detail

[1]:

1.2.3.1 Connectivity-based method

Connectivity-based method or hierarchical method divides data points based

on the idea that closer data points are more similar than data points that are

farther away. It can be presented via the dendrogram [4, 5]. These methods can

be subdivided into two main types as agglomerative and divisive that depend on

the hierarchical decomposition. Agglomerative is a bottom-up approach. The

process starts with grouping each data point into a single cluster and aggregating
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them as the distance decreases until all data points are merged into a single cluster.

Divisive can be viewed as a top-down approach. This process starts with all data

points are grouped as a single cluster and then partitioned as the distance increases

until each data point is in different clusters. However, the hierarchical method

has some drawbacks that are if data points are incorrectly grouped in an earlier

stage, then they cannot be reallocated. Example of this method is a hierarchical

clustering algorithm.

1.2.3.2 Centroid-based method

The centroid-based method is the iterative clustering algorithm in which the

notion of similarity is derived by the closeness of a data point to the centroid of

the clusters [6]. This method partitions all data points into k disjoint clusters

based on a centroid of the cluster. It starts with k initial centroids. Each data

point is assigned to the nearest centroid. This method repeats the assignment

and update until all centroids remain the same or other stopping conditions are

satisfied. However, the disadvantage of this method is the difficulty for determining

the appropriate number of clusters. k-means clustering algorithm is a popular

algorithm that falls into this category.

1.2.3.3 Density-based method

The density-based method searches the areas of varied density of data points.

This clustering does not require the number of clusters since it can automatically

determine the number of clusters [4]. This method partitions various different

density regions and assigns the data points within these regions into the same

cluster. The disadvantage of this method is the set of global values of Eps and

MinPts which may not be suitable for a dataset with different densities. Popular

examples of density-based method is DBSCAN.
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Many researchers have been proposed various clustering algorithms using

this clustering concept. The goal of all clustering algorithms is to group the

various types of data appropriately. The clustering algorithms rely on different

of the basic concepts, such as k-means uses the concept of the centroid-based

method and DBSCAN uses the concept of the density-based method. Therefore,

a new algorithm is proposed using the concept of abnormal data in the anomaly

detection.

1.3 Our Work

In this thesis, we propose a novel clustering algorithm based on connectivity-

based method called an extreme anomalous clustering algorithm (EAC). This EAC

is able to group data points in the dataset with arbitrary complex shapes such

as the moon dataset and the circle dataset. In this approach, the concept of an

anomalous score is used to represent the agglomerate of data points. Each data

point has the anomaly measure which is defined as the largest radius of an open

ball containing only that point called the extreme anomalous score (EAS). This

score indicates how far the data point will have neighbors in the vicinity. If the

data point has a very high score, that means this point is very different from the

rest. In contrast, if the data point has a very low score, that means this point has

neighbors close to it. The algorithm selects the representative point by combining

two data points with the smallest extreme anomalous score. This algorithm stops

if the number of clusters reaches the value which is defined by a user. The extreme

anomalous clustering algorithm is a clustering algorithm performing on the finite

dimensional continuous valued dataset and it requires a hyper-parameter which is

the number of clusters.
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1.4 Research Objectives

The objective of this thesis is to implement a new clustering algorithm based

on the extreme anomalous score and compare the performance with AGNES, k-

means, and DBSCAN using simulated datasets and UCI datasets.

1.5 Thesis Overview

This thesis is divided into five chapters as follows:

Chapter 1 discusses the study of data analysis using clustering concept,

which includes the importance of data analysis, the process of data analysis, and

the concept of a clustering method. Moreover, we also describe the basic idea of

identifying anomalous score of data points.

Chapter 2 discusses background concepts of the clustering process used

in the thesis. The discussion has been made on the similarity measures that is

presented as well-known and commonly used clustering algorithms. Finally, the

discussion about the validation in clustering.

Chapter 3 presents the extreme anomalous clustering algorithm. First, the

discussion has been made on the representative single linkage method using the

concept of an extreme anomalous score. Next, the discussion has been carried out

on the extreme anomalous clustering algorithm using the concept of agglomerative

method. Then, an overview of algorithm is provided by examples.

Chapter 4 presents the results and compares them with other clustering

algorithms using the simulated datasets and UCI datasets.

Chapter 5 presents the conclusion of the work done in this thesis and the

interest in the future work.



CHAPTER II

BACKGROUND KNOWLEDGE

This chapter presents background knowledge of a clustering including the

similarity measures, the clustering algorithms, and the cluster validation. The

clustering is the process of analyzing a large number of data points in different

clusters in such a way that very similar data points are included in the same

cluster. Therefore, data points must be identified by their relationship within the

dataset using some similarity measures. The similarity measures are described

next.

2.1 Similarity Measures

The similarity measures can be used to measure the proximity of two data

points, which represent the relationship of data points within the dataset. This

measure does not depend on either the number of clusters analyzed nor the method

of grouping data points and it can be used to guide a clustering algorithm. The

similarity measure that is commonly used to estimate the similarity between two

data points and two clusters is a distance measure. The distance is close to 0 when

the data points are highly similar and larger when they are different.

Let D be a finite dataset containing n data points with m attributes. A data

point i is given as pi = {pi1, pi2, .., pim}, where pij is the value of the jth attribute

for data point pi, i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m}. The structure for collecting

n data points and m attributes is in form of the matrix as follows:
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D =




p11 p12 … p1m

p21 p22 … p1m
... ... ... ...

pn1 pn2 … pnm

,

where each row corresponds to a single data point. Example of the dataset con-

taining 6 data points is shown in Table 2.1.

Data points XY coordinate

p1 (4, 5.3)

p2 (2.2, 4.3)

p3 (3.5, 3.2)

p4 (2.6, 1.9)

p5 (1, 4)

p6 (4.5, 3.5)

Table 2.1: The example of 6 data points in two-dimensional.

In order to make the implementation easier, the dataset is transformed into

a matrix with m = 2 and n = 6 as shown below.

D =





p11 p12

p21 p22

p31 p32

p41 p42

p51 p52

p61 p62

=





4 5.3

2.2 4.3

3.5 3.2

2.6 1.9

1 4

4.5 3.5

.
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Additionally, the structure for storing the distance of all pairs is shown in a

matrix form as follows.

M =




d11 d12 . . . d1n

d21 d22 . . . d2n
... ... . . . ...

dn1 dn2 . . . dnn

,

where dij is the similarity distance between point pi and pj and dij is non-negative

number. Note that dij = 0 that means both data points are the same or they

overlap. This matrix (M) represents the relationship of all data points in the

dataset that is used to identify the similarity of each data point. The distance

measure for a clustering is divided into two types: distance measures between two

data points and distance measures between two clusters. They are discussed as

follows.

2.1.1 Distance measures between two data points

One of the distance measures between two data points is the Minkowski

distance. Define the metric space X and q ∈ N. Note dq : X × X ⇒ R+. The

Minkowski distance between two data points can be calculated as

dq(pi,pj) =
q

√√√√ m∑
k=1

|pik − pjk|q. (2.1)

This distance is a generalization of other distance measures that is the Manhattan

distance where q is equal to 1 and the Euclidean distance where q is equal to 2.

They are described as follows.
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2.1.1.1 Euclidean distance

Euclidean distance is the most popular distance measure. It can be calcu-

lated from the length of the straight line between two data points and it is defined

as

d2(pi,pj) =

√√√√ m∑
k=1

(pik − pik)2. (2.2)

2.1.1.2 Manhattan distance

Manhattan distance is another well-known measure. It can be defined as the

distance of the blocks between two data points in a city. It is defined as

d1(pi,pj) =
m∑
k=1

|pik − pik|. (2.3)

Both distances are satisfied the following properties:

• Non-negativeness: d(pi,pj) ≥ 0,∀pi,pj ∈ X

• Identification: d(pi,pj) = 0 ⇐⇒ pi = pj,∀pi,pj ∈ X

• Symmetry: d(pi,pj) = d(pj,pi), ∀pi,pj ∈ X

• Triangle inequality: d(pi,pj) 6 d(pi,pk) + d(pk,pj),∀pi,pj,pk ∈ X
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Figure 2.1: Manhattan distance and Euclidean distance between two data points in
R2.

