FLOW AND REACTION OF WEAK ACIDS IN THE CARBONATE POROUS MEDIA

Mr. Settawat Takulpakdeechoumpon

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 1998 ISBN 947-638-487-2

I19584520

Thesis Title	:	Flow and Reaction of Weak Acids in Carbonate
		Porous Media
Ву	:	Mr. Settawat Takulpakdeechoumpon
Program	•	Petrochemical Technology
Thesis Advisors	:	Prof. H. Scott Fogler
		Dr. Sumaeth Chavadej

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

Director of the College

(Prof. Somchai Osuwan)

Thesis Committee

(Prof. H. Scott Jogle 7 (Prof. H. Scott Fogler) Scimueth Charadeg

(Dr. Sumaeth Chavadej)

K. Bunyalist.

(Assoc. Prof. Kunchana Bunyakiat)

ABSTRACT

961022 : PETROCHEMICAL TECHNOLOGY PROGRAM KEY WORDS : Weak acids/ Wormhole formation/ Damköhler number

Mr. Settawat Takupakdeechoumpon. Thesis title: Flow and Reaction of Weak Acids in Carbonate Porous Media. Thesis Advisors: Prof. H. Scott Fogler and Dr. Sumaeth Chavadej, 51 pp. ISBN 974-638-487-2

The achievement of carbonate matrix acidizing relies on the wormhole formation. These channels are strongly dependent upon the fluid/rock systems and injection rates. Especially, the latter, they change wormhole structures from conical shaped channels, with a large diameter and little branching, to single dominant channels, to highly ramified channels along with the injection rates. At the intermediate, it is the optimum injection rate requiring a least volume of acid to penetrate a desire distance. The optimum injection rate can be found by understanding the calcite dissolution phenomena. They consist of sequential reactions, reactant transport to surface, reversible surface reactions, as well as product transport from surface to bulk fluid. Therefore, this study is conducted to investigate the influence of these steps. Damköhler number defined as the ratio of the net rate of dissolution by acid to the net rate of convective transport of acid is presented. The optimum Damköhler number is observed at a value of approximately 0.29 for a wide range of fluid/rock systems, including formic acid and maleic acid. So, these weak acids are possible to use as a substitute for avoiding using hydrochloric acid. Because this strong acid causes various severe problems such as high corrosity, rapid reactions, and high inducing sludge precipitation.

<u>บทคัดย่อ</u>

เศรษฐวัฒน์ ตกูลภักคีชุมพล : การไหลและการเกิดปฏิกิริยาของกรดอ่อนในโครงสร้างหิน ปูน (Flow and Reaction Weak Acids in Carbonate Porous Media) อ.ที่ปรึกษา : ศ.คร.เอซ สก๊อตต์ ฟอกซ์เลอร์ และ คร. สุเมธ ชวเคช 51 หน้า ISBN 974-638-487-2

ความสำเร็จของกระบวนการแอซิไดซ์ซึ่ง (acidizing) ในโครงสร้างหินปูนขึ้นอยู่กับ ลักษณะ โพรง (wonnhole) ซึ่งเกิดขึ้นหลังจากผ่านกระบวนการดังกล่าว รูปร่างของโพรงสัมพันธ์โดยตรงกับ คุณสมบัติของสารคั้งต้น ของแข็งหรือหินปูน และอัตราการใหลของสารตั้งต้น อัตราการใหลนี้เป็น ้ปัจจัยสำคัญต่อรูปร่างของโพรง กล่าวคือเมื่ออัตราการไหลเร็วขึ้น โพรงจะเปลี่ยนรูปร่างจากทรงกรวย ที่มีเส้นผ่านศูนย์กลางขนาดใหญ่ไปสู่โพรงที่มีเส้นผ่านศูนย์กลางขนาดเล็กลง จนกระทั่งเป็นโครง สร้างที่มีแขนงมาก (ramified) ในระหว่างการเปลี่ยนรูปร่างของโพรงจะมีอัตราการใหลค่าหนึ่งซึ่งให้ ประสิทธิภาพสูงสุดคือใช้ปริมาณของสารตั้งด้นที่น้อยที่สุดเพื่อทะธุระยะทางที่กำหนด การเกิดโพรง ประกอบด้วยปฏิกิริยาที่ต่อเนื่องกัน สารตั้งต้นจะเคลื่อนที่ไปยังพื้นผิวแล้วเกิดปฏิกิริยาเคมีบนพื้นผิว แล้วเกิดการเกลื่อนที่ของผลิตภัณฑ์ ปฏิกิริยาทั้งหมดสามารถอธิบายได้โดยค่าแดมกลอว์ (Damköhler โดยนิยามจากอัตราปฏิกิริยาเคมีที่เกิดขึ้นต่ออัตราการเคลื่อนที่ของสารตั้งต้น จากการ number) ทคลองปรากฏว่าค่าแคมคลอว์ประมาณ 0.29 ก่อให้เกิดประสิทธิภาพมากที่สุดสำหรับสารตั้งต้นและ ของแข็งชนิคต่างๆ รวมทั้งกรคฟอร์มิกและกรคมาเลอิก กรคอ่อนเหล่านี้จึงสามารถทคแทนการใช้ กรคไฮโครคลอริกซึ่งเป็นสารที่มีการกัดกร่อนสูง การเกิคปฏิกิริยาที่เร็ว และเป็นสารที่ก่อให้เกิดการ ตกตะกอนของน้ำมัน (sludge)

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis advisor, Professor H. Scott Fogler, who provided many valuable suggestions and supported me to stay at the University of Michigan, Ann Arbor. He always enforced me to overcome problems by his remarkable characteristic and intelligence. My gratitude is also extended to my Thai advisor, Dr. Sumaeth Chavadej, for his guidance and thesis correction. I would like to express my compliment to Dr. Christopher N. Fredd, who gives a lot of helps. Moreover, I deeply thank Piyaratt Wattana, Probjot Singh, Vaibhav Nalwaya, Barry Wolf, especially Dong Kim who assisted me almost everything during my stay at Michigan. In addition, Dr. John Lindsay of the Phoenix Memorial Laboratory, the University of Michigan is also acknowledged for his assistance to me to obtain neutron radiographs.

