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CHAPTER I

INTRODUCTION

Combinatorial game [3] is a 2-person game with perfect information and no

change moves. Such a game is determined by a set of states, including the initial

state which is a state at the beginning of the game. Play turns from one state

to another, with the players usually alternating turns, until the terminal state is

reached. The terminal state is a state that no moves are possible. After that one

player is declared the winner and the other the loser. However, two players can

draw if no one win.

Dots and Boxes game [1] is one of combinatorial games, the game starts with an

(m+1)×(n+1) array of dots and 0 points for both players. Two players alternately

turn by drawing a vertical or horizontal line between two adjacent dots. A player

who draws the fourth line of k square boxes of size 1× 1 earns k points and draws

one more line. The game ends when every two adjacent dots has a line and a player

having the most points wins. The game has been studied by several researchers,

for examples, Lenhardt [5] analyzed 1× n Dots and Boxes game and Buzzard and

Ciere [2] constructed a highly efficient algorithm for playing Dots and Boxes game

optimally. In 2016, Ratiprasit, Simadhamnand and Teeravichayangoon derived

Dots and Hexagons game from Dots and Boxes game. They changed square boxes

to hexagonal boxes and used the same rules of playing as in the Dots and Boxes

game.

In this thesis, we modify their games into Closing Octagons game and formulate

the game into the new game using graph. In Chapter II, we give some definitions

about graphs and combinatorial games. In Chapter III, we introduce Closing Oc-

tagons game and the game that is formulated using graph, give some terminologies

involving the game, and analyze patterns of graphs, states, moves and turns that
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appear in the game. In Chapter IV, we give strategies of playing the game for each

player to win or draw or get the most possible points in some situations and some

games of size 1× n, 2× n and 3× 3.



CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions about graphs and combinatorial games

that are used in this thesis.

2.1 Graph Theory

We use several graph terminologies in this thesis. Some of them are commonly

used in several graph theory textbooks, for example, [4] and [7]. However, we

slightly modify several terms by using multiset.

Definition 2.1. A graph is a pair (V,E) where V is a finite set called a vertex set

or a set of vertices, and E is a finite multiset called an edge set or a set of edges

such that each edge is a multiset of 2 vertices (not necessarily distinct).

We usually use V (G) and E(G) to denote the vertex set and the edge set of a

graph G, respectively.

Definition 2.2. Let G be a graph. An edge e of G is a loop if there is a vertex v

such that e = {v, v}, and e is a simple edge if e is not a loop and occurs once in

E(G).

Definition 2.3. Let G be a graph. A vertex v and an edge e of G are incident if

v ∈ e, and two vertices u and v of G are adjacent if there is an edge incident to

both u and v.

Graph are represented by drawing a dot for each vertex, and an arc joining two

dots u and v for each edge incident to both u and v.

Example 2.4. Let G be a graph that is shown in Figure 2.1. Then, V (G) =

{u, v, w, x, y} and E(G) = {{v, v}, {v, w}, {w, y}, {x, y}, {x, y}}.
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Figure 2.1: A graph G

Definition 2.5. A graph G is a simple graph if all edges of G are simple edges.

Definition 2.6. Let v be a vertex of a graph G. The degree of v, denoted dG(v),

is the number of times such that v occurs in edges of E(G), and the weight of v,

denoted wG(v), is the number of edges incident to v.

Definition 2.7. Let G be a graph. A vertex v of G is an isolated vertex if dG(v) =

0, and v is a leaf if dG(v) = 1.

Lemma 2.8. [7] For any graph G, the sum of degree of all vertices of G equals

twice of the number of edges of G.

Definition 2.9. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and

E(H) ⊆ E(G).

Definition 2.10. Let G and H be graphs. An isomorphism between G and H is

a bijection f from V (G) to V (H) such that for each two vertices u, v ∈ V (G), the

number of edges incident to both u and v of G equals the number of edges incident

to both f(u) and f(v) of H. Two graphs G and H are isomorphic if there is an

isomorphism between G and H.

Definition 2.11. A graph G is a connected graph if for each two vertices u and

v of G, there is a list u = v0, v1, v2, ..., vk = v of vertices of G such that for all

i ∈ {1, 2, 3, ..., k}, vi−1 and vi are adjacent.

Definition 2.12. A graph K is a component of a graph G if K is a maximal

connected subgraph of G, i.e., there is no connected subgraph H of G such that

H ̸= K, H ̸= G, and H contains K.
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Definition 2.13. [4] A trivial graph is a graph having exactly 1 vertex and no

edges.

Definition 2.14. [4] Let k ∈ N. A bouquet graph or k-bouquet graph is a graph

having exactly 1 vertex and k loops.

Figure 2.2 shows examples of bouquet graphs.

A 1-bouquet graph A 2-bouquet graph

A 3-bouquet graph A 4-bouquet graph

Figure 2.2: Examples of bouquet graphs

Definition 2.15. [4] Let k ∈ N. A path graph or k-path graph is a graph having

exactly k + 1 vertices v0, v1, v2, ..., vk and k edges e1, e2, e3, ..., ek such that for

all i ∈ {1, 2, 3, ..., k}, ei is incident to vi−1 and vi.

Figure 2.3 shows examples of path graphs.

A 1-path graph A 2-path graph

A 3-path graph A 4-path graph

Figure 2.3: Examples of path graphs

Definition 2.16. [4] Let k ∈ N. A graph G with k + 1 vertices is a pseudopath

graph or k-pseudopath graph if G contains a k-path subgraph P such that for each

edge e of G, e is either a loop of G or an edge of P .
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Figure 2.4 shows an example of pseudopath graph.

Figure 2.4: An example of pseudopath graph

Definition 2.17. [4] Let k ∈ N. A cycle graph or k-cycle graph is a graph having

exactly k vertices v1, v2, v3, ..., vk and k edges e1, e2, e3, ..., ek such that e1 is

incident to v1 and vk, and for all i ∈ {2, 3, 4, ..., k}, ei is incident to vi−1 and vi.

A cycle graph C is called a simple cycle graph if C is a simple graph. Figure

2.5 shows examples of cycle graphs.

A 1-cycle graph A 2-cycle graph

A 3-cycle graph A 4-cycle graph

Figure 2.5: Examples of cycle graphs

Lemma 2.18. [6] Let G be a connected graph such that for each vertex v of G,

dG(v) = 2. Then, G is a cycle graph.

Definition 2.19. Let G be a graph with k edges and e be an edge of G. A

subgraph G − e of G is a graph with k − 1 edges such that V (G − e) = V (G),

E(G− e) ⊆ E(G), and the number of times that e occurs in E(G− e) is less than

the number of times that e occurs in E(G) by 1.
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Definition 2.20. Let G be a graph. An edge e of G is a cut-edge if the number

of components of G− e is greater than the number of components of G.

Lemma 2.21. [4] Let G be a graph. An edge e of G is a cut-edge if and only if

there is no cycle subgraph C of G such that e is an edge of C.

Lemma 2.22. [4] Let G be a connected graph and e be a cut-edge of G. Then,

G− e has exactly 2 components.

Definition 2.23. [7] A connected graph G is a tree if G contains no cycle sub-

graphs.

Figure 2.6 shows an example of tree.

Figure 2.6: An example of Tree

Lemma 2.24. [7] Every non-trivial tree has at least 2 leaves.

Theorem 2.25. Let T be a non-trivial tree and e be an edge of T . Then, T − e

has exactly 2 components such that each component is a tree.

Proof. By Lemma 2.21, e is a cut-edge of T . By Lemma 2.22, T − e has exactly

2 components. Since T contains no cycle subgraphs, T − e contains no cycle

subgraphs. Hence, each component of T − e is a tree.