From Figure 2.1, the Manhattan distance is represented by the sum of the lengths

of solid lines along the axis and the Euclidean distance is presented by the length

of the dashed line. From the dataset in Table 2.1, the distance between data

points can be calculated using Manhattan distance and Euclidean distance, such

as finding the distance of point p1 and the rest of points can be calculated as

follows:

Manhattan distance

d1(p1,p2) = |4− 2.2|+ |5.3− 4.3| = 2.8

d1(p1,p3) = |4− 3.5|+ |5.3− 3.2| = 2.6

d1(p1,p4) = |4− 2.6|+ |5.3− 1.9| = 4.8

d1(p1,p5) = |4− 1|+ |5.3− 4| = 4.3

d1(p1,p6) = |4− 4.5|+ |5.3− 3.5| = 2.3
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Euclidean distance

d2(p1,p2) =
√

(4− 2.2)2 + (5.3− 4.3)2 = 2.06

d2(p1,p3) =
√

(4− 3.5)2 + (5.3− 3.2)2 = 2.16

d2(p1,p4) =
√

(4− 2.6)2 + (5.3− 1.9)2 = 3.68

d2(p1,p5) =
√

(4− 1)2 + (5.3− 4)2 = 3.27

d2(p1,p6) =
√

(4− 4.5)2 + (5.3− 3.5)2 = 1.87

Observe that all distance values are differences. In addition to measure the similar-

ity by the distance between data points, clustering also uses the distance between

clusters that is explained in the next section.

2.1.2 Distance measures between two clusters

Four well-known linkage methods are introduced and used in the clustering

experiments. Only the Euclidean distance is used to calculate the distance between

two data points, which will be discussed in the next topic.

2.1.2.1 Single Linkage Method

A single linkage method works by finding two most similar clusters which is

defined as the minimum distance between any two data points in different clusters

as shown in Equation 2.4.

dSL(Ci, Cj) = dmin(Ci, Cj) = min
pi∈Ci,pj∈Cj

d2(pi,pj), (2.4)

where Ci and Cj are cluster i and cluster j. This distance represents the similarity

between two clusters, which is used to determine the clustering of the dataset. Two

clusters with the smallest distance are combined together as shown in Figure 2.2.
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Figure 2.2: The similarity between two clusters with the single linkage method.

Given the dataset consists of 6 data points in two-dimensional space as in Table

2.1. From the dataset in Table 2.1, the distance is calculated using the Euclidean

distance as shown in Table 2.2.

Data points p1 p2 p3 p4 p5 p6

p1 0 2.06 2.16 3.68 3.27 1.87

p2 2.06 0 1.70 2.43 1.23 2.44

p3 2.16 1.70 0 1.58 2.62 1.04

p4 3.68 2.43 1.58 0 2.64 2.48

p5 3.27 1.23 2.62 2.64 0 3.53

p6 1.87 2.44 1.04 2.48 3.53 0

Table 2.2: The Euclidean distances of all data points from Table 2.1.

Note, the cluster with data point p3 and data point p6 has the shortest

distance equal to 1.04 which is shown in bold and underlined text in Table 2.2.

They are the most similar data points and these two data points should be grouped

together to form Cluster 1. Then the distance between Cluster 1 and the rest of

data points are calculated using the single linkage method. The distance between

data point p1 and Cluster 1 that is the data points p3 and p6 is equal to 1.87 since

the single linkage method measures the nearest distance. It can be calculated as

follows.
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dSL({p1}, {p3,p6}) = min{d2(p1,p3), d2(p1,p6)}

= min{2.16, 1.87}

= 1.87

Data points p1 p2 p4 p5 Cluster 1

p1 0 2.06 3.68 3.27 1.87

p2 2.06 0 2.43 1.23 1.70

p4 3.68 2.43 0 2.64 1.58

p5 3.27 1.23 2.64 0 2.62

Cluster 1 1.87 1.70 1.58 2.62 0

Table 2.3: The combination of data point p3 and data point p6 by using the single
linkage method in Cluster 1.

Figure 2.3: The grouping of the dataset from Table 2.1 using hierarchical clustering
with the single linkage method.

Similarly, the distance between data point p2 and Cluster 1 is equal to 1.70.

Data point p4 and Cluster 1 is equal to 1.58 and data point p5 and Cluster 1 is

equal to 2.62, respectively, as shown in Table 2.2. Figure 2.3 shows the result of

applying the single linkage method to example dataset from Table 2.2.
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2.1.2.2 Complete Linkage Method

A complete linkage method works the same way as the single linkage method

except the similarity measurement is defined as the maximum distance between

any two data points in different clusters as shown in Equation 2.5.

dCL(Ci, Cj) = dmax(Ci, Cj) = max
pi∈Ci,pj∈Cj

d2(pi,pj). (2.5)

This equation represents the similarity between the two clusters using the maxi-

mum distance. These clusters are combined together as shown in Figure 2.4.

Figure 2.4: The similarity between two clusters with the complete linkage method.

From Table 2.2, the cluster using the complete linkage method will combines

the minimum among all furthest distances between two clusters. Then, the cluster

with data point p3 and data point p6 has the smallest distance equal to 1.04 is

shown in bold and underlined text in Table 2.2, so it is the most similar and should

combine two clusters into one. Data points p3 and p6 are grouped together and

called Cluster 1. The distance between Cluster 1 and the rest of data points are

calculated by the complete linkage method. The distance between data point p1

and Cluster 1 that is the data points p3 and p6, is equal to 2.16 since the complete
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linkage method computes the largest distance. It can be calculated as follows.

dCL({p1}, {p3,p6}) = max{d2(p1,p3), d2(p1,p6)}

= max{2.16, 1.87}

= 2.16

Data points p1 p2 p4 p5 Cluster 1

p1 0 2.06 3.68 3.27 2.16

p2 2.06 0 2.43 1.23 2.44

p4 3.68 2.43 0 2.64 2.48

p5 3.27 1.23 2.64 0 3.53

Cluster 1 2.16 2.44 2.48 3.53 0

Table 2.4: The combination of data point p3 and data point p6 using the complete
linkage method in Cluster 1.

Figure 2.5: The grouping of the dataset from Table 2.1 using hierarchical clustering
with the complete linkage method.

Similarly, the distance between data point p2 and Cluster 1 is equal to 2.44.

Data point p4 and Cluster 1 is equal to 2.48 and data point p5 and Cluster 1 is

equal to 3.53, respectively, as shown in Table 2.4. Figure 2.5 shows the result of
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applying the complete linkage method to example dataset from Table 2.2.

2.1.2.3 Group Average Method

The group average is defined as the average distance between all pairs of

data points in different clusters as shown in Equation 2.6.

dGA(Ci, Cj) = davg(Ci, Cj) =

∑
pi∈Ci

∑
pj∈Cj

d2(pi,pj)

|Ci| ∗ |Cj|
. (2.6)

This equation represents the similarity between two clusters using the average

distance to determine the clustering of data points as shown in Figure 2.6.

Figure 2.6: The similarity between two clusters with the group average.

From Table 2.2, the cluster with data point p3 and data point p6 are grouped

together forming Cluster 1.

