MELT FRACTURE AND WALL SLIP CHARACTERISTICS OF HDPE AND LLDPE

Ms. Methavee Kwaengsobha

1 al 1

A Thesis Submitted in Partial Fulfillment of Requirements for the Degree of Master of Science The Petroleum and Petrochemical College Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 1998

ISBN 974-638-478-3

Thesis Title	:	Melt Fracture and Wall Slip Characteristics of HDPE
		and LLDPE
By	:	Ms. Methavee Kwaengsobha
Program	:	Polymer Science
Thesis Advisors	:	Prof. Ronald G. Larson
		Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in the Partial Fulfillment of the Requirements for the Degree of Master of Science.

(Prof. Somchai Osuwan)

Thesis Committee

Lonald Le

(Prof. Ronald G.Larson)

convetince.

(Assoc. Prof. Anuvat Sirivat)

R. Magaryphan

(Dr.Rathanawan Magaraphan)

ABSTRACT

962004 : POLYMER SCIENCE PROGRAM

KEY WORDS : Wall Slip / Stick-Slip Transition / Melt Fracture / Extrapolation Length

Methavee Kwaengsobha : Melt Fracture and Wall Slip Characteristics of HDPE and LLDPE. Thesis Advisors: Prof. Ronald G. Larson and Assoc. Prof. Anuvat Sirivat, 170 pp. ISBN 974-638-478-3

We investigated the wall slip characteristics of HDPE and LLDPE polymer melts from the capillary extrusion. The wall slip magnitude of HDPE and LLDPE was found to increase with temperature but to decrease with molecular weight. The slip velocity depends on the wall shear stress according to the power law $V_s = A\tau_w^m$, where A depends on temperature, molecular structure, and molecular weight. The scaling exponent m depends only on molecular structure and molecular weight.

The extrapolation length was used to characterize the slip velocity following the theory of Brochard and de Gennes. Our results indicate that at low temperature and with a high molecular weight, the entanglement state was observed because the grafted chains which are attached to the wall surface effectively entangle with the mobile chains. On the other hand, at high temperature, the marginal state was observed because some grafted chains have been fully extended resulting in a smaller entanglement loci density. The extrapolation length obeys the linear law b = CV_s where C depends slightly on temperature but strongly on molecular weight. C was found to be equal to η'_0/τ^* where η'_0 is the zero shear rate viscosity and τ^* is onset shear stress for slip, consistent with the theory of Brochard and de Gennes in the marginal regime. No rouse regime was observed in this experiment.

บทคัดย่อ

เมธาวี แขวงโสภา: การศึกษาผิวขรุขระของพลาสติกและอัตราการใหลลื่นที่ไม่สม่ำ เสมอบนชิ้นส่วนของพลาสติกที่ถูกรีดจากท่อกลมของพอลิเอทธิลีนชนิดความหนาแน่นสูงและ พอ ลิเอทธิลีนชนิดความหนาแน่นเชิงเส้นต่ำ (Melt Fracture and Wall Slip Characteristics of HDPE and LLDPE) อ.ที่ปรึกษา : Prof. Ronald G. Larson และ รศ. คร. อนุวัฒน์ ศิริวัฒน์ 170 หน้า ISBN 974-638-478-3

วิทยานิพนธ์นี้ เสนอการค้นคว้าเกี่ยวกับการเกิดผิวขรุขระ และอัตราการลื่นไหลที่ ไม่สม่ำเสมอบนชิ้นส่วนพลาสติกที่เกิดจากกระบวนการรีดจากท่อกลม จากการทดลองพบว่า อัตรา การไหลลื่นที่ไม่สม่ำเสมอของสารโพลิเมอร์ จะเพิ่มขึ้นตามอุณหภูมิ แต่จะลดลงตามน้ำหนัก โมเลกุลของโพลิเมอร์ นอกจากนี้ ยังขึ้นอยู่กับค่าความเค้นยกกำลังด้วย

การลากระยะทางของอัตราการลื่นไหลที่ไม่สม่ำเสมอจากผิวท่อกลมไปเป็นศูนย์ ได้นำมาใช้ในการศึกษาลักษณะเฉพาะของอัตราการลื่นไหล ตามทฤษฎีของ Brochard และ de Gennes ซึ่งจากการทคลองพบว่า ที่อุณหภูมิต่ำ และพอลิเมอร์มีน้ำหนักโมเลกุลสูง จะสังเกตพบ สภาวะที่สายโซ่พอลิเมอร์มีการพันกัน เนื่องจากสายโซ่พอลิเมอร์ที่ติดอยู่กับผนังท่อสามารถที่จะ พันกันกับสายโซ่พอลิเมอร์ ที่เคลื่อนที่ได้ นอกจากนี้ ยังพบว่าที่อุณหภูมิสูง จะสังเกตพบสภาวะที่ อัตราการลื่นไหลที่ไม่สม่ำเสมอของพอลิเมอร์ จะมีความสัมพันธ์เชิงเส้นกับการลากระยะทางของ อัตราการลื่นไหลที่ไม่สม่ำเสมอของพอลิเมอร์ เนื่องจากสายโซ่พอลิเมอร์บางส่วนที่ติดกับผนังท่อมี การยึดตัวออกทำให้ความหนาแน่นในการพันกันของพอลิเมอร์ลคลง และยังมีความสันพันธ์กับ ความหนืดของพอลิเมอร์ ที่ความเร็วเป็นศูนย์ และความเก้นเริ่มด้นของการเกิดอัตราการลื่นไหล อย่างไรก็ดีในการทดลองนี้ไม่พบสภาวะที่พอลิเมอร์มีการเคลื่อนที่อย่างอิสระ

ACKNOWLEDGMENTS

The author greatly appreciates the efforts of her research advisors, Professor Ronald G. Larson, Department of Chemical Engineering, University of Michigan and Associate Professor Anuvat Sirivat of the Petroleum and Petrochemical College, Chulalongkorn University for their constructive criticisms. suggestions and proof-reading of this manuscript. She would like to give thanks to Dr. Ratthanawan Magaraphan for being a thesis committee member.

She would like to thank the Siam Chemical Trading Co., Ltd and Thai Petrochemical Industry Public Co., Ltd. for the raw materials and performing the density measurements, melt flow measurements and the size exclusion chromatography measurements.

The author also thanks all of her friends and the staff of the PPC who encouraged her in carrying out all the experiment and this thesis writing. Finally, she is deeply indebted to her presents and aunts for their love, understanding, generous encouragements, and for being a constant source of her inspiration.

TABLE OF CONTENTS

PAGE

Title Page	i
Abstract	iii
Acknowledgments	v
List of Tables	ix
List of Figures	xi

CHAPTER

1

1.0

.

.

I	INTRODUCTION	
	1.1 Extrudate Distortion	2
	1.1.1 Sharkskin	2
	1.1.2 Oscillating Flow	2
	1.1.3 Wavy Fracture	3
	1.2 Wall Slip	3
	1.3 Extrapolation Length	5
	1.4 Previous Studies	6
	1.5 Research Objectives	10

II EXPERIMENTAL SECTION

2.1 Materials	
2.1.1 High Density Polyethylene	11
2.1.2 Linear Low Density Polyethylene	11
2.1.3 Medium Density Polyethylene	12

4

.

III

2.2 Characterizations	12
2.2.1 Melt Flow Index Meter	13
2.2.2 Gel Permeation Chromatography	13
2.2.3 Density Measurement	13
2.2.4 Zoom stero Microscope	13
2.3 Capillary Rheometer	14
2.3.1 Instrument	14
2.3.2 Procedure	14
2.3.3 Calculation	15
2.4 Parallel Plate Rheometer	20
2.4.1 Instrument	20
2.4.2 Procedure	21
2.4.3 Data Analysis	21
RESULTS AND DISCUSSION	23
3.1 Flow Curve	23
3.2 Surface Texture	27
3.3 Rheological Characterizations	33
3.3.1 The storage modulus (G') and the loss	34
modulus (G'')	
3.3.2 Master Curve	41
3.3.3 Cox-Merx Rule	45
3.3.4 Viscosity	54
3.3.5 The stress at the onset of the slip velocity	64
3.4 Effect of Temperature on Slip	73
	72

vii

	3.4.2 Extrapolation Length	80
	3.5 Effect of Molecular Weight	86
	3.5.1 Slip Velocity	86
	3.5.2 Extrapolation Length	90
	3.6 Scaling	94
	3.6.1 Effect of Temperature	94
	3.6.2 Effect of Molecular Weight	96
IV	CONCLUSIONS	98
	REFFERENCES	99
	APPENDICES	103
	CURRICULUM VITAE	182

LIST OF TABLES

TABLE

.

.

.

PAGE

2.1.1	Physical properties of HDPE as given by manufacterer	11
2.1.2	Physical properties of LLDPE as given by manufacterer	12
2.1.3	Physical properties of MDPE as given by manufacterer	12
2.3	Capillary dies features	14
3.2.1	Stereomicroscope photography of the melt fracture of	30
	LLDPE (L2009F) at temperature of 190°C	
3.2.2	The critical wall shear stress $(\tau_{W,C})$ and the	31
	strain rate (γ_a) for LLDPE (L2009F and M3204RU)	
	and HDPE (H5690S and H6205JU) at temperature	
	of 190°C	
3.2.3	The critical wall shear stress $(\tau_{W,C})$ and the	32
	strain rate (γ_a) for LLDPE (L2020F) and HDPE (H5690S)	
	at temperatures between 150-230°C	
3.3.1	Physical properties of all materials studied	33
3.3.2	The values of $G^{0}N$, the zero complex viscosity,	71
	η^*_0 , the zero shear viscosity, η'_0 , and the stress	
	at the onset of the slip velocity, τ^* , for	
	LLDPE (L2020F) and HDPE (H5690S) at temperatures	
	between 150-230°C	

TABLE

.

•

.

le i

х

3.3.3	The values of G ⁰ N, the zero complex viscosity,	72
	$\eta^*{}_0$, the zero shