A STUDY OF SHARKSKIN DEFECT IN LINEAR - LOW DENSITY POLYETHYLENE

•

Ms. Patsuda Wongsomnuk

A Thesis Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science The Petroleum and Petrochemical College Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 1997 ISBN 974-636-122-8

117685515

Thesis Title	: A Study of Sharkskin Defect in Linear Low - Density
	Polyethylene
Ву	: Ms. Patsuda Wongsomnuk
Program	: Polymer Science
Thesis Advisors	: Assoc. Prof. Shi Qing Wang
	Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

......Director of the College (Prof. Somchai Osuwan)

Thesis Committee

Show -S

(Assoc. Prof. Shi Q. Wang)

Anwat Servial

(Assoc. Prof. Anuvat Sirivat)

R. Magaraphan

(Dr. Rathanawan Magaraphan)

ABSTRACT

##952012 : POLYMER SCIENCE PROGRAM KEYWORD : SHARKSKIN/BIFURCATION/RECOVERABLE SHEAR/WEISSENBERG NUMBER PATSUDA WONGSOMNUK: A STUDY OF SHARKSKIN DEFECT IN LINEAR LOW-DENSITY

POLYETHYLENE.THESISADVISORS: ASSOC. PROF. SHI QING WANG AND ASSOC. PROF. ANUVAT SIRIVAT, 81 pp. ISBN 974-636-122-8

The study investigated the sharkskin defect and flow instability of LLDPE polymer melts from the capillary extrusion. Skin defects are a result of a flow instability of some kinds; it may originate from a failure at the interface, and adhesion failure or a flow bifurcation associated with the material rheological properties, or both.

Sharkskin defects occur at $\tau_W = 3.3 \times 10^5 \text{ N/m}^2$ where τ_W is the wall shear stress at the capillary die. The recoverable shear (local value) is 1.5. From the flow curves, it was found that two successive Hopf bifurcations in all of the three LLDPE's of different molecular weights, as the strain rate was increased. Each bifurcation is associated with a slip velocity at the polymer/metal interface. Since the magnitude of slip velocity depends critically on the molecular weight, the mechanism of slip can be thought of as the chain disentanglement which forms a thin layer in the vicinity of the interface.

Stability diagrams of sharkskin defects can be constructed by the normalized length scale of wavelength and amplitude of sharkskin surface with either the Weissenberg number (W_i) and recoverable shear (S_R) . Both of them give similar conclusions. In regime II, there are two boundaries depending on the materials. In regime III, there is one boundary which is independent of the materials which were investigated.

บทคัดย่อ

ภัทรสุดา วงศ์สมนึก การศึกษาถึงผิวหนังปลาฉลาม (sharkskin) บนชิ้นส่วนพลาสติกที่ ถูกรีดจากท่อกลม ของพอลีเอทธิลีนชนิดความหนาแน่นเชิงเส้นต่ำ (A Study of Sharkskin Defect in Linear Low - Density Polyethylene) อ. ที่ปรึกษา: รศ. คร. ชิ ควิง หวาง (Assoc. Prof. Shi Qing Wang) และ รศ. คร. อนุวัฒน์ ศิริวัฒน์ 81 หน้า ISBN 974-636-122-8

วิทยานิพนธ์นี้เสนอการค้นคว้าเกี่ยวกับ การเกิดผิวขรุขระบนชิ้นส่วนพลาสติกแบบผิว หนังปลาฉลาม (sharkskin) ที่เกิดจากกระบวนการรีดจากท่อกลม และความสัมพันธ์กับการไร้ เสถียรภาพการไหลของพอลิเมอร์ ผิวขรุขระเกิดจากการไร้เสถียรภาพในการไหล ซึ่งอาจเกิดจาก การแรงยึดเหนี่ยวระหว่างพอลิเมอร์และท่อกลม หรือจากลักษณะสมบัติในการแปรรูปของพอลิ เมอร์ หรือจากทั้งสองประเภท

การเกิดของผิว sharkskin จะเกิดที่ก่ากวามเก้นประมาณ 3.3 x 10⁵ N/m² ซึ่งเป็นก่ากวาม เก้นที่เกิดจากแรงกระทำที่ผนังท่อกลม ก่า recoverable shear (วัดจากก่าแรงเฉือนที่จุดเกิดผิว sharkskin) เท่ากับ 1.5 จากกราฟกวามสัมพันธ์ระหว่างกวามเก้นที่ผนังท่อกลม (T_w) กับก่าแรง เฉือนที่ปรากฏ (Υ_w) แสดงถึงสภาพการไหล เมื่อก่าแรงเฉือนเพิ่มขึ้น พบว่าการไหลของพลาสติก LLDPE เป็นการไหลแบบสองเสถียรภาพการไหล (Hopf bifurcation) แต่ละ bifurcation จะ สัมพันธ์กับก่ากวามเร็วลื่นระหว่างพลาสติกเหลวกับผนังท่อกลม ซึ่งก่ากวามเร็วลื่นที่เกิดจากการ เกาะติดของพลาสติกที่ผนังนี้ จะขึ้นอยู่กับก่าน้ำหนักโมเลกุล โดยกลไกการเกิดการเกาะติดที่ผนัง นี้ จะสามารถอธิบายได้ว่าสายโซ่ของพอลิเมอร์ ซึ่งเดิมจะพันกันเป็นกลุ่ม จะเกิดการกลายตัว เป็นเส้นยาว แล้วมาก่อตัวเป็นผิวบางๆบริเวณผิวหน้าของพลาสติกเหลว ทำให้เกิดการลื่นที่ผนัง ท่อกลมได้

เราจะสามารถสร้างแผนภาพของเสถียรภาพการไหลสำหรับผิว sharkskin ได้โดยการปรับ ค่าความสูงครีบของผิว และความยาวระหว่างครีบของผิว sharkskin กับจำนวน Weissenberg (W_i) และ recoverable shear (S_R) โดยพบว่าในบริเวณที่สอง แผนภาพของเสถียรภาพการไหลจะแบ่ง เป็นสองบริเวณ ขึ้นกับสารที่นำมาทคลอง แต่ในบริเวณที่สาม แผนภาพเสถียรภาพการไหลจะมี เพียงบริเวณเดียวซึ่งไม่ขึ้นกับสารที่นำมาทคลอง

ACKNOWLEDGMENTS

The author would like to thank the National Metal and Materials Technology Center (MTEC) for giving her the financial support, the Siam Chemical Trading Co., Ltd. and Thai Polyethylene Co., Ltd. for the raw materials of LLDPE and performing the density measurements, the King Mongkut Institute of Technology Lardkrabang for undertaking the size exclusion chromatography measurements.

The author is grateful to Assoc. Prof. Shi Qing Wang, her advisor, who gave valuable suggestions, and also to Assoc. Prof. Anuvat Sirivat for providing constructive criticisms, suggestions and proof reading this thesis report. Special thanks to Mr. Bernd - Udo Jacob, Mr. John Ellis for their constructive suggestions and comments, to Ms. Siriprapa Rattanyu for the training in molecular weight determinations, and to all the college staff for providing the research facilities.

The author is also indebted to her family who gave her their love, understanding, and generous encouragement constantly during her study and thesis work. Thanks also go to her classmate for their help throughout her study.

TABLE OF CONTENTS

 \mathbf{r}

CHAPTER

PAGE

Title Page	i
Abstract	iii
Acknowledgments	v
Table of Contents	vi
List of Tables	viii
List of Figures	ix

I INTRODUCTION

1.1	Extrudate Distortion and Sharkskin Texture	1
1.2	Flow Instability and Mechanisms	3
1.3	Previous Studies	5
1.4	Research Objectives	7

II EXPERIMENTAL SECTION

2.1 Materials	9
2.2 Characterization Studies	
2.2.1 Melt Flow Index (MFI : g/10min)	10
2.2.2 % Crystalinity and Melting Temperature	
(T _m :°C)	10
2.2.3 Weight Average Molecular Weight	
$(M_W : g/mol)$	10
2.2.4 Density (ρ : g/cm ³)	10

III

PAGE

2.3 Capillary Rheometer Studies	11
2.3.1 Instrument	11
2.3.2 Procedure	11
2.3.3 Calculations	11
2.4 Parallel Plate Rheometer Studies	16
2.4.1 Instrument	16
2.4.2 Procedure	16
2.4.3 Calculations	16
2.5 Viscosity Comparision	17
2.6 The Extrudate Surface and Sharkskin Studies	22
2.6.1 Zoom Stereo Microscopy	22
2.6.2 Optical Microscopy	22
2.6.3 Scanning Electron Microscopy (SEM)	22
RESULTS AND DICUSSION	
3.1 Effect of Molecular Weight	23