Data points p1 p2 p4 p5 Cluster 1

p1 0 2.06 3.68 3.27 2.02

p2 2.06 0 2.43 1.23 2.07

p4 3.68 2.43 0 2.64 2.03

p5 3.27 1.23 2.64 0 3.08

Cluster 1 2.02 2.07 2.03 3.08 0

Table 2.5: The combination of data point p3 and data point p6 using the group average
method in Cluster 1.
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The distance between Cluster 1 and the rest of data points are calculated

by a group average method. The distance between data point p1 and Cluster 1 is

equal to 2.02 since the group average method measures the average distance of all

pairs in the dataset. It can be calculated as follows.

dGA({p1}, {p3,p6}) = mean{d2(p1,p3), d2(p1,p6)}

=
2.16 + 1.87

2

= 2.02

Figure 2.7: The grouping of the dataset from Table 2.1 using hierarchical clustering
with the group average method.

Similarly, the distance between data point p2 and Cluster 1 is equal to 2.07.

Data point p4 and Cluster 1 is equal to 2.03 and data point p5 and Cluster 1 is

equal to 3.08, respectively, as shown in Table 2.5. Figure 2.7 shows the result of

applying the group average method to example dataset of six points from Table

2.2.
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2.1.2.4 Ward’s Method

Ward’s Method is defined as the minimum variance that increases in the sum

of squared errors (SSE) when two clusters are combined. This method calculates

the difference between the sum of squared errors among data points and the cen-

troid of merged cluster. The equation is the sum of squared errors between the

data points and the centroid of each cluster as shown in Equation 2.7.

∆(Ci, Cj) =
∑

x∈(Ci∪Cj)

(x(Ci∪Cj) − cent(Ci∪Cj))
2

− [
∑
xi∈Ci

(xi − centCi
)2 +

∑
xj∈Cj

(xj, centCj
)2]

=
nCi

nCj

nCi
+ nCj

(centCi
− centCj

)2,

(2.7)

where centCi
is the centroid of cluster Ci and ni is the number of data points in

its cluster. ∆ is the merging value of the combined cluster between cluster Ci and

Cj. From Table 2.2, the clustering using the Ward’s method with data point p3

and data point p6 into Cluster 1 is shown in Table 2.2.

Data points p1 p2 p4 p5 Cluster 1

p1 0 2.06 3.68 3.27 2.54

p2 2.06 0 2.43 1.23 2.16

p4 3.68 2.43 0 2.64 1.40

p5 3.27 1.23 2.64 0 3.68

Cluster 1 2.54 2.16 1.40 3.68 0

Table 2.6: The combination of data point p3 and data point p6 by using the Ward’s
method in Cluster 1.
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Figure 2.8: The group of the dataset from Table 2.1 using hierarchical clustering with
the Ward’s method.

Data points p3 and p6 are grouped together to form Cluster 1. Then the

distance between Cluster 1 and the rest of data points are calculated by Ward’s

method. The distance between data point A and Cluster 1 is equal to 2.54 and

the distance between the data point p2 and Cluster 1 is equal to 2.16. Data point

p4 and Cluster 1 is equal to 1.40 and data point p5 and Cluster 1 is equal to 3.68,

respectively, as shown in Table 2.6. Figure 2.8 shows the result of applying the

Ward’s method to our example dataset of six points from Table 2.2.

The next section presents well-known clustering algorithms using the mea-

surement of the similarity discussed in the previous section. These algorithms will

be tested to compare performance with our algorithm.

2.2 Clustering Algorithms

Many clustering algorithms are proposed to group data points into clusters

of a dataset. Each algorithm uses different techniques that are appropriated for

different clustering purposes, such as k-means can be quickly calculated for a

large number of data points if the number of clusters is small. In this part, three

clustering algorithms are described and their hyper-parameters being used that are
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explained in Chapter 1. In this section, three clustering algorithms are described.

All three approaches rely on different concepts in clustering, which are described

as follows.

2.2.1 Hierarchical clustering algorithm

Hierarchical clustering algorithm is based on the core idea of the connectivity-

based method that is the algorithm connects data points to form clusters based on

their distance. It provides different hierarchy of clusters that merge according to

the linkage scheme, such as single linkage method, complete linkage method, group

average method, and Ward’s method. This algorithm consists of two hierarchy

methods: agglomerative and divisive methods [7].

In this thesis, the agglomerative method in the hierarchical clustering is used

to compare with a new clustering algorithm. It was also called the agglomerative

nested hierarchical clustering (AGNES), which is a hierarchical clustering where

a dendrogram is created as a bottom-up the following steps.

1. For each data point, create its own clusters.

2. Find the 2 closest clusters and merge them into a single cluster. The ag-

glomerative method is characterized by the definition used for identification

of the closest pair of data points, and by the means used to describe the new

cluster when two clusters are merged.

3. Find and merge the next two closest clusters, where a cluster contains either

an individual data point or multiple data points. If more than one cluster

remains, return to step 3.

The pseudocode of the agglomerative nested hierarchical clustering algorithm is

described in Algorithm 1.
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Algorithm 1 Agglomerative nested hierarchical clustering
1: procedure AGNES(P)

2: Input: a set of data points P= {p1, ...,pn} ⊆ Rm;

3: a function for distance measure d : Rn × Rn → R

4: Output: The final clusters C = {C1, ..., Cn}

5: for data point pi ∈ P do

6: create cluster Ci = {pi}

7: for the pair of clusters {Ci, Cj ̸=i} do

8: calculate d(Ci, Cj)

9: let C = {C1, ..., Cn}

10: while |C| > 1 do

11: let best(Ci, Cj) = min{d(Ci, Cj)}, ∀{Ci, Cj ∈ C}

12: for best(Ci, Cj) do

13: let Cij = {Ci, Cj}

14: Cnew = C\{Ci, Cj}

15: Cnew = Cnew ∪ {Cij}

16: Update Cij with the linkage method

17: end

The following example contains 5 data points to demonstrate the process

of AGNES via the dendrogram as shown in Figure 2.9. From the lower of the

figure, each data point in the agglomerative method is kept in different clusters.

The height of each step is the distance between the two clusters that are grouped

together. Data points A and B are combined with minimum distance is equal to 1

unit. These clusters are merged step by step until all data points are in the single

cluster.
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Figure 2.9: Dendrogram representing AGNES on the data points.

2.2.2 k-means clustering algorithm

The most well-known centroid-based clustering is the k-means clustering

algorithm [8]. The k-means is defined in terms of the centroid that is usually

the average of all data points in the cluster and is applied to the continuous n-

dimensional data points. In this section, k-means are used to compare with the

EAC algorithm. The k-means clustering algorithm not only requires data points

to be grouped, it needs to define k initial centroids. A parameter k is the number

of the cluster that is specified by a user.

1. Select k random data points from all data points as initial centroids.

2. Find the 2 closest clusters and combine them into the cluster.

3. Each data point is assigned to the same cluster as the closest centroid.

4. Each centroid is updated based on the average of data points in the cluster.

5. Repeat until data points in the cluster do not change or the centroids remain

the same.
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The pseudocode of the k-means algorithm is shown in Algorithm 2.

Algorithm 2 k-means clustering
1: procedure Kmeans(P, k)
2: Input: a set of data points P= {p1, ...,pn} ⊆ Rm;
3: a function for distance measure d : Rn × Rn → R
4: Output: The final clusters C = {C1, ..., Cn}
5: do
6: for cluster Ci ∈ C do
7: calculate cluster centroid centi ⊆ Rn

8: for data point pi ∈ P do
9: for cluster Ci ∈ C do

10: calculate d(p, Ci) = d(p, centi)
11: let best(p, Cp) = ∀Cj : [d(p, centCp) ≤ d(p, centCj

)]

12: undefine Cnew

13: for data point pi ∈ P do
14: for best(p, Cnew,p) do
15: let p ∈ Cnew,p

16: if C ̸= Cnew then repeat = true
17: else repeat = false

18: until repeat = false

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 2.10: The operation of k-means clustering algorithm in three iterations as
follows: (a), (b) and (c).
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Three sample clusters are created to show the step of the k-means algorithm

shown in Figure 2.10. In the first step, three initial centroids are selected and data

points are assigned to initial centroids shown in Figure 2.10(a). The centroids are

represented by the symbol “+” and all data points in the same cluster are assigned

with the same symbol. After that, centroids are updated and assigned data points

into those centroids again. In step 2 and 3, which are shown in Figures 2.10(b)

and 2.10(c), respectively. Centroids are moved to the center of their clusters at the

bottom of Figures 2.10(b) and 2.10(c). The k-means terminates in Figure 2.10(c)

because centroids do not change.

2.2.3 DBSCAN clustering algorithm

The most popular density-based clustering method is DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) [9]. In this approach, the

density can be specified for a particular data point in the dataset by counting

the number of data points within a radius, epsilon (Eps) that specified by a user.

For a data point, the radius is very important since it determines its density.

A data point is a core point if the number of neighbors around the data point is

determined by the radius (Eps) and the number of neighbors in radius Eps exceed

a threshold (MinPts). A data point is a border point if the number of neighbors

around the data point within radius Eps less than MinPts. A data point is a

noise point if this point does not have the neighborhood within radius Eps. The

process of this algorithm states as follows.

1. Start with an arbitrary data point that is unvisited.

2. Extract the number of neighbors of this data point within the radius Eps.

3. Verify that it is the core point, the border point or the noise point using

MinPts.
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4. If a data point is found to be a part within the Eps radius and step 2 is

repeated for all Eps neighborhood points until all data points are assigned

in the cluster.

5. A new data point that is not considered will be processed to the discovery

of a cluster or noise point.

6. This process continues until all data points have been marked.

The pseudocode of the DBSCAN algorithm is shown in Algorithm 3.

Algorithm 3 DBSCAN
1: procedure DBSCAN(P, MinPts, Eps)
2: Input: a set of data points P= {p1, ...,pn} ⊆ Rm;
3: a function for distance measure d : Rn × Rn → R
4: Output: The final clusters C = {C1, ..., Cn}
5: C = 0
6: for data point pi ∈ P do
7: if label(p) ̸= undefined then
8: Neighbors= N

9: if |N | < MinPts then
10: label(p) = Noise

11: C = C + 1
12: label(p) = C
13: S = N

{p}
14: for q ∈ S do
15: if label(q) = Noise then label(q) = C

16: if label(q) ̸= undefined then
17: label(q) = C
18: find Neighbors N
19: if |N | ≥ MinPts then
20: S = S ∪N
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Figure 2.11: The sample data with the DBSCAN clustering algorithm.

Figure 2.11 shows the example of 13 two-dimensional data points using the

DBSCAN algorithm with Eps = 2 and MinPts = 5. The number of data points

within a radius of Eps of A is 7, including itself, which is greater than MinPts.

Thus, data point A is the core point. The number of data points within Eps of B

is 4, including itself, which is less than MinPts and falls within neighborhoods of

the core point. Thus, data point B is the border point. Finally, data point C is a

noise point since it does not satisfy the condition of the core point and the border

point. The core points and the border points that are connected are grouped into

the single cluster.

2.3 Cluster Validation

In clustering, many algorithms use different methods and used different data.

However, the clustering do not know whether these algorithms can perform cor-

rectly. Some of the accuracy criteria has been developed which is divided into two

main types: internal and external validation. Each validation is appropriate for

different data which is described in the next part.
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Figure 2.12: The cluster validation of clustering algorithm (From: https://slide-
player.com/slide/6982424/(Date:14/05/2018)).

2.3.1 Internal Validation

The internal validation is a measure of the validity of clustering result with

the dataset, considering the distance of data points in the same cluster, which

should be as small is shown Figure 2.12. These measurements often determine

the best scores for algorithms that generate the similarity between clusters and

dissimilarity between clusters. In this thesis, the measurement is selected that

is appropriated for the EAC algorithm, using the measure is called Silhouette

measurement and described in the next section.

2.3.1.1 Silhouette measurement

The silhouette measurement(S) refers to the consistency within a dataset.

It is a measure of the similarity of data points within its own cluster is called

cohesion and compare to other clusters is called separation [10]. The Silhouette

score of data point pi within cluster CA can be calculated by

S(pi) =
b(pi)− a(pi)

max(a(pi), b(pi))
,
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where a(pi) is the average distance between data point pi and other data points

in cluster CA, b(pi) is the average distance between data point pi and all data

points in the nearest neighbor cluster CB. For each data point pi, the silhouette

score is bounded between -1 to 1 for incorrect clustering to highly dense clustering,

respectively. If the score is about zero, it represents the overlapping clusters. In

addition, the silhouette score for all data points within the cluster CA is the average

silhouette score. It can be calculated by

S(CA) =

∑
pi∈CA

S(pi)

|CA|

and the average silhouette score of all k clusters in the dataset can be calculated

by

S(C) =

∑k
i=1 S(Ci)

k
.

2.3.2 External Validation

The external validation is the evaluation of the results from various clustering

algorithms based on the data structure, considering the distance of data points

in the different clusters as shown Figure 2.12. These validations are often used

to determine the validity of the clustering algorithm. In this thesis, the external

validation that is appropriated for the proposed algorithm is selected using the

measure called Rand index measurement and will be described in the next section.

2.3.2.1 Rand index measurement

The Rand index measurement (RI) computes how similar the clusters are

to the benchmark classifications. One can also view the Rand index as a measure

of the percentage of correct decisions made by the algorithm. It can be used to
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compare an induced cluster C1 with a given cluster C2. It is defined by

RI =
a+ d

a+ b+ c+ d
,

where a is the number of pairs that are assigned to the same cluster C1 and cluster

C2, b is the number of pairs that are assigned to the same cluster C1, but it is not

in cluster C2, c is the number of pairs that are assigned to the same cluster C2,

but it is not in cluster C1, and d is the number of pairs that are assigned to the

different cluster C1 and C2. This score is bounded between 0 to 1. If the score is

close to 1 then the algorithm has a high predictive accuracy.

The ideas that used in this thesis for creating the new clustering algorithm are

presented in this chapter and the basic knowledge about clustering is introduced.

The next chapter will cover the concepts of the extreme anomalous score is used

to create the new linkage method for the novel clustering algorithm.



CHAPTER III

EXTREME ANOMALOUS CLUSTERING

ALGORITHM

This chapter describes a new algorithm for clustering data points in a dataset

using the concept of the extreme anomalous score called the Extreme Anomalous

Clustering (EAC) algorithm. The first part describes the basic concepts of the

EAC algorithm. The second part describes the step of the EAC algorithm.

3.1 Basic idea of the EAC algorithm

The popular clustering algorithms are suitable for clustering of certain datasets.

In this thesis, the EAC algorithm is proposed with the aim to group different types

of data using anomalous score. It is the main idea to describe the similarity of

data points called extreme anomalous score or EAS.

3.1.1 Concept of Extreme Anomalous Score

The concept of EAS is that every data point in a dataset is abnormal, where

D = {p1,p2, ...,pn} is a set of n data points and m dimension. The basic concepts

of EAS for clustering data points can be explained as follows: a data point with a

low score is the data point having neighbors in the vicinity and a data point with

a high score is the data point that the nearest neighbor is very far apart. The

extreme anomalous score of any data points is defind as the largest radius of an

open ball containing only that data in the center point [11, 12]. It can be defined

as follows.
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Definition 3.1.1. An extreme anomalous score of data point p ∈ D and D ⊆ Rm

where D is a finite dataset. EAS is defined as

EAS(p) = sup{r > 0|B(p, r) ∩D \ {p} = ∅}.

From 3.1.1, consider the example of the two-dimensional dataset with 6 data

points as given in Figure 3.1. The extreme anomalous score of data point p1

and data point p2 are the largest radius which are equal to 1 unit and 3 units,

respectively. The radius of the open ball is actually the minimum distance between

the considered data point and other data points, according to Theorem 3.1.1.