2.2 Combinatorial Game Theory

This thesis constructs a new combinatorial game by modifying the existing

one. Thus, the following definitions and examples help the reader understand

more about it.
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Definition 2.26. [3] A combinatorial game is a game determined by a finite set

called a set of states, and the game satisfies the following conditions.

(1) There are two players called Player I and Player II, and Player I is the

opponent of Player II and vice versa.

(2) The set of all possible states is finite.

(3) Rules of playing game are specified for actions of both players, each action

is called a turn.

(4) Two players alternate turning from one state to another.

(5) The game ends when there is no possible turn satisfying the rules of playing

game, and either one player wins and the other loses or two players draw.

Note that S0, S1, S2, ..., St denote states of a game G with t+ 1 states.

By (4) and (5) of Definition 2.26, if G is a combinatorial game with t+1 states,

then there is a list τ1, τ2, τ3, ..., τt of turns such that for all i ∈ {1, 2, 3, ..., t}, τi is

a turn from Si−1 to Si, τi is Player I’s turn if i is odd, τi is Player II’s turn if i is

even, and there is no possible turn from St.

Definition 2.27. For any combinatorial game G with t+ 1 states, S0 and St of G

are called the initial state and the terminal state, respectively.

Definition 2.28. [3] A combinatorial game G is an impartial game if the rules of

G make no distinction between players, otherwise G is called a partizan game.

Example 2.29. Any Rock-Paper-Scissors game is not a combinatorial game, the

game does not satisfy (4) of Definition 2.26 because both players reveal their choices

at the same time.

Example 2.30. Tic-Tac-Toe game is a game for two players starting with a 3× 3

array of spaces. Two players alternately turn by Player I marks sign # and Player

II marks sign × in a space. The game ends when there is a vertical, horizontal or

diagonal row that is marked by the same sign, or every spaces is marked by a sign.

The player who marks three of their sign in a vertical, horizontal, or diagonal row

wins.
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By the rule of the game, we obtain that any Tic-Tac-Toe game is a partizan

combinatorial game.

Let G be a Tic-Tac-Toe game that is shown in Figure 2.7. Then, G has 9 states

and 8 turns, and Player I loses and Player II wins.

S0

Player I’s turn

S1

Player II’s turn

S2

Player I’s turn

S3

Player II’s turn

S4

Player I’s turn

S5

Player II’s turn

S6

Player I’s turn

S7

Player II’s turn

S8

Figure 2.7: A Tic-Tac-Toe game G

Example 2.31. Let m, n ∈ N. Dots and Boxes game [1] or m×n Dots and Boxes

game is a game for two players starting with an (m + 1) × (n + 1) array of dots

and 0 points for both players. Two players alternately turn by the following rules.

(1) A player draws one vertical or horizontal line between two adjacent dots.

(2) A player who draws the fourth line of k square boxes of size 1× 1 earns k

points and draws one more line.
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The game ends when every two adjacent dots has a line, and the player having

the most points wins.

By the rule of the game, we obtain that any Dots and Boxes game is an impartial

combinatorial game.

Let G be a 2 × 2 Dots and Boxes game that is shown in Figure 2.8. Then, G

has 11 states and 10 turns, and Player I loses and Player II wins.

S0

Player I’s turn

S1

Player II’s turn

S2

Player I’s turn

S3

Player II’s turn

S4

Player I’s turn

S5

Player II’s turn

S6

Player I’s turn

S7

Player II’s turn

S8

Player I’s turn

S9

Player II’s turn

S10

Figure 2.8: A 2× 2 Dots and Boxes game G



CHAPTER III

CLOSING OCTAGONS GAME

In this chapter, we introduce the definition of Closing Octagons game and for-

mulate this game into the new game using graph. Several terminologies involving

our Closing Octagons game are given and some analysis of the game are provided.

3.1 Definition of Closing Octagons Game

In this section, we give a definition of our Closing Octagons game and their

relevant terminologies.

First, let us introduce a Closing Octagons game of type I.

Definition 3.1. Let m, n ∈ N. Closing Octagons game of type I or m×n Closing

Octagons game of type I is a game for two players starting with an m×n array of

octagons such that every two adjacent octagons has one common side and 0 points

for both players. Two players alternately turn by the following rules.

(1) A player move by coloring of one side of an octagon.

(2) A player who colors the eighth side of k octagons earns k points and takes

one more move.

The game ends when every side of octagons has been colored, and the player

having the most points wins.

By Definition 3.1, a move is a coloring one side of an octagon and a turn is a

possible list of consecutive move(s) by one player that satisfies the rules of playing

the game.

Definition 3.2. For any m×n Closing Octagons game G of type I, m×n is called

the size of G.
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Definition 3.3. For any Closing Octagons game G of type I, a state of G is a triple

(A, p1, p2) where A, p1 and p2 are an array of octagons with colored-sides and points

of Player I and Player II that are changed by turns, respectively, including (A0, 0, 0)

where A0 is an array of octagons with no colored-sides.

To be specific, we use A(S) to denote the array of octagons with colored-sides

of a state S of a Closing Octagons game of type I.

Remark 3.4. Any Closing Octagons game of type I is an impartial combinatorial

game.

Example 3.5. Let G be a 2× 2 Closing Octagons game of type I that is shown in

Figure 3.2. Then, G has 26 states and 25 turns.

A turn from S19 to S20 gives Player II 2 points, and a turn from S24 to S25

gives Player I 2 points. Then, two players draw.
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II

A(S2)

I

A(S3)

II

A(S4)

I

A(S5)

II

A(S6)

I

A(S7)

II

A(S8)

I

A(S9)

II

A(S10)

I

A(S11)

II

A(S12)
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A(S13)

II

A(S14)

I

A(S15)

II

A(S16)

I

A(S17)

II

A(S18)

I

A(S19)

II

A(S20)

I

A(S21)

II

A(S22)

I

A(S23)

II

A(S24)

I

A(S25)

Figure 3.2: A 2× 2 Closing Octagons game G of type I

Next, we formulate an m × n Closing Octagons game of type I into the new

game using graphs. We construct the graph (G0)m×n representing the m×n array

of octagons with no colored-sides. Let us regard the set of octagons as the vertex

set of (G0)m×n, and the edge set is the set of sides of octagons such that e is a

simple edge incident to vertices u and v if e is a common side of octagons u and

v, and e is a loop incident to a vertex v if e is an in-common side of an octagon

v. Thus, we get the new game starting with (G0)m×n called an m × n Closing

Octagons game of type II.

Definition 3.6. Let m, n ∈ N. Closing Octagons game of type II or m×n Closing

Octagons game of type II is a game for two players starting with the graph (G0)m×n

and 0 points for both players. Two players alternately turn by the following rules.

(1′) A player move by removing one edge of the graph.
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(2′) A player who removes the last edge of k vertices earns k points and takes

one more move.

The game ends when the graph contains no edges, and the player having the

most points wins.

By Definition 3.6, a move is a removal of one edge and a turn is a possible list

of consecutive move(s) by one player that satisfies the rules of playing the game.

Definition 3.7. For any m × n Closing Octagons game G of type II, m × n is

called the size of G.

Definition 3.8. For any Closing Octagons game G of type II, a state of G is a

triple (G, p1, p2) where G, p1 and p2 are a graph and points of Player I and Player

II that are changed by turns, respectively, including ((G0)m×n, 0, 0).

To be specific, we use G(S) to denote the graph of a state S of a Closing

Octagons game of type II.

G(S0)

I

G(S1)

II

G(S2)

I

G(S3)

II

G(S4)

I

G(S5)

II

G(S6)

I

G(S7)

II

G(S8)

I

G(S9)

II

G(S10)

I

G(S11)

II

G(S12)
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I

G(S13)

II

G(S14)

I

G(S15)

II

G(S16)

I

G(S17)

II

G(S18)

I

G(S19)

II

G(S20)

I

G(S21)

II

G(S22)

I

G(S23)

II

G(S24)

I

G(S25)

Figure 3.4: A 2× 2 Closing Octagons game G of type II

Remark 3.9. Any Closing Octagons game of type II is an impartial combinatorial

game.

Example 3.10. Let G be a 2× 2 Closing Octagons game of type II that is shown

in Figure 3.4. Then, G has 26 states and 25 turns, and two players draw.

A Closing Octagons game of type II that is played on a graph theoretic formu-

lation is easier to consider and we can inherit some terminologies in graph theory

to use with the game. From now on, as we talk about a Closing Octagons game,

we refer to the Closing Octagons game of type II.

Definition 3.11. Let G be a graph. A move µ of G is a winning move if µ is a

removal of an edge e of G such that the number of isolated vertices of G − e is

greater than the number of isolated vertices of G.
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By Definition 3.11, we obtain that if G is a Closing Octagons game, a move µ

of G is a winning move if µ gives points to a player.

Remark 3.12. For any Closing Octagons game G, if τ = µ1, µ2, µ3, ..., µk is a turn

having at least 2 moves of G, then

(1) if τ is a turn from some state to the terminal state, then µ1, µ2, µ3, ..., µk

are winning moves, and

(2) if τ is a turn from some state to a non-terminal state, then µ1, µ2, µ3, ...,

µk−1 are winning moves and µk is not a winning move.

Definition 3.13. Let G be a Closing Octagons game. A non-terminal state S of

G is a normal state if there is no possible turn containing a winning move from S

to another state, otherwise S is called a strategic state.

By Definition 3.13, we obtain that if G is a Closing Octagons game, then S0 is

a normal state of G, and a turn from a normal state to another state has exactly

one move.

Example 3.14. According to the Closing Octagons game in Example 3.10, S1, S2,

S3, ..., S18, S20, S21, S22 and S23 are normal states, and S19 and S24 are strategic

states.

Definition 3.15. Let S be a state of a Closing Octagons game. A component K

of G(S) is a weak component if there is a possible turn from S to another state

such that all edges of K are removed, otherwise K is called a strong component.

Definition 3.16. Let S be a state of a Closing Octagons game. A strong compo-

nent K of G(S) is a chain if for each edge e of K, all components of K − e are

weak components.

In general, if there is a possible turn from a normal state to another normal

state, then players often make the turn. Because, if some player turns from a

normal state to a strategic state, then the opponent can earn some points from

this strategic state. Moreover, if all components of the graph of a strategic state
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are weak components, then players often remove all edges of the graph. In order to

analyze a winning strategy, we add more rules into this game and the game with

these additional rules is called a normal game.

Definition 3.17. A Closing Octagons game G is a normal game if two players

turn by the following rule.

(3′) If there is a possible turn τ from a state to a normal state, then a player

has to make the turn τ .

(4′) If all components of the graph G of a state are weak components, then a

player has to remove all edges of G.

Example 3.18. Let G be a normal 2 × 2 Closing Octagons game that is shown

in Figure 3.6. Then, S0, S1, S2, ..., S22 are normal states, and S23 and S24 are

strategic states.

G(S0)

I

G(S1)

II

G(S2)

I

G(S3)

II

G(S4)

I

G(S5)

II

G(S6)

I

G(S7)

II

G(S8)

I

G(S9)
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G(S10)

I

G(S11)

II

G(S12)
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G(S14)

I

G(S15)
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G(S16)

I

G(S17)

II

G(S18)

I

G(S19)

II

G(S20)

I

G(S21)

II

G(S22)

I

G(S23)

II

G(S24)

I

G(S25)

Figure 3.6: A normal 2× 2 Closing Octagons game G

Definition 3.19. Let G be a normal Closing Octagons game. A normal state S

of G is a critical state if there is no possible turn from S to another normal state.

Lemma 3.20. Every normal Closing Octagon game has exactly one critical state.

Proof. Let G be a normal Closing Octagons game. Suppose that Sk1 and Sk2

are critical states of G where k1 < k2. Then, there is a strategic state Sl where

k1 < l < k2 such that Sl+1 is a normal state. Consider a turn which is a list

µ1, µ2, µ3, ..., µk of consecutive moves from Sl to Sl+1 such that µk is a removal of

an edge e incident to u and v (If e is a loop, then u = v.). Then, µk is not a winning

move and G(Sl+1) contains no e. Then, G(Sl+1) is a subgraph of G(Sk1)− e. Since

Sl+1 is a normal state, each removal of an edge of G(Sl+1) incident to u or v is

not a winning move. Then, each removal of an edge of G(Sk1)− e incident to u or

v is not a winning move. Since Sk1 is a normal state, each removal of an edge of
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G(Sk1) is not a winning move. Then, each removal of an edge of G(Sk1)− e is not

a winning move. This implies that there is a possible turn µk from Sk1 to another

normal state. This contradicts the assumption that Sk1 is a critical state of G.

By Lemma 3.20, we obtain that if G is a normal Closing Octagons game with

t + 1 states such that Sk is the critical state, then S0, S1, S2, ..., Sk are normal

states and Sk+1, Sk+2, Sk+3,..., St−1 are strategic states of G.

Example 3.21. According to the normal Closing Octagons game in Example 3.18,

S22 is the critical state.

3.2 Analysis of Closing Octagons Game

In this section, we analyze our game in terms of moves and turns, normal

states and critical states, strong components, weak components and chains.

Theorem 3.22. The number of moves of an m × n Closing Octagons game is

6mn+m+ n.

Proof. Let G be an m × n Closing Octagons game. Then, G(S0) of G has 4

vertices of degree 14, 2(m− 2)+ 2(n− 2) vertices of degree 13, and (m− 2)(n− 2)

vertices of degree 12. Thus, the sum of degree of all vertices of G(S0) equals

14(4)+13(2(m− 2)+2(n− 2))+12(m− 2)(n− 2) = 12mn+2m+2n. By Lemma

2.8, the number of edges of G(S0) is 6mn+m+n. Therefore, the number of moves

of G is 6mn+m+ n.

Theorem 3.23. Let S be a normal state of a normal m × n Closing Octagons

game such that G(S) has exactly k edges.

(1) If k −m− n is even, then a turn from S to another state is Player I’s.

(2) If k −m− n is odd, then a turn from S to another state is Player II’s.

Proof. Let G be a normal m×n Closing Octagons game. Then, S0, S1, S2, ..., S are

normal states. By Theorem 3.22, the number of all moves of G is 6mn+m+n. Since

G(S) has exactly k edges, the number of moves from S0 to S is 6mn+m+ n− k.
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Since a turn from a normal state to another state has exactly 1 move, the number

of turns from S0 to S is 6mn + m + n − k. Obviously, 6mn + m + n − k and

k −m− n have the same parity. Therefore,

(1) if k −m− n is even, then a turn from S to another state is Player I’s, and

(2) if k −m− n is odd, then a turn from S to another state is Player II’s.

The following theorems involving states of the normal game.

Lemma 3.24. Let S be a normal state of a normal Closing Octagons game. Then,

G(S) contains no isolated vertices.

Proof. Let G be a normal Closing Octagons game. Then, S0, S1, S2, ..., Sk = S

are normal states. Thus, for all i ∈ {0, 1, 2, ..., k}, there is no possible turn from

Si to Si+1 giving points to a player. This implies that G(S) contains no isolated

vertices.

Theorem 3.25. Let G be a normal Closing Octagons game. A state S of G is a

normal state if and only if for each vertex v of G(S), wG(S)(v) ≥ 2.

Proof. Assume that S is a normal state of G. By Lemma 3.24, G(S) contains no

isolated vertices. Then, for each vertex v of G(S), wG(S)(v) ≥ 1.

To show that for each vertex v of G(S), wG(S)(v) ≥ 2, suppose that there is a

vertex v0 of G(S) such that wG(S)(v0) = 1. Let e0 be an edge incident to v0 and µ0

be a removal of e0. Then, wG(S)−e0(v0) = 0. Thus, µ0 is a winning move of G(S).

This implies that there is a possible turn containing µ0 from S to another state.

This contradicts the assumption that S is a normal state. Hence, for each vertex

v of G(S), wG(S)(v) ≥ 2.

Conversely, assume that S is a state of G such that for each vertex v of G(S),

wG(S)(v) ≥ 2. Let e be arbitrary edge of G(S) and µ is a removal of e. Let v1 and v2

be vertices of G(S) incident to e. If e is a loop, then v1 = v2. If e is a simple edge,

then v1 ̸= v2. Then, wG(S)(v1) ≥ 2 and wG(S)(v2) ≥ 2. Thus, wG(S)−e(v1) ≥ 1 and

wG(S)−e(v2) ≥ 1. Then, µ is not a winning move of G(S). This implies that there

is no possible turn containing a winning move from S to another state. Hence, S

is a normal state.
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Theorem 3.26. Let G be a normal Closing Octagons game. A state S of G is the

critical state if and only if for each vertex v of G(S),

(1) wG(S)(v) ≥ 2, and

(2) if wG(S)(v) ≥ 3, then each edge incident to v is a simple edge, and the

weight of each vertex adjadent to v is 2.

Proof. Assume that S is a critical state of G. Let v be arbitrary vertex of G(S).

By Theorem 3.25, (1) holds.

To show (2), assume that v is a vertex of G(S) such that wG(S)(v) ≥ 3.

First, we show that each edge incident to v is a simple edge. Suppose that there

is a loop l0 of G(S) incident to v. Let µ1 be a removal of l0. Then, wG(S)−l0(v) ≥ 2.

Thus, µ1 is a possible turn from S to a normal state. This contradicts the assump-

tion that S is a critical state. Hence, each edge incident to v is a simple edge.

Next, we show that the weight of each vertex adjacent to v is 2. Suppose

that there is a vertex v0 of G(S) adjacent to v such that wG(S)(v0) ≥ 3. Let e0

be a simple edge of G(S) incident to v and v0 and µ2 be a removal of e0. Since

wG(S)(v) ≥ 3 and wG(S)(v0) ≥ 3, wG(S)−e0(v) ≥ 2 and wG(S)−e0(v0) ≥ 2. Then, µ2

is a possible turn from S to a normal state. This contradicts the assumption that

S is a critical state. Hence, the weight of each vertex adjadent to v is 2.

Conversely, assume that S is a state of G such that (1) and (2) hold. By

Theorem 3.25, S is a normal state. Let e be arbitrary edge of G(S) and µ be a

removal of e. Let v1 and v2 be vertices of G(S) incident to e. By (1), wG(S)(v1) ≥ 2.

If wG(S)(v1) = 2, then wG(S)−e(v1) = 1. If wG(S)(v1) ≥ 3, then by (2), wG(S)(v2) = 2,

and then wG(S)−e(v2) = 1. Thus, µ is a possible turn from S to a strategic state.

Hence, S is a critical state.

Corollary 3.27. Let G be a normal 1×n or 2×2 Closing Octagons game. A state

S of G is the critical state if and only if for each vertex v of G(S), wG(S)(v) = 2.

Proof. For each vertex v of G(S0) of G, the number of simple edges incident to v

is at most 2. Then, Theorem 3.26 implies that a state S of G is the critical state

if and only if for each vertex v of G(S), wG(S)(v) = 2.
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Next, we consider strong components in the graph of states of the game.

Theorem 3.28. Let S be a state of a Closing Octagons game and K be a component

of G(S) such that K is not a 1-cycle component. If K contains no leaves, then K

is a strong component.

Proof. Assume that K contains no leaves. Then, the weight of each vertex of K

is at least 2. Thus, for each edge e of K, K − e contains no isolated vertices. This

implies that there is no possible turn from S to another state such that all edges

of K are removed. Therefore, K is a strong component.

By Theorem 3.28, we obtain that if S is a state of a Closing Octagons game

and K is a weak component of G(S), then either K is a 1-cycle component or K

contains a leaf.

Theorem 3.29. Let S be a state of a Closing Octagons game and K be a component

of G(S). If K contains a simple cycle subgraph, then K is a strong component.

Proof. Assume that K contains a simple cycle subgraph C. To show that there

is no possible turn from S to another state such that all edges of K are removed,

suppose that there is a possible turn τ0 from S to another state such that all edges

of K are removed. Let µ0 be a move of τ0 such that µ0 is the first removal of some

simple edge e0 of C. Since e0 is a simple edge of C, the weight of each vertex of K

incident to e0 is at least 2. Then, µ0 is not a winning move of K. This implies that

µ0 is the last move of τ0, and some edges of K are not removed. This contradics

the statement that τ0 is a possible turn from S to another state such that all edges

of K are removed. Therefore, K is a strong component.

The following facts are concerning weak components in the graph of states of

the game.

Lemma 3.30. Let S be a state of a Closing Octagons game. A component K

of G(S) is a weak component if and only if there is a list of consecutive winning

moves of G(S) such that all edges of K are removed.
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Proof. By Definition 3.15, a component K of G(S) is a weak component if and

only if there is a possible turn from S to another state such that all edges of K

are removed. Obviously, a component K of G(S) is a weak component if and

only if there is a list of consecutive winning moves such that all edges of K are

removed.

Theorem 3.31. Let S be a state of a Closing Octagons game and K be a component

of G(S). If K is a tree, then K is a weak component.

Proof. Obviously, a trivial tree is a weak component. Assume that K is a non-

trivial tree with k edges. To prove that there is a list of consecutive winning moves

such that all edges of K are removed, we use the mathematical induction on k.

Basic step: k = 1. K has exactly 1 edge. Then, there is a winning move which

is a removal of the edge of K.

Inductive step: k ≥ 2. Assume that for each non-trivial tree T such that the

number of edges less than k, there is a list of consecutive winning moves such

that all edges of T are removed. By Lemma 2.24, K has at least 2 leaves. Let

v0 be a leaf of K, e0 be an edge of K incident to v0 and µ1 is a removal of e0.

By Corollary 2.25, K − e0 has exactly 2 components such that one component is

a trivial component and the other component K ′ is a non-trivial tree with k − 1

edges. Then, µ1 is a winning move of K. By the induction hypothesis, there is

a list µ2, µ3, µ4, ..., µk of consecutive winning moves such that all edges of K ′ are

removed. This implies that µ1, µ2, µ3, ..., µk is a list of consecutive winning moves

such that all edges of K are removed.

Therefore, K is a weak component.

Corollary 3.32. Let S be a state of a Closing Octagons game and K be a compo-

nent of G(S). If K is a path component, then K is a weak component.

Proof. Assume that K is a path component. Then, K contains no cycle subgraphs.

This implies that K is a tree. By Theorem 3.31, K is a weak component.

Theorem 3.33. Let S be a state of a Closing Octagons game and K be a component

of G(S). If K contains a loop l such that K−l is a tree, then K is a weak component.
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Proof. Assume that K has exactly k edges and contains a loop l0 such that K−l0 is

a tree. Then, l0 is only one loop of K. To prove that there is a list of consecutive

winning moves such that all edges of K are removed, we use the mathematical

induction on k.

Basic step: k = 1. There is a winning move which is a removal of l0 of K.

Inductive step: k ≥ 2. Assume that for each component G containing l0 such

that G − l0 is a tree and the number of edges of G less than k, there is a list of

consecutive winning moves such that all edges of G are removed. By Lemma 2.24,

K − l0 has at least 2 leaves. Then, K has at least 1 leaf. Let v0 be a leaf of K,

e0 be a simple edge of K incident to v0 and µ1 is a removal of e0. Then, v0 and

e − 0 are a leaf and a simple edge of K − l0, respectively. Since K has eaxctly k

edges, K − l0 has exactly k− 1 edges. By Corollary 2.25, (K − l0)− e0 has exactly

2 components such that one component is a trivial component and the other is

a tree with k − 2 edges. Then, K − e0 has exactly 2 components such that one

component is a trivial component and the other component K ′ has exactly k − 1

edges and contains l0 such that K ′− l0 is a tree. Then, µ1 is a winning move of K.

By the induction hypothesis, there is a list µ2, µ3, µ4, ..., µk of consecutive winning

moves such that all edges of K ′ are removed. This implies that µ1, µ2, µ3, ..., µk is

a list of consecutive winning moves such that all edges of K are removed.

Therefore, K is a weak component.

Corollary 3.34. Let S be a state of a Closing Octagons game and K be a compo-

nent of G(S). If K is a pseudopath component having exactly 1 loop, then K is a

weak component.

Proof. Assume that K is a pseudopath component having exactly 1 loop l0. Then,

K − l0 is a path component. Then, K − l0 contains no cycle subgraphs. This

implies that K − l0 is a tree. By Theorem 3.33, K is a weak component.

Finally, we consider the chains in the graph of states of our game.

Lemma 3.35. Let S be a state of a Closing Octagons game and K be a strong

component of G(S). If K contains a leaf, then K is not a chain.
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Proof. Assume that K contains a leaf v0. Suppose that K is a chain. Let e0 be a

simple edge incident to v0 and µ1 be a removal of e0. Then, wK−e0(v0) = 0. Thus,

µ1 is a winning move of K. Since K is a chain, all components of K − e0 are weak

components. Then, there is a list µ2, µ3, ..., µk of consecutive winning moves such

that all edges of K − e0 are removed. This implies that µ1, µ2, µ3, ..., µk is a list

of consecutive winning moves such that all edges of K are removed. Then, K is a

weak component. This contradicts the statement that K is a chain. Therefore, K

is not a chain.

Theorem 3.36. Let S be a state of a Closing Octagons game. A pseudopath

component K of G(S) is a chain if and only if K has exactly 2 loops and no leaves.

Proof. Assume that K is a pseudopath chain of G(S). By Lemma 3.35, K contains

no leaves. Then, K has at least 2 loops.

To show that K has exactly 2 loops. Suppose that K contains at least 3 loops.

Then, there is a loop l0 of K such that K − l0 contains no leaves. By Theorem

3.28, K − l0 is a strong component. This contradicts the assumption that K is a

chain. Hence, K has at least 2 loops.

Conversely, assume that K is a pseudopath component of G(S) such that K

has exactly 2 loops and no leaves. Then, K is isomorphic to a graph that is shown

in Figure 3.7. By Theorem 3.28, K is a strong component. Let e be arbitrary

edge of K. If e is a loop, then K − e is a pseudopath component having exactly 1

loop. If e is a simple edge, then K − e has exactly 2 components such that each

component is a pseudopath component having exactly 1 loop. By Corollary 3.34,

all components of K − e are weak components. Hence, K is a chain.

By Theorem 3.36, we can conclude that a k-pseudopath chain is a graph iso-

morphic to a graph that is shown in Figure 3.7.

Figure 3.7: A pseudopath chain
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Lemma 3.37. Let S be a state of a Closing Octagons game. If K is a strong

component of G(S) such that for each vertex v of K, wK(v) = 2. Then, K is a

2-bouquet component, a pseudopath chain or a simple cycle component.

Proof. Assume that K is a strong component of G(S) such that for each vertex v

of K, wK(v) = 2. Then, either K is a simple component or K contains a loop.

Case 1. K is a simple component. Then, for each vertex v of K, dK(v) = 2.

By Lemma 2.18, K is a simple cycle component.

Case 2. K contains a loop. Then, K is not a simple cycle component. To show

that K is a 2-bouquet component or a pseudopath chain, assume that K is not a

2-bouquet component. Then, K has at least 1 simple edge.

First, we show that K contains no simple cycle subgraphs. Suppose that K

contains a simple cycle subgraph C. Since K is not a simple cycle component,

there is an edge e1 of K incident to some vertex v1 of C such that e1 is not an edge

of C. Then, wK(v1) ≥ 3. This contradicts the assumption that for each vertex v

of K, wK(v) = 2. Hence, K contains no simple cycle subgraphs.

Let P be a maximal path subgraph of K and u1 and u2 be distinct leaves of

P . Since K contains no simple cycle subgraphs, each of u1 and u2 is incident to a

loop of K.

Next, we show that K is a pseudopath component. Suppose that K is not a

pseudopath component. Then, there is a simple edge e2 of K incident to some

vertex v2 of P such that e2 is not an edge of P and v2 is not a leaf of P . Then,

wK(v2) ≥ 3. This contradicts the assumption that for each vertex v of K, wK(v) =

2. Hence, K is a pseudopath component such that P is a maximal path subgraph

of K.

Finally, we show that K has exactly 2 loops. Suppose that K has at least 3

loops. Since each of u1 and u2 is incident to a loop, there is a loop l0 of K incident

to some vertex v3 of P such that v3 is not a leaf of P . Then, wK(v3) ≥ 3. This

contradicts the assumption that for each vertex v of K, wK(v) = 2. Hence, K has

exactly 2 loops.

Consequently, K is a pseudopath chain.
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Theorem 3.38. Let S be a state of a Closing Octagons game and K be a component

of G(S). Then, the following are equivalent.

(1) K is a chain.

(2) For each vertex v of K, wK(v) = 2.

(3) K is a 2-bouquet component, a pseudopath chain or a simple cycle compo-

nent.

Proof. To show that (1) implies (2), assume that K is a chain of G(S). Obviously,

K is neither a trivial component nor a 1-cycle component. By Lemma 3.35, K

contains no leaves. Then, for each vertex v of K, wK(v) ≥ 2.

To show that for each vertex v of K, wK(v) = 2, suppose that there is a vertex

v0 of K such that wK(v0) ≥ 3. Then, either there is a loop of K incident to v0 or

all edges of K incident to v0 are simple edges.

Case 1. There is a loop l0 of K incident to v0. Then, wK−l0(v0) ≥ 2. This

implies that K − l0 contains no leaves. By Theorem 3.28, K − l0 is a strong

component. Then, K is not a chain.

Case 2. All edges incident to v0 are simple edges. Let u0 be a vertex of K

adjacent to v0 and e1 be an edge of K incident to u0 and v0. Then, K − e1 has at

most 2 components.

Case 2.1. K−e1 has exactly 1 component. Then, there is a list v0, v1, v2, ..., vk=

u0 of vertices of K−e1 such that for all i ∈ {1, 2, 3, ..., k}, vi−1 and vi are adjacent.

Since u0 and v0 are adjacent in K, K contains a simple cycle subgraph C such

that V (C) = {v0, v1, v2, ..., vk=u0}. Since wK(v0) ≥ 3, there is a simple edge e2 of

K incident to v0 such that e2 is not an edge of C. Then, K − e2 contains C. By

Theorem 3.29, K − e2 is a strong component. Then, K is not a chain.