3.1 Effect of Molecular weight	23
3.1.1 Flow Curves	23
3.1.2 Critical Values	26
3.1.3 Surface Textures	32
3.2 Effect of Die Geometry	33
3.2.1 Flow Curves	33
3.2.2 Critical Values	35
3.3 Slip Velocity	36
3.3.1 Bifurcation Diagrams	36
3.3.2 Slip Velocity (V _S)	38
3.3.3 Hopf Bifurcation	40

1

PAGE

	3.4 Load and Extrudate Wavelengths	42
	3.5 Recoverable Shear	44
	3.6 Stability Diagram	47
	3.6.1Skin Parameters (λ_s , ϵ_s)	48
	3.6.2 W _i vs. λ_s/ϵ_s Stability Diagrams	56
	3.6.3 SR vs. λ_s/ϵ_s Stability Diagrams	56
IV	CONCLUSIONS	59
	4.1 Flow Instability Studies	59
	4.2 Sharkskin Studies	59
	REFERENCES	51
	APPENDICES	64
	CURRICULUM VITAE	81

LIST OF TABLES

TABLE

PAGE

2.1	Physical properties of LLDPE	9
2.2	Physical properties of HDPE	9
3.1	The flow behavior and extrudate surface in each regime	
	of the three LLDPE's of different M_W	24
3.2	The critical wall stresses and the critical strain rates of	
	the three LLDPE's of different M_W	26
3.3	The flow behavior and extrudate surface in each regime	
	of two different capillary dies	35
3.4	The critical wall stresses and the critical strain rates	
	of two different capillary dies	35
3.5	The slope of slip velocity vs. $ \dot{\gamma}_a - \dot{\gamma}_{a,c} ^{1/2}$ of the three	
	LLDPE's of different M _w	40
3.6	Recoverable shear of sharkskin surface (regime II) the three	
	LLDPE's of different M _w	46
3.7	Asymptotic recoverable shear of the three LLDPE's of	
0	different M _w	46

LIST OF FIGURES

.

FIGURE

PAGE

1.1	Bifurcation diagrams (a) supercritical and (b) subcritical	5
2.1(a)	The viscosity vs. wall and apparent strain rate of LLDPE	
	(L1810F) by transformation at 185°C	19
2.1(b)	The viscosity vs. apparent strain rate and frequency of	
	LLDPE (L1810F) by the Cox-Merz rule at 185°C	19
2.2(a)	The viscosity vs. wall and apparent strain rate of LLDPE	
	(L2009F) by transformation at 185°C	20
2.2(b)	The viscosity vs. apparent strain rate and frequency of	
	LLDPE (L2009F) by the Cox-Merz rule at 185°C	20
2.3(a)	The viscosity vs. wall and apparent strain rate of LLDPE	
	(L2020F) by transformation at 185°C	21
2.3(b)	The viscosity vs. apparent strain rate and frequency of	
	LLDPE (L2020F) by the Cox-Merz rule at 185°C	21
3.1(a)	Flow curves of LLDPE (M_W =1.27x10 ⁵) at 185°C	25
3.1(b)	Flow curves of LLDPE (M _w =1.03x10 ⁵) at 185°C	25
3.1(c)	Flow curves of LLDPE (M _w =6.07x10 ⁴) at 185°C	25
3.2(a)	LLDPE (L1810F) extrudate displaying a smooth surface	
	in regime I	27
3.2(b)	LLDPE (L2009F) extrudate displaying a smooth surface	
	in regime II	28
3.2(c)	LLDPE (L1810F) extrudate displaying alternating surfaces	
	between a sharkskin and a smooth surface in regime III	29

÷

FIGURE

. . .