Figure 3.1: The extreme anomalous score of data point p1 and data point p2.
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Theorem 3.1.1. Given D ⊆ Rm, for any p ∈ D,

EAS(p) = min{d(p,q)|∀q ∈ D \ {p}}.

Proof. Let l = min{d(p,q)|∀q ∈ D \ {p}} then l > 0 and

S = {r > 0|B(p, r)∩D \ {p} = ∅}. By definition of l, q /∈ B(p, l), ∀q ∈ D \ {p}.

Thus l ∈ S which implies that l is the upper bound of S (B(p, r) ∩ D \ {p} =

∅, ∀r ≤ l).

For any r1 > l, ∃q1 such that d(p,q1) = l < r1 and q1 ∈ B(p, r1).

So q1 ∈ B(p, r1) ∩D \ {p} ̸= ∅.

Hence, r1 /∈ S, ∀r1 > l and l is the least upper bound of S.

Proposition 3.1.1. If |D| = 1 and p ∈ D, then EAS(p) = ∞.

Proof. Let p be a single data point in D. So D \ {p} = ∅.

By Definition 3.1.1, EAS(p) = sup{r ∈ R+}. Hence, EAS(p) = ∞.

Proposition 3.1.2. If |D| = 2 and p,q ∈ D, then EAS(p) = EAS(q).

Proof. Let D = {p,q} s.t. D \ {p} = {q} and D \ {q} = {p}.

By Theorem 3.1.1, EAS(p) = min{d(p,q)} = d(p,q) and

EAS(q) = min{d(q,p)} = d(q,p) = d(p,q). Hence, EAS(p) = EAS(q).

Proposition 3.1.3. If |D| > 2, then there exists at least two data points having

the same extreme anomalous score.

Proof. Let D = {p1,p2, ...}, where pk is a data point in D for k ∈ {1, 2, ...}.

Assume that pi and pj are the data points in D which give the minimum distance.

By Theorem 3.1.2, EAS(pi) = min{d(pi,pk)} = d(pi,pj) = d(pj,pi) =

min{d(pj,pk)} = EAS(pj). Hence, There are two data points having the same

extreme anomalous score.
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3.1.2 Concept of Extreme linkage method

The extreme anomalous clustering algorithm computes the extreme anoma-

lous score between two data points as the minimum distance to other data points

according to the definition of the extreme anomalous score. After the distance ma-

trix of all datasets is generated, the extreme anomalous score of each data point is

determined from this matrix. The smallest extreme anomalous score is then used

to partition clusters. It is also guarantees that at least two data points have the

same smallest anomalous score.

Definition 3.1.2. Given a dataset D and a function EAS, the minimum extreme

anomalous score (mEAS) is assigned to at least two data points. The point q

that achieves this minimum such that EAS(q) = d(p,q) = EAS(p) for some

point p is defined as the dual extreme anomalous score point of p, denoted by

dualEAS(p).

Figure 3.2: Example of eight data points.

Example 3.1.1. From Figure 3.2, EAS(p3) is equal to EAS(p2), EAS(p5), and

EAS(p7). The dual extreme anomalous score points of data points p2,p3,p5, and

p7 are defined as follows
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(dualEAS(p2) = p3), (dualEAS(p3) = p2),

(dualEAS(p7) = p5), (dualEAS(p5) = p7).

Note p3 is a dualEAS point of p2, p5 is a dualEAS point of p7, and vice versa.

Note that p2 is the dualEAS point of p4 but the dualEAS point of p2 is p3

not p4 because the distance between points p2 and p3 gives the minimum EAS.

Therefore, any two points may not be the dualEAS point of one another except

when they have the minimum EAS.

3.1.3 Representative point

In the EAC algorithm, the representative point is identified and used to

represent the data points that are included in the same cluster. This point is

selected between a point and its dualEAS point. The one with the smallest number

of neighbors within the radius A, which is defined as the average distance of all

pairs of data points in Definition 3.1.3, is the one that is selected. Another data

point that is not selected will be dropped from consideration in the next step.

Definition 3.1.3. The average distance between all pairs of data points in a

dataset, is defined as

A =

∑n
i,j d(pi,pj)

n2
,

where n is the number of data points in the dataset.

To select the representative between data point p and its dualEAS point,

the number of neighbors within the radius A of two data points are counted.

The representative of p and dualEAS(p) is the one with the smallest number of

neighbors within radius A. The data point that is not selected will not be taken

into consideration in the next step. From Figure 3.3, consider the neighbors of
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point p1 and point p2. Point p1 has the number of neighbors equal to 5 and point

p2 has the number of neighbors equal to 3. So p2 is chosen as the representative

point and point p1 is dropped.

Figure 3.3: The example of the extreme linked method with the representative point.

3.1.4 Using the concept of connectivity-based method.

The EAC algorithm uses the concept of connectivity-based method to per-

form the agglomerative algorithm for grouping data points. A user-defined pa-

rameter nC specifies the required number of clusters. The EAC algorithm can be

described as follows. First, the algorithm determines the radius A which is the

average distance of all pairs of data points and computes the extreme anomalous

score (EAS) and its dualEAS point for each data point using Theorem 3.1.1 and

creates the index of all data points. After that the algorithm considers pi and pj

having the minimum EAS, mEAS and keeps the one with the minimum number

of neighbors in radius A and keeping track of the dropped point. If the num-

ber of clusters is equal to nC , then the algorithm starts extracting all clusters by

going through all remaining representatives connecting them with their dropped

dualEAS. Then it returns the collection of clusters.
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3.2 Process of the EAC algorithm

The input of the EAC algorithm is composed of a finite dataset D ⊆ Rn and

the number of clusters nC . The EAC algorithm computes the average distance

between all pairs of data points in a dataset, A. For each data point, the EAC

algorithm computes the extreme anomalous score as the minimum distance of it

to another. Two dualEAS points with the smallest extreme anomalous score will

be combined by dropping one. The dropped data point is the one with the largest

number of neighbors within radius A. The EAC algorithm uses the input dataset

P = {p1, ...,pn} and the number of clusters is nC that is determined by a user.

The process of the EAC algorithm is listed below.

1) Compute the extreme anomalous score (EAS) for each data point.

2) Compute the extreme linkage method using the concept of the extreme

anomalous score and the dualEAS points.

3) Choose the representative point from the distances of all data points for

merging the clusters, by extracting mEAS

4) Consider pi and pj that give the mEAS and the data point with the

minimum number of the neighbors when the distance between neighbors is less

than the radius A is called the representative point. After that drop another data

point.

5) Construct a collection of clusters from data points in this step and output

is the collection of clusters {C1, ..., CnC
}.
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The pseudocode of the EAC algorithm can be described in Algorithm 4.

Algorithm 4 Extreme Anomalous Clustering
1: procedure EAC(P, nC)

2: Input: a set of data points P = {p1, ...,pn} ⊆ Rm;

3: a function for distance measure d : Rn × Rn → R

4: the number of clusters nC

5: Output: The final clusters C = {C1, ..., CnC
}

6: let C = {C1, ..., Cn} where Ci = {pi} and compute A

7: calculate EAS(pi) for i = 1, 2, ..., n

8: while |C| > nC do

9: /*calculate mEAS*/

10: let (Ci, Cj) be such that d(pi,pj) ≤ d(pk,pl), pk,pl /∈ Ci ∪ Cj, where

11: pi is the representative point of Ci and pj is the representative

12: point of Cj

13: let Cij = {Ci ∪ Cj} and C = C\{Ci, Cj} ∪ {Cij}

14: the representative point of the new cluster Cij is pi, where

15: neighbor{pj} ≥ neighbor{pi}

16: update P = P\{pj}

17: update EAS for all points in P

18: end

In this chapter, the Extreme Anomalous Clustering algorithm is presented

which introduces the extreme linkage approach based on the idea of identifying

anomalous score for data points. This linkage method is considered to group

data points by selecting the representative point according to mEAS. In the

next chapter, the experiments are generated to test the performance of the EAC

algorithm by using the simulated datasets and real datasets.



CHAPTER IV

EXPERIMENTS AND RESULTS

In this chapter, the performance of the EAC algorithm have tested on

two types of the datasets which are two-dimentional simulated datasets and real

datasets from UCI Machine Learning Repository [13]. The performance of the

EAC algorithm has been measured based on the silhouette and rand index mea-

surements comparing with the well-known algorithms such as AGNES, k-means,

and DBSCAN that are explained in Chapter 2. All experiments in this thesis have

been implemented using Jupyter notebook written in Python language version 3.

4.1 Simulated Datasets

Three simulated two-dimensional collections are randomly generated for two

clusters of the moon datasets, two clusters of circle datasets, normal datasets

with two, three, and four clusters. Ten datasets are randomly generated with non

overlapping data point. The details of each collection are described as follows.

4.1.1 Collection DS1: Two clusters of the moon datasets

These datasets contain 300 data points that are divided into two clusters.

The centroid is placed between 0.5 and 1, then each cluster is randomly generated

to contain 150 data points and this collection contains ten datasets. The example

of the moon dataset in collection DS1 is shown in Figure 4.1.
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Figure 4.1: The simulated moon dataset with two clusters.

4.1.2 Collection DS2: Two clusters of the circle datasets

These datasets contain 300 data points that are divided into two clusters.

The centroid is located between 0 and 0.5 randomly. This collection has ten

datasets, divided into two types with five datasets. The first type is the main

cluster having 200 data points and the second type contains two clusters having

150 data points. Moreover, the distance between inner circle and outer circle is

equal to 0.5. The example of circle datasets in the collection DS2 is shown in

Figure 4.2.

Figure 4.2: The simulated circle datasets with two clusters.
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4.1.3 Collection DS3: Normal datasets

This collection is divided into two clusters, three clusters, and four clusters,

each of which has ten datasets. The normal distribution is also used with zero mean

and the standard deviation is equal to 1 in the main cluster. In the secondary

clusters used with zero mean and the standard deviation is equal to 0.5. Each

subcollection of the datasets is described as follows.

4.1.3.1 Collection DS3.1: Two clusters

These datasets contain 150 data points. The main cluster has 100 data

points. The centroid is randomly generated between 10 and 11, and then generates

99 data points around the centroid. The secondary cluster has 50 data points.

The centroid of this cluster is randomly generated far from the border of the main

cluster about 2 unit and 49 data points are generated around this centroid. The

example of two clusters in the dataset is shown in Figure 4.3.

Figure 4.3: The simulated normal datasets with two clusters.
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4.1.3.2 Collection DS3.2: Three clusters

These datasets contain 200 data points. The main cluster has 100 data

points. The centroid is randomly generated around point 0 to 20, and then gener-

ates 99 data points around the centroid. The secondary cluster has 50 data points.

The centroid of this cluster is randomly generated far from the border of the main

cluster about 2 units and 49 data points are generated around this centroid. The

dataset in the third cluster has 50 data points in the same way as the secondary

cluster. It is generated so that the cluster contains 49 data points which is placed

about 2 units from the border of the main cluster and the secondary cluster. The

example of three clusters in the dataset is shown in Figure 4.4.

Figure 4.4: The simulated normal datasets with three clusters.

4.1.3.3 Collection DS3.3: Four clusters

These datasets contain 300 data points. The main cluster has 100 data

points. The centroid is randomly generated around point 0 to 20, and then gen-

erates 99 data points around the centroid. The secondary cluster has 100 data

points. The centroid of this cluster is randomly generated far from the border
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of the main cluster about 5 units and 99 data points are generated around this

centroid. The dataset in the third and fourth clusters have 50 data points. They

are generated so that each cluster contains 49 data points which is placed about 2

units from the border of the main cluster and the secondary cluster. The example

of four clusters in the dataset is shown in Figure 4.5.

Figure 4.5: The simulated normal datasets with four clusters.

These simulated datasets that mentioned above can be summarized as Table 4.1.

Datasets Number of data points Number of clusters

DS1 300 2

DS2 300 2

DS3.1 150 2

DS3.2 200 3

DS3.3 300 4

Table 4.1: The summary of the simulated datasets.

Table 4.1 shows the summary of the simulated datasets in two, three, and

four clusters. It was created by using standard normal distribution and the cluster

is not overlap.
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4.1.4 Parameter Setting

The AGNES, k-means, DBSCAN, and EAC algorithms are used to group

three collections of ten simulated datasets and compared their results. The number

of clusters are defined for the EAC algorithm and the AGNES algorithm with the

single linkage method and k-means. DBSCAN uses Eps = 1, MinPts = 3, which

is selected by creating a distance histogram and selecting the value that is the

highest density of data points.

4.1.5 Results Analysis

The EAC algorithm and three algorithms were tested on five collections of

the datasets from Table 4.1. For comparison of the performance of the simulated

datasets. The overall results of the experiment using the silhouette measurement

where the silhouette value close to 1 means the grouping is more fitted and the

value close to 0 means the grouping is not reliable. The results show that the EAC

algorithm and the DBSCAN algorithm can group the moon datasets and circle

datasets as expected in the range of 0.9 to 1. The EAC algorithm can group better

than the AGNES algorithm and the k-means algorithm appearing in the range of

0.6 to 0.8 in the moon datasets and 0.4 to 0.8 for the circle datasets using the

silhouette measurement as shown in Figure 4.6 and Figure 4.7. The x-axis of this

line chart represents the number of generated clusters and the y-axis represents the

silhouette score. Figure 4.8, Figure 4.9 and Figure 4.10 show the two-dimensional

simulated results by two, three, and four clusters of the EAC algorithm. The

silhouette value is higher than the k-means and the DBSCAN algorithms in the

range of 0.6 to 0.9 with the similar performance with the AGNES algorithm in

the range of 0.9 to 1.
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Figure 4.6: The silhouette measurement on moon datasets.

Figure 4.7: The silhouette measurement on circle datasets.
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Figure 4.8: The silhouette measurement on two clusters datasets.

Figure 4.9: The silhouette measurement on three clusters datasets.
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Figure 4.10: The silhouette measurement on four clusters datasets.

The overall results of the experiment via the rand index measurement show

that the EAC algorithm can group the moon datasets and the circle datasets as

close to the DBSCAN algorithm in the range of 0.9 to 1 and the EAC algorithm

can grouped better than the AGNES algorithm and the k-means algorithm in the

range of 0.6 to 0.8 in the moon datasets and 0.5 to 0.8 for the circle datasets

using the rand index measurement as shown in Figure 4.11 and Figure 4.12. The

x-axis of this line chart represents the number of generated clusters and the y-axis

represents the rand index score. Figure 4.13, Figure 4.14 and Figure 4.15 show

the two-dimensional simulated results by two, three, and four clusters of the EAC

algorithm. The rand index score is higher than the k-means and the DBSCAN

algorithms in the range of 0.5 to 0.9, having the similar performance with the

AGNES algorithm in the range of 0.9 to 1 that data points in the cluster are more

precisely partitioned than other algorithms.
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Figure 4.11: The rand index measurement on moon datasets.

Figure 4.12: The rand index measurement on circle datasets.
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Figure 4.13: The rand index measurement on two clusters datasets.

Figure 4.14: The rand index measurement on three clusters datasets.
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Figure 4.15: The rand index measurement on four clusters datasets.

4.2 Real Datasets

Fourteen real-world datasets from UCI Machine Learning Repository to test

the performance of the clustering algorithms [13]. The details of the UCI dataset

are as follows.

4.2.1 Iris

Iris dataset contains 150 data points and each species of iris dataset contains

fifty data points. This dataset is characterized by the width and length of the

sepals and petals [14].

4.2.2 Seeds

Seeds dataset contains 210 data points, a sample of three varieties wheat:

Kama, Rosa, and Canadian. Each species contains seventy data points for testing

the internal structures using soft X-ray with seven parameters of the wheat, such as
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area, perimeter, compactness, length of the kernel, width of the kernel, asymmetry

coefficient, and the kernel groove [15].

4.2.3 Wine

Wine dataset contains 178 data points, is the result of three chemical analysis

of three different wine. It also uses thirteen conditions to analyze each wine type,

such as alcohol, color intensity, and total phenols [16].

4.2.4 Ecoli

Ecoli dataset contains 336 data points. It is a case study of the growth

of E.coli bacteria by analyzing its internal compounds, such as the amino acid,

lipoproteins, and periplasmic proteins [17].

4.2.5 Balance Scale

Balance Scale dataset contains 625 data points. This dataset is generated

to model the balance scale of the right, left, or both sides are balanced. The

considered attributes are weight and distance on the left and weight and distance

on the right [18].

4.2.6 Teaching Assistant Evaluation

Teaching Assistant Evaluation (TEA) dataset contains 151 data points.

This dataset is an assessment of the teaching performance at the University of

Wisconsin-Madison, based on course, types of the semester, class size, and class

attribute [19].
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4.2.7 Zoo

Zoo dataset contains 101 data points. This dataset is a description of each

animal in the zoo, which consists of seventeen attributes, such as teeth, hair, eggs,

and milk [20].

4.2.8 Sonar

Sonar dataset contains 208 data points. This dataset is a form of sonar

reflection from a metal and a rock, which consists of sixty numbers representing

the energy values within a specific frequency range over a period of time [21].

4.2.9 Vehicle

Vehicle dataset contains 946 data points. This dataset is a collection of pho-

tographs, which incorporate the shape features extracted from the silhouettes of

the objects to distinguish 3-dimensional objects within the 2-dimensional images,

such as the compactness, distance circularity, and radius ratio [22].

4.2.10 Libars Movement

Libars movements dataset contains 360 data points. This dataset is the data

of hand movements in LIBRAS by considering the coordinates of the movement

with ninety features [23].

4.2.11 Glass

Glass dataset contains 214 data points. This dataset is a component in glass

to study the classification of glass by considering compounds, such as Aluminum,

Silicon, Potassium, Calcium, and Barium [24].
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4.2.12 Yeast

Yeast dataset contains 1484 data points. This dataset is a study of the yeast

to determine the position of proteins, such as the score of discriminant analysis of

nuclear and non-nuclear proteins [17].

4.2.13 Heart Disease

Heart disease dataset contains 303 data points. This dataset is the patient’s

heart disease data used to analyze the symptom by considering seventy-five data

such as gender, age, and chest pain location [25].

4.2.14 Haberman

Haberman dataset contains 306 data points. This dataset includes case stud-

ies of patients who had surgery for breast cancer based on age, year of operation,

patient year, and number of positive axillary nodes [26].

These UCI datasets that are randomized the data points in each new class

can be summarized as Table 4.2.
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Datasets Number of data points Number of attributes

Iris 150 4

Seeds 210 7

Wine 178 3

Ecoli 336 8

Balance Scale 625 4

TAE 151 5

Zoo 101 17

Sonar 208 60

Vehicle 946 18

Libars Movement 360 90

Glass 214 10

Yeast 1484 8

Heart Disease 303 75

Haberman 306 3

Table 4.2: The summary of the real-world datasets from UCI Machine Learning Repos-
itory.

4.2.15 Parameter Setting

The AGNES, k-means, DBSCAN, and EAC algorithms are applied to UCI

datasets and compared their results. The number of clusters are defined for the

EAC algorithm, the AGNES algorithm with the single linkage method and the k-

means algorithm. The DBSCAN algorithm uses Esp = 0.2, MinPts = 5, which is

computed from the principal component analysis (PCA). It is a simple yet popular

and useful linear transformation technique [27, 28].



58

4.2.16 Results Analysis

The EAC algorithm and three algorithms were tested using the 14 UCI

datasets from Table 4.2. By comparing the performance of the UCI datasets, the

results show that the EAC algorithm can be grouped the datasets with complex

shape. So, the EAC algorithm is better than the AGNES, k-means, and DBSCAN

algorithms. There are also important observations about the performance of the

following UCI datasets as following in Figure 4.16. It shows the rand index scores

of all 14 UCI datasets. The x-axis of this line chart represents the UCI datasets

and the y-axis represents the rand index score. The EAC algorithm shows the rand

index scores close to the AGNES algorithm in Iris, Seeds, Wine, Ecoli, Balance,

TAE, Zoo, Sonar, Vehicle, Libras, Glass, Yeast, and Heart. The EAC algorithm

shows lower rand index scores in Glass than the k-means algorithm. Finally, the

EAC algorithm shows higher rand index scores than the DBSCAN algorithm for

all UCI datasets.

Figure 4.16: The rand index measurement on UCI datasets.
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Figure 4.17 shows the silhouette scores of all 14 UCI datasets. The x-axis

of this line chart represents the UCI datasets and the y-axis represents the sil-

houette score. The EAC algorithm shows higher silhouette scores in Iris, Seeds,

Wine, Ecoli, Balance, Zoo, and Glass than the AGNES algorithm. Moreover, the

EAC algorithm shows higher rand index scores than the k-means and DBSCAN

algorithms for all UCI datasets.

Figure 4.17: The rand index measurement on UCI datasets.



CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we have introduced a new clustering algorithm named EAC

(Extreme Anomalous Clustering) algorithm, which can cluster the datasets with

complex shapes, such as the moon datasets and the circle datasets and different

densities and sizes in Figure 5.1.

Figure 5.1: The datasets with different shapes.

The discussion on the comparison of three algorithms, including the AGNES,

k-means, and DBSCAN algorithms with the EAC algorithm is provided below.

• AGNES is an algorithm that builds the hierarchy of clusters via the single

linkage method. This algorithm starts with all data points assigned to a

cluster of their own. Then two nearest clusters are merged into one clus-

ter. This algorithm terminates when there is only a single cluster. Even

though both the AGNES algorithm and the EAC algorithm use the same

clustering steps based on the connectivity-based method, but the EAC algo-

rithm shows superior performance due to the EAS score which can capture
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irregular cluster shapes. However, the performance on UCI datasets of both

algorithms is the same. So UCI dataset may not contain strange cluster

shapes of data points.

• k-means is an iterative clustering algorithm that aims to find the local max-

imum in each iteration. The results from the experiment show that k-means

fail to group moon datasets and circular datasets. It is far worse than

the EAC algorithm as expected. This algorithm can not effectively group

datasets for UCI datasets due to the convexity design of the algorithm.

• DBSCAN partitions various different density regions and assigns the data

points within these regions into the same cluster. For moon datasets and

circular datasets, this algorithm can be segmented close to the EAC algo-

rithm and segmented incorrectly with normal datasets. This algorithm is

worse for clustering with UCI datasets which may cause by its global setting

of Eps and MinPts, while the EAC algorithm requires no such setting. So

the EAC algorithm can locally group data points freely according to their

distances.

5.2 Future work

One weak point of the EAC algorithm is the selection of the representative

point of the cluster. If the data points are overlapping, the representative point is

too far away from the center of the cluster and the clustering is faulty. Moreover,

hyper-parameter should be eliminated to make the EAC algorithm automatic. In

addition, the EAC algorithm should be tested with other clustering methods, such

as k-medroid algorithm, CURE algorithm, and Mean-shift algorithm.
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APPENDIX A : Extreme Anommalos Clustering algorithm code.