Case 2.2. K−e1 has exactly 2 component. Then, one component of K−e1 con-

tains u0 and the other component K ′ contains v0. Since wK(v0) ≥ 3, wK−e1(v0) ≥

2. This implies that K ′ contains no leaves. By Theorem 3.28, K − l0 is a strong

component. Then, K is not a chain.

So by 2 cases, K is not a chain. This contradicts the assumption that K is a

chain. Hence, for each vertex v of K, wK(v) = 2.
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To show (2) implies (3), we use Lemma 3.37 directly.

To show (3) implies (1), we first observe that a pseudopath chain is a chain.

If K is a 2-bouquet component, then by Theorem 3.28, K is a strong component,

and then for each edge e of K, K − e is a 1-bouquet component which is a weak

component. If K is a simple cycle component, then by Theorem 3.29, K is a strong

component, and then for each edge e of K, K − e is a path component which is a

weak component. Hence, K is a chain.

Example 3.39. Let S be the critical state of a normal 2 × 2 Closing Octagons

game. By Corollary 3.27, for each vertex v of G(S), wG(S)(v) = 2. By Theorem

3.38, each component of G(S) is a 2-bouquet component, a pseudopath chain

or a simple cycle component. We obtain that there are 6 cases of G(S) up to

isomorphism shown in Figure 3.8.

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 3.8: Six cases of the graph of the critical state of a normal 2× 2 game



CHAPTER IV

STRATEGIES FOR PLAYING THE GAME

In this chapter, we give strategies of playing the normal Closing Octagons game

for each player to win or draw or get the most possible points in some situations

and some games of size 1 × n, 2 × n and 3 × 3. A strategy is a plan of playing

the game that is constructed for moves or turns of a player. However, the strategy

must be usable and does not contradict the main rules of normal game. A strategy

is called a winning strategy for a player if the player wins when the player plays

according to the plan of the strategy, no matter how the opponent plays.

4.1 Some Strategies

In this section, we give examples of some strategies and analyze results of

playing the normal Closing Octagons game in some situations.

First, we give a definition of maximum turn and introduce the first strategy,

namely, Strategy A.

Definition 4.1. Let S be a state of a Closing Octagons game. A possible turn

τ from S to another state is a maximum turn if for each passible turn τ ′ from S

to another state, the number of moves of τ ′ is less than or equal to the number of

moves of τ .

Strategy 4.2 (Strategy A). Let S be a state of a Closing Octagons game. A

player has to make a maximum turn from S to another state.

Example 4.3. Consider a playing normal 3× 3 Closing Octagons game such that

the graph of the critical state Sk is shown in Figure 4.1. Since G(Sk) has 11 edges,

Theorem 3.23 implies that a turn from Sk to Sk+1 is Player II’s.
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Figure 4.1: The graph of the critical state Sk

If Player II makes a turn from Sk to Sk+1 that is shown in Figure 4.2, then

G(Sk+1) has exactly 2 weak components and 1 chain.

Sk

Player II’s turn

Sk+1

Figure 4.2: Player II’s turn from Sk to Sk+1

If Player I makes a turn from Sk+1 to Sk+2 by using Strategy A that is shown

in Figure 4.3, then Player I earns 5 points.

Sk+1

Player I’s turn

Sk+2

Figure 4.3: Player I’s turn from Sk+1 to Sk+2

Next, Player II has to make a turn from Sk+2 to the terminal Sk+3 by removing

all edges of G(Sk+2), and then Player II earns 4 points. Therefore, Player I wins.
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By Example 4.3, Strategy A makes Player I to win. However, if Player II does

not make a turn from Sk to Sk+1 as shown in Figure 4.2, then Player I may not

win, as we can see in Example 4.4.

Example 4.4. Consider a playing normal 3× 3 Closing Octagons game such that

the graph of the critical state Sk is shown in Figure 4.1. If Player II makes a turn

from Sk to Sk+1 that is shown in Figure 4.4, then G(Sk+1) has exactly 2 weak

components and 1 chain.

Sk

Player II’s turn

Sk+1

Figure 4.4: Player II’s turn from Sk to Sk+1

If Player I makes a turn from Sk+1 to Sk+2 by using Strategy A that is shown

in Figure 4.5, then Player I earns 4 points.

Sk+1

Player I’s turn

Sk+2

Figure 4.5: Player I’s turn from Sk+1 to Sk+2

Next, Player II has to make a turn from Sk+2 to the terminal Sk+3 by removing

all edges of G(Sk+2), and then Player II earns 5 points. Therefore, Player I loses.

By Example 4.4, Strategy A makes Player I to lose. We conclude that for play-

ing normal Closing Octagons game, if the graph of the critical state is isomorphic
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to a graph that is shown in Figure 4.1, then Strategy A is not a winning strategy

for Player I.

Next, we introduce Strategy B and show examples of the difference between

Strategy A and Strategy B.

Strategy 4.5 (Strategy B). Let S be a state of a Closing Octagons game. If τ is

a maximum turn from S to another non-terminal state such that µ1, µ2, µ3, ..., µk

are all winning moves of τ , and there is another possible turn τ0 from S to another

state such that

(1) all moves of τ0 are elements of the set {µ1, µ2, µ3, ..., µk}, and

(2) for each possible turn τ ′ from S to another state such that all moves of τ ′

are elements of the set {µ1, µ2, µ3, ..., µk}, the number of moves of τ ′ is less than

or equal to the number of moves of τ0,

then a player has to make a turn τ0 from S to another state.

Example 4.6. Consider a playing normal 3× 3 Closing Octagons game such that

the graph of the critical state Sk is shown in Figure 4.1, and Player II makes a

turn from Sk to Sk+1 that is shown in Figure 4.2.

If Player I makes a turn from Sk+1 to Sk+2 by using Strategy B that is shown

in Figure 4.6, then Player I earns 3 points.

Sk+1

Player I’s turn

Sk+2

Figure 4.6: Player I’s turn from Sk+1 to Sk+2

Next, Player II can earn at most 2 points from Sk+2 to Sk+3 and Player I can

earn at least 4 more points from Sk+3 to the terminal state Sk+4. Therefore, Player

I wins.
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Example 4.7. Consider a playing normal 3× 3 Closing Octagons game such that

the graph of the critical state Sk is shown in Figure 4.1, and Player II makes a

turn from Sk to Sk+1 that is shown in Figure 4.4.

If Player I makes a turn from Sk+1 to Sk+2 by using Strategy B that is shown

in Figure 4.7, then Player I earns 2 points.

Sk+1

Player I’s turn

Sk+2

Figure 4.7: Player I’s turn from Sk+1 to Sk+2

Next, Player II can earn at most 2 points from Sk+2 to Sk+3 and Player I can

earn at least 5 more points from Sk+3 to the terminal state Sk+4. Therefore, Player

I wins.

By Example 4.6 and Example 4.7, Strategy B makes Player I to win. However,

Strategy B may not always give more points than Strategy A, as we can see in

Example 4.8.

Example 4.8. Consider a playing normal 2× 3 Closing Octagons game such that

the graph of the critical state Sk is shown in Figure 4.8. Since G(Sk) has 7 edges,

Theorem 3.23 implies that a turn from Sk to Sk+1 is Player I’s.

Figure 4.8: The graph of the critical state Sk
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If Player I makes a turn from Sk to Sk+1 that is shown in Figure 4.9, then

G(Sk+1) has exactly 1 weak component and 1 chain.

Sk

Player I’s turn

Sk+1

Figure 4.9: Player I’s turn from Sk to Sk+1

Case 1. Player II makes a turn from Sk+1 to Sk+2 by using Strategy A that is

shown in Figure 4.10. Then, Player II earns 4 points.

Sk+1

Player II’s turn

Sk+2

Figure 4.10: Player II’s turn from Sk+1 to Sk+2, using Strategy A

Next, Player I has to make a turn from Sk+2 to the terminal Sk+3 by removing

all edges of G(Sk+2), and then Player I earns 2 points. Therefore, Player II wins.

Case 2. Player II makes a turn from Sk+1 to Sk+2 by using Strategy B that is

shown in Figure 4.11. Then, Player II earns no points.

Sk+1

Player II’s turn

Sk+2

Figure 4.11: Player II’s turn from Sk+1 to Sk+2, using Strategy B

If Player I makes a turn from Sk+2 to Sk+3 that is shown in Figure 4.12, then

Player I earns 4 points.
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Sk+1

Player II’s turn

Sk+2

Figure 4.12: Player I’s turn from Sk+1 to Sk+2

Then, Player II has to make a turn from Sk+3 to to the terminal Sk+4 by

removing all edges of G(Sk+3), and then Player II earns 2 points. Therefore,

Player II loses.

Theorem 4.9. For any normal Closing Octagons game such that the graph of the

critical state is a chain, a player who turns from the first strategic state to another

state wins.

Proof. Let Sk be the critical state of a normal Closing Octagons game such that

G(Sk) is a chain. Then, for each edge e of G(Sk), a removal of e is not a winning

move of G(Sk) and all components of G(Sk)−e are weak components. Thus, Sk+1 is

the first strategic state such that all components of G(Sk+1) are weak components.

This implies that a turn from Sk+1 to another state is a removal of all edges of

G(Sk+1). Therefore, the player who turns from Sk+1 to another state wins.

The following theorems involving Strategy A and normal games of size m× n

such that all components of the graph of the critical state are 2-bouquet compo-

nents.

Theorem 4.10. For playing normal m×n Closing Octagons game where m and n

are odd, if all components of the graph of the critical state are 2-bouquet components,

then Strategy A is a winning strategy for Player II.

Proof. Let Sk be the critical state of a normal m×m Closing Octagons game where

m and n are odd such that all components of G(Sk) are 2-bouquet components

and Player II plays according to Strategy A. Then, G(Sk) has exactly 2mn edges.
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Obviously, 2mn − m − n is even. By Theorem 3.23, a turn from Sk to Sk+1 is

Player I’s.

Since all mn components of G(Sk) are 2-bouquet components, Player I turns

from Sk to Sk+1 by removing a loop of a 2-bouquet component. Then, G(Sk+1)

has exactly 1 1-bouquet component and mn− 1 2-bouquet components.

By Strategy A, Player II turns from Sk+1 to Sk+2 by removing a loop of a

1-bouquet component and a loop of a 2-bouquet component, respectively. Then,

Player II earns 1 point and G(Sk+2) has exactly 1 1-bouquet component and mn−2

2-bouquet components.

Next, it easy to see that two players alternately turn from Sk+2 to Sk+mn such

that Player I either turns by removing a loop of a 2-bouquet component or turns by

removing a loop of a 1-bouquet component and a loop of a 2-bouquet component,

respectively, and earns at most 1 more point, and Player II turns by removing all

edges of 1-bouquet components and a loop of a 2-bouquet component, respectively,

and earns at least 1 more point.

Now, Player II turns from Sk+mn to the terminal state Sk+mn+1 by removing

all edges of 1-bouquet components. Then, Player II earns at least 1 more point.

Since mn is odd and the first point is of Player II, Player II can earn at least
mn+1

2
points and Player I can earn at most mn−1

2
points. Therefore, Player II

wins.

Theorem 4.11. For playing normal m×n Closing Octagons game where m or n is

even, if all components of the graph of the critical state are 2-bouquet components,

then a player who uses Strategy A wins or draws.

Proof. Similar to the proof of Theorem 4.10, a player who uses Strategy A can

earn at least mn
2

points and the opponent can earn at most mn
2

points. Therefore,

the player who uses Strategy A wins or draws.
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4.2 Strategy for Playing Normal 1× n and 2× n Games

In this section, we consider only the games of size 1×n and 2×n and analyze

the strategy for playing these games.

Theorem 4.12. For any normal 1× 2 Closing Octagons game, Player II wins or

draws.

Proof. Let G be a normal 1×2 Closing Octagons game and Sk be the critical state

of G. Then, there are 2 cases of G(Sk) up to isomorphism, shown in Figure 4.13.

Case 1 Case 2

Figure 4.13: Two cases of the graph of the critical state of a normal 1× 2 game

Case 1. G(Sk) is a 1-pseudopath chain. By Theorem 3.23, a turn from Sk to

Sk+1 is Player I’s. Then, a Player I’s turn from Sk to Sk+1 is a removal of an edge

of G(Sk). Since G(Sk) is a chain, all components of G(Sk+1) are weak components.

Thus, a Player II’s turn from Sk+1 to Sk+2 is removal of all edges of G(Sk+1). This

implies that Player II earns 2 points.

Case 2. All components of G(Sk) are 2-bouquet components. By Theorem

3.23, a turn from Sk to Sk+1 is Player II’s. Then, a Player II’s turn from Sk to

Sk+1 is a removal of a loop of a 2-bouquet component. Thus, G(Sk+1) has exactly

1 1-bouquet component and 1 2-bouquet component. Then, a Player I’s turn from

Sk+1 to Sk+2 is either a removal of a loop of a 2-bouquet component or removal of a

loop of a 1-bouquet component and a loop of a 2-bouquet component, respectively.

Then, Player I can earn at most 1 point and all components of G(Sk+2) are weak

components. Now, a Player II’s turn from Sk+2 to Sk+3 is removal of all edges of

G(Sk+2). This implies that Player II can earn at least 1 point.

Therefore, by both cases, Player II wins or draws.

Theorem 4.13. For playing normal 1 × 2 Closing Octagons game, there is a

strategy for Player I to draw.
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Proof. Let G be a normal 1×2 Closing Octagons game and Sk be the critical state

of G. We construct a strategy for Player I as the following.

(A) Player I’s has to turn from S0 to S1 by removing a simple edge of G(S0).

(B) Player I’s has to turn from Sk+1 to Sk+2 by removing a loop of a 1-bouquet

component and a loop of a 2-bouquet component, respectively.

Then, (A) implies that all components of G(Sk) are 2-bouquet components.

By Case 2 of the proof of Theorem 4.12, (B) implies that Player I earns 1 point.

Therefore, Player I draws.

Strategy 4.14. Let Si be a state of a 1 × n or 2 × n Closing Octagons game, a

player turns according to the following plan.

(A) If Si is the initial state, then the player has to remove a simple egde.

(B) If Si is a normal state such that i ̸= 0, then

(B1) if the opponent’s turn from Si−1 to Si is a removal of a loop incident to a

vertex v and G(Si) contains a simple egde e incident to v, then the player has to

remove e,

(B2) if the opponent’s turn from Si−1 to Si is a removal of a loop incident to

a vertex v and G(Si) contains no simple edges incident to v but G(Si) contains a

simple edge e′, then the player has to remove e′,

(B3) if the opponent’s turn from Si−1 to Si is a removal of a simple edge and

G(Si) contains a simple edge e′, then the player has to remove e′, and

(B4) if G(Si) contains no simple edges but G(Si) contains a loop l such that a

removal of l is a turn from Si to a normal state, then the player has to remove l.

(C) If Si is a strategic state, then the player has to turn by using Strategy A.

Theorem 4.15. For playing normal 1×n Closing Octagons game where n is odd,

Strategy 4.14 is a winning strategy for Player II.

Proof. Let G be a normal 1 × n Closing Octagons game (where n is odd) such

that Player II plays according to Strategy 4.14. Then, G(S0) of G has 2 vertices

incident to 7 loops and 1 simple edge, and n− 2 vertices incident to 6 loops and 2

simple edges, shown in Figure 4.14.
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Figure 4.14: The graph of the initial state of a normal 1× n game G

For each vertex v of G(S0), the number of loops of G(S0) incident to v is greater

than the number of simple edges of G(S0) incident to v by at least 4. By (A), (B1),

(B2) and (B3) of Strategy 4.14, each removal of a simple edge is a turn from a

normal state to another normal state, and all simple edges has to be removed

before the critical state is reached.

Then, we obtain that all components of the graph of the critical state of G are

2-bouquet components. By Theorem 3.23, a turn from the critical state to the

first strategic state is Player I’s. By (C) of Strategy 4.14, Player II has to turn

from each strategic state to another state by using Strategy A. By Theorem 4.10,

Player II wins.

Theorem 4.16. For playing normal 1×n Closing Octagons game where n is even,

a player who uses Strategy 4.14 wins or draws.

Proof. Let G be a normal 1 × n Closing Octagons game where n is even such

that there is a player who plays according to Strategy 4.14. Similar to the proof

of Theorem 4.15, all components of the graph of the critical state of G are 2-

bouquet components. We can see that (B4) of Strategy 4.14 satisfies Strategy A.

By Theorem 4.11, the player who uses Strategy 4.14 wins or draws.

Corollary 4.17. For playing normal 1 × n Closing Octagons game where n is

even, there is no winning strategy for both players.

Proof. Suppose that there is a winning strategy σ for some players and the player

plays by using σ. Then, the player wins, no matter how the opponent plays.

If the opponent plays by using Strategy 4.14, then Theorem 4.16 implies that

the opponent wins or draws. This contradicts the assumption that σ is a winning

strategy for the player. Therefore, there is no winning strategy for both players.
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Theorem 4.18. For playing normal 2× n Closing Octagons game, a player who

uses Strategy 4.14 wins or draws.

Proof. Let G be a normal 2×n Closing Octagons game such that there is a player

who plays according to Strategy 4.14. Then, G(S0) of G has 4 vertices incident to

6 loops and 2 simple edges, and 2n − 4 vertices incident to 5 loops and 3 simple

edges, shown in Figure 4.15.

Figure 4.15: The graph of the initial state of a normal 2× n game G

For each vertex v of G(S0), the number of loops of G(S0) incident to v is greater

than the number of simple edges of G(S0) incident to v by at least 2. By (A), (B1),

(B2) and (B3) of Strategy 4.14, each removal of a simple edge is a turn from a

normal state to another normal state, and all simple edges has to be removed

before the critical state is reached.

Then, we obtain that all components of the graph of the critical state of G are

2-bouquet components. We can see that (B4) of Strategy 4.14 satisfies Strategy

A. By Theorem 4.11, the player who uses Strategy 4.14 wins or draws.

Corollary 4.19. For playing normal 2 × n Closing Octagons game, there is no

winning strategy for both players.

Proof. Similar to the proof of Corollary 4.17, there is no winning strategy for both

players.
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4.3 Strategy for Playing Normal 3× 3 Game

In this section, we consider only the game of size 3×3 and analyze the strategy

for playing this game.

Strategy 4.20. Let Si be a state of a 3 × 3 Closing Octagons game such that

i ̸= 0, a player turns according to the following plan.

(A) If Si is a normal state, then

(A1) if the opponent’s turn from Si−1 to Si is a removal of a loop incident to a

vertex v and G(Si) contains a simple egde e incident to v such that a removal of

e is a turn from Si to another normal state, then the player has to remove e,

(A2) if the opponent’s turn from Si−1 to Si is a removal of a loop incident to

a vertex v and G(Si) contains no simple edges e incident to v such that a removal

of e is a turn from Si to another normal state but G(Si) contains a simple edge e′

such that a removal of e′ is a turn from Si to another normal state, then the player

has to remove e′,

(A3) if the opponent’s turn from Si−1 to Si is a removal of a simple edge and

G(Si) contains a simple edge e′ such that a removal of e′ is a turn from Si to

another normal state, then the player has to remove e′,

(A4) if G(Si) contains no simple edges e such that a removal of e is a turn from

Si to another normal state but G(Si) contains a loop l such that a removal of l is

a turn from Si to another normal state, then the player has to remove l, and

(A5) if G(Si) contains no edges e such that a removal of e is a turn from Si

to another normal state but G(Si) contains a 2-bouquet component K, then the

player has to remove a loop of K.

(B) If Si is a strategic state, then

(B1) if G(Si) contains a 2-bouquet component K, then the player has to turn

by removing all edges of weak components and a loop of K, respectively, and

(B2) if all components of G(Si) are weak components, then the player has to

turn by removing all edges.

For convenience, we illustrate Strategy 4.20 in flowchart, Figure 4.16.
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Figure 4.16: Strategy 4.20
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Because Strategy 4.20 is a strategy for Player II, plan for a turn of the initial

state is not required.

Theorem 4.21. For playing normal 3× 3 Closing Octagons game, Strategy 4.20

is a winning strategy for Player II.

Proof. Let G be a normal 3× 3 Closing Octagons game such that Player II plays

according to Strategy 4.20. Then, G(S0) of G has 4 vertices incident to 6 loops

and 2 simple edges, 4 vertices incident to 5 loops and 3 simple edges, and 1 vertex

v′ incident to 4 loops and 4 simple edges, shown in Figure 4.17.

Figure 4.17: The graph of the initial state of a normal 3× 3 game G

For a vertex v′, the number of loops and the number of simple edges incident

to v′ of G(S0) are equal. By (A1) of Strategy 4.20, 3 of simple edges incident to

v′ have to be removed when the number of loops incident to v′ is at least 1. This

implies that the last simple edge incident to v′ may not be removed in turns from

a normal state to another normal state

For each vertex v ̸= v′, the number of loops incident to v of G(S0) is greater

than the number of simple edges incident to v of G(S0) by at least 2. By (A1),

(A2) and (A3) of Strategy 4.20, each simple edge e that is not incident to v′ has

to be removed when the number of loops incident to each of vertices v ̸= v′ is at

least 2. This implies that each removal of a simple edge that is not incident to v′
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is a turn from a normal state to another normal state, and all simple edges that

are not incident to v′ has to be removed before the critical state is reached.

Then, we obtain that there are 2 cases of the graph of the critical state of G

up to isomorphism, say G1 and G2, shown in Figure 4.18, respectively.

G1 G2

Figure 4.18: Two cases of the graph of the critical state of G

Case 1. The graph of the critical state is G1. By Theorem 3.23, a turn from

the critical state to another state is Player I’s. Since all components of G1 are

2-bouquet components, a Player I’s turn from the critical state to a strategic state

is a removal of a loop of a 2-bouquet component. Then, the graph of the first

strategic state has 1 1-bouquet component and 8 2-bouquet components. By (B1)

and (B2) of Strategy 4.20, Player II can earn at least 5 points and Player I can

earn at most 4 points.

Case 2. The graph of the critical state is G2. By Theorem 3.23, a turn from

the critical state to another state is Player II’s. By (A5) of Strategy 4.20, a Player

II’s turn from the critical state to a strategic state is a removal of a loop of a

2-bouquet component. Then, the graph of the first strategic state has 1 1-bouquet

component, 6 2-bouquet components, and 1 chain K having 2 vertices and 3 edges.

By (B1) and (B2) of Strategy 4.20, Player II can earn 2 points from K and at least

3 points from the other. This implies that Player II can earn at least 5 points and

Player I can earn at most 4 points.

Therefore, by both cases, Player II wins.
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