Most importantly, I specially thank my family for providing love, encouraging me to further my education and for unlimited support during my graduate studies. I do not hesitate to bestow this work to my family.

TABLE OF CONTENTS

	Title Page	i
	Abstract	iii
	Acknowledge	v
	List of Table	viii
	List of Figures	ix
CHAPTER		
Ι	INTRODUCTION	1
II	BACKGROUND AND LITERATURE SURVEY	4
	2.1 Acidizing	4
	2.2 Wormhole formation	6
	2.3 Well Stimulating acids	9
	2.3.1 Mineral acids	10
	2.3.2 Organic acids	10
	2.3.3 Powdered acids	11
	2.3.4 Acid mixtures	12
	2.4 Development of Comprehensive Dissolution	
	Kinetics of Acidizing Processes	12
III	EXPERIMENTAL SECTION	17
	3.1 Coreflood experiment	17
	3.1.1 Core preparation	17
	3.1.2 Coreflood apparatus	18
	3.2 Neutronradiograph	19

PAGE

3.3	Rotat	ing Experiment	20
	3.3.1	Reagent preparation	21
	3.3.2	Rotating disk apparatus	21

CHAPTER

IV	RESULTS AND DISCUSSION	24
	4.1 Effect of Stimulating Fluids	24
	4.1.1 Effect of acid types on permeability	24
	4.1.2 Effect of injection rates on	
	permeability	28
	4.1.3 Effect of pH on permeability ratio	28
	4.2 Relationship between Damköhler Number	
	and Pore Volumes to Breakthrough	31
V	CONCLUSION AND RECOMMENDATION	36
	REFERENCE	38
APPENDIX		41
APPENDIX A	DETAIL OF COREFLOOD EXPERIMENTS	41
APPENDIX B	ROTATING DISK EXPERIMENT	44
APPENDIX C	NEUTRONRADIOGRAPHS	47
	CURRICULUM VITAE	51

vii

LIST OF TABLES

TABLE	PAGE	
4.1 Parameter used to calculate the overall dissolution		
rate constants	32	
A.1 Elemental composition of limestone analysed by		
Neutron Activation Method	41	

•

LIST OF FIGURES

FIGURE

PAGE

2.1 Schematic of carbonate dissolution mechanisms	13
3.1 Schematic of a linear coreflood experiment	19
3.2 Schematic of a neutronradiograph	20
3.3 Schematic of a rotating disk experiment	22
4.1 Permeability response curves from linear coreflood	
experiment with a variety of stimulating fluids at 1.0	
cc/min	25
4.2 Permeability response curves from linear coreflood	
experiment with different injection rates of formic acid	
0.5M	26
4.3 Permeability response curves from linear coreflood	
experiment with different injection rates of maleic acid	
0.5 M	26
4.4 Permeability response curves from linear coreflood	
experiment with various pH of acetic acid 0.5M	27
4.5 Permeability response curves from linear coreflood	
experiment with various pH of formic acid 0.5M	27
4.6 The relation between injection rates and pore volume to	
breakthrough for a variety of stimulating fluids at 0.5M	29
4.7 The relation between injection rates and pore volume to	
breakthrough for various pH of acetic and formic acid at	
0.5M	29
4.8 Comparison of the number of pore volume to	
breakthrough for a variety of stimulating fluids at 0.5M	30

FIGURE

4.9 Comparison of the number of pore volume to breakthrough	
for various pH of acetic and formic acid at 0.5M	30
4.10 Comparison of the number of pore volume to	
breakthrough plotted the inverse of the modified	
Damköhler number as defined by equation (4.8)	33
4.11 Neutron radiograph of wormhole formed during	
the dissolution of limestone by formic acid 0.5M	34
4.12 Neutron radiograph of wormhole formed during	
the dissolution of limestone by maleic acid 0.5M	34
4.13 Neutron radiograph of wormhole formed during	
the dissolution of limestone by acetic acid 0.5M at	
various pH	35
A.1 Correlation between pore volume injected and	
pressure drop of maleic acid 0.5M at 0.2 cc/min	43
A.2 The relation between the pore volume to breakthrough	
at various permeability ratio of maleic acid 0.5M at	
0.2 cc/min	43
B.1 Effect of a variety of stimulating fluids and pH on the	
rate of dissolution	46
B.2 Correlation between the reciprocal of rotating speed	
and the reciprocal of rate of dissolution as demonstrated	
by the linearized rate expression	46
C.1 Neutron radiograph of wormholes formed during the	
dissolution of limestone by injection acetic acid 0.5M,	
and $pH = 0.3$	48

х

xi

C.2 Neutron radiograph of wormholes formed during the	
dissolution of limestone by injection acetic acid 0.5M,	
and $pH = 1.1$	48
C.3 Neutron radiograph of wormholes formed during the	
dissolution of limestone by injection acetic acid 0.5M,	
and pH = 2.6	49
C.4 Neutron radiograph of wormholes formed during the	
dissolution of limestone by injection acetic acid 0.5M,	
and $pH = 4.3$	49
C.5 Neutron radiograph of wormholes formed during the	
dissolution of limestone by injection formic acid 0.5M,	
and pH = 2.0	50
C.6 Neutron radiograph of wormholes formed during the	
dissolution of limestone by injection acetic acid 0.5M,	
and $pH = 3.5$	50