1 def d2(p, q):

2 ''' compute the Euclidean distance between p and q assuming that

p and q have the same dimension'''

3 return ma.sqrt(sum([(p[i]-q[i])**2 for i in range(len(p))]))

4

5 ###############################################################

6

7 def EAS_compute(distance_D):

8 ''' Compute all extreme anomalous scores according to a distance

matrix, distD'''

9 EAS = np.array([min(np.delete(distance_D[i],i)) for i in range(n

)])

10 ind = [np.argwhere(distance_D[i] == EAS[i]) for i in range(n)]

11 ind_EAS = [(i, int(k)) for i in range(len(ind)) for j in range(

len(ind[i])) for k in ind[i][j]]

12 EAS_idx = [(EAS[i[0]], i) for i in [ind_EAS[j] for j in range(

len(ind_EAS))]]

13 for i in EAS_idx:

14 if i[1][0] == i[1][1]:

15 EAS_idx.remove(i)

16 return EAS, EAS_idx

17

18 ###############################################################

19

20 def Min_EAS(EAS_idx):

21 # Determine the minimum and maximum EAS of the current ED

22 minEAS = min(EAS_idx)

23 idx_min = []

24

25 for i in EAS_idx:

26 if i[0] == minEAS[0]:
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27 idx_min.append(i[1][0])

28 idx_min.append(i[1][1])

29 else:

30 idx_min.append(minEAS[1][0])

31 idx_min.append(minEAS[1][1])

32 return minEAS[0], list(set(idx_min))

33

34 ###############################################################

35

36 def MinMax_EAS(ED):

37 # Determine the minimum and maximum EAS of the current ED1

38 minEAS = min(ED)

39 indmin1 = []

40 indmin2 = []

41 for i in ED:

42 if i[0] == minEAS[0]:

43 indmin2.append(i[1][0])

44 indmin2.append(i[1][1])

45 indmin1.append(i[1])

46 return minEAS[0], indmin1, list(set(indmin2))

47

48 ###############################################################

49

50 def dist_merge(idx_min, distance_D, eps, P_update):

51 dist_p_i = []

52 dist_p_j = []

53

54 PP = [i for i in P_update if i != idx_min[0] and i != idx_min

[1]]

55

56 for i in distance_D[idx_min[0]][PP]:

57 if i < eps:

58 dist_p_i.append(i)
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59 for j in distance_D[idx_min[1]][PP]:

60 if j < eps:

61 dist_p_j.append(j)

62 return dist_p_i, dist_p_j

63

64 ###############################################################

65

66 def merge(idx_min, dist_p_i, dist_p_j):

67

68 if len(dist_p_i) == len(dist_p_j):

69 p_leave = idx_min[1]

70 p_remain = idx_min[0]

71 elif len(dist_p_i) < len(dist_p_j):

72 p_leave = idx_min[1]

73 p_remain = idx_min[0]

74 else:

75 p_leave = idx_min[0]

76 p_remain = idx_min[1]

77 return p_remain, p_leave

78

79 ###############################################################

80

81 def Drop_out(distance_D, EAS_idx, P_update, p_leave):

82 P_update = [i for i in P_update if i != p_leave]

83 distance_D_new = distance_D[P_update][:, P_update]

84 EAS_idx = [j for j in EAS_idx if j[1][0] != p_leave]

85 return distance_D_new, P_update, EAS_idx

86

87 ###############################################################

88

89 def Update_EAS(EAS_idx, p_leave, distance_D, P_update, index_cut

):

90 '''Update extreme anomalous score (EAS)'''
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91 UpdateList = [(EAS_idx[i],i) for i in range(len(EAS_idx)) if

EAS_idx[i][1][1] == p_leave]

92 for i in range(len(UpdateList)):

93 v, ind = UpdateList[i]

94 EAS_idx_new = min([distance_D[v[1][0]][j] for j in P_update if j

!= v[1][0]])

95 new_index = np.argwhere(distance_D[v[1][0]] == EAS_idx_new)

96 new_index = [i for i in new_index if i in P_update]

97 a = [list(j) for j in new_index]

98 index_cut.append(p_leave)

99 for index in index_cut:

100 b = [j[0] for j in a if j[0] != v[1][0] and j[0] != index]

101 EAS_idx[ind] = (EAS_idx_new, (v[1][0], b[0]))

102 new_EAS = []

103 for i in EAS_idx:

104 if i not in new_EAS:

105 new_EAS.append(i)

106 return new_EAS, UpdateList

107

108 ###############################################################

109

110 def Update_Cluster(p_i, p_j, Cluster):

111 idx1 = idx2 = None

112 for i in range(len(Cluster)):

113 if p_i in Cluster[i]:

114 idx1 = i

115 if p_j in Cluster[i]:

116 idx2 = i

117 if idx1 == idx2:

118 Cluster.append({p_i, p_j})

119 elif idx1 == None:

120 Cluster[idx2].add(p_i)

121 elif idx2 == None:
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122 Cluster[idx1].add(p_j)

123 else:

124 Cluster[idx1].update(Cluster[idx2])

125 Cluster.remove(Cluster[idx2])

126 return Cluster

127

128 ###############################################################

129

130 def Final_cluster(P, Cluster):

131 '''Update Cluster if len(P) < 3'''

132 P_cluster = []

133 for i in range(len(Cluster)):

134 P_cluster.append(set(P) - Cluster[i])

135 x = set.intersection(*P_cluster)

136 P_cluster = [{i} for i in x]

137 Cluster = Cluster + P_cluster

138 return Cluster

139

140 ###############################################################

141

142 def Create_cluster(n, Cluster):

143 labels_ESC = np.zeros(n) - 1

144 for i in range(len(Cluster)):

145 labels_ESC[list(Cluster[i])] = i + 1

146 return labels_ESC

147

148 ###############################################################

149

150 def Cluster_plot(D, labes_ESC):

151 _, ax = plt.subplots(1,2,figsize = (10, 5), sharex='all', sharey

='all')

152 ax[0].scatter(D[:,0],D[:,1], c = labels_ESC, cmap = 'viridis',

edgecolors = 'face')
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153 ax[1].scatter(D[labels_ESC!=-1,0],D[labels_ESC!=-1,1], c =

labels_ESC[labels_ESC!=-1])

154

155 plt.show()

156

157 ###############################################################

158

159 def ESC(D, c):

160

161 # Distance matrix of data set D

162 distance_D = distance_matrix(D, D)

163

164 # Index point in data set D

165 P = range(len(distance_D))

166 P_update = list(P)

167 n = D.shape[0]

168

169 EAS, EAS_idx = EAS_compute(distance_D)

170 A = np.mean(EAS)

171 minEAS, idx_min = Min_EAS(EAS_idx)

172

173 dropPoints = {}

174 Cluster = []

175 index_cut = []

176

177 while len(final_cluster) == c:

178

179 dist_p_i, dist_p_j = dist_merge(idx_min, distance_D, A, P_update

)

180

181 p_remain, p_leave = merge(idx_min, dist_p_i, dist_p_j)

182

183 distance_D_new, P_update, EAS_idx = Drop_out(distance_D, EAS_idx
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, P_update, p_leave) # Update distance matrix, index point,

EAS

184

185 EAS_idx, UpdateList = Update_EAS(EAS_idx, p_leave, distance_D,

P_update, index_cut) # Update extreme anomalous score (EAS)

186

187 dropPoints[p_leave] = p_remain # update dropPoints

188

189 Cluster = Update_Cluster(p_leave, p_remain, Cluster) # Update

cluster

190

191 minEAS, idx_min = Min_EAS(EAS_idx) # Find the minimum of EAS

192

193 final_cluster = Final_cluster(P, Cluster)

194

195 if final_cluster == c :

196 labels_ESC = Create_cluster(n, Cluster)

197 Cluster_plot(D, labels_ESC)

198

199 labels_ESC = Create_cluster(n, Cluster)

200 Cluster_plot(D, labels_ESC)

201 number_cluster = len(Cluster)

202 return labels_ESC, number_cluster
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