3.2(d) LLDPE (L1810F) extrudate displaying (d-1) a smooth	
surface and (d-2) melt fracture in regime IV-a and regime	
IV-b respectively	30
3.2(e) LLDPE (L1810F) extrudate displaying a melt fracture	
surface in regime V	31
3.3(a) Flow curves of LLDPE (L1810F) of the die No.614 (lc	
=22.5 mm, dc = 0.7645 mm) at 185°C	34
3.3(b) Flow curves of LLDPE (L1810F) of the die No.1855 (lc	
=50.9 mm, dc = 1.2751 mm) at 185°C	34
3.4 (a) The wall shear stress vs. the apparent strain rate of LLDPE	
(L1810F) shows a subcritical bifurcation regime III	37
3.4 (b) The wall shear stress vs. the apparent strain rate of LLDPE	
(L1810F) shows a subcritical bifurcation regime V	37
3.5(a) Slip velocity as a function of strain rate of LLDPE (L1810F)	
in regime III	39
3.5(b) Slip velocity as a function of strain rate of LLDPE (L1810F)	
in regime V	39
3.6(a) Slip velocity vs. $ \gamma_a - \gamma_{a,c} ^{1/2}$ of LLDPE in regime III	41
3.6(b) Slip velocity vs. $ \gamma_a - \gamma_{a,c} ^{1/2}$ of LLDPE in regime V	41
3.7(a) Wavelength vs. strain rate of LLDPE (L1810F) in regime III	42
3.7(b) Wavelength vs. strain rate of LLDPE (L1810F) in regime V	43
3.8 The ratio of load and extrudate wavelengths vs. apparent	
strain rate of LLDPE (L1810F)	43
3.9(a) Master curve of G' of LLDPE(L1810F) at 185-115°C	45
3.9(b) Master curve of G' of LLDPE(L2009F) at 185-115°C	45

FIGURE

PAGE

.

3.9(c)	Master curve of G' of LLDPE(L2020F) at 185-115°C	45
3.10	Sharkskin surface of LLDPE (L1810F) from SEM	
	(200x magnification) and the measured wavelength	
	and amplitude at 185°C	49
3.11(a)The wavelength (λ_S) and the amplitude (ϵ_S) vs. apparent	
	strain rate at 185°C of the sharkskin of LLDPE (L1810F)	
	in regime II	50
3.11(b)The wavelength (λ_s) and the amplitude (ϵ_s) vs. apparent	
	strain rate at 185°C of the sharkskin of LLDPE (L1810F)	
	in regime III	50
3.12(a)The wavelength (λ_s) and the amplitude (ϵ_s) vs. apparent	
	strain rate at 185°C of the sharkskin of LLDPE (L2009F)	
	in regime II	51
3.12(t)The wavelength (λ_S) and the amplitude (ϵ_S) vs. apparent	
	strain rate at 185°C of the sharkskin of LLDPE (L2009F)	
	in regime III	51
3.13(a)The wavelength (λ_S) and the amplitude (ϵ_S) vs. apparent	
	strain rate at 185°C of the sharkskin of LLDPE (L2020F)	
	in regime II	52
3.13(t)The wavelength (λ_S) and the amplitude (ϵ_S) vs. apparent	
	strain rate at 185°C of the sharkskin of LLDPE (L2020F)	
	in regime III	52
3.14(a	a)The wavelength (λ_s) and the amplitude (ϵ_s) vs. apparent	
	strain rate at 180°C of the sharkskin of HDPE (H5690S)	
	in regime II	53

xii

3.14(b)The wavelength (λ_s) and the amplitude (ϵ_s) vs. apparent		
strain rate at 180°C of the sharkskin of HDPE (H5690S)		
in regime III	53	
3.15(a)The wavelength (λ_s) and the amplitude (ϵ_s) vs. apparent		
strain rate at 180°C of the sharkskin of HDPE (R1760)		
in regime II	54	
3.15(b)The wavelength (λ_s) and the amplitude (ϵ_s) vs. apparent		
strain rate at 180°C of the sharkskin of HDPE (R1760)		
in regime III	54	
3.16(a)The sharkskin normalized length scale (λ_S/ϵ_S) vs.		
apparent strain rate at 185°C and 180°C in regime II	55	
3.16(b)The sharkskin normalized length scale (λ_S/ϵ_S) vs.		
apparent strain rate at 185°C and 180°C in regime III	55	
3.17(a)Stability diagrams ($W_i - \lambda_s / \epsilon_s$) of sharkskin surface in regime II	57	
3.17(b)Stability diagrams ($W_i - \lambda_s / \epsilon_s$) of sharkskin surface in regime III	57	
3.18(a)Stability diagrams (S _R - λ_s/ϵ_s) of sharkskin surface in regime II	58	
3.18(b)Stability diagrams (SR - λ_s/ϵ_s) of sharkskin surface in regime III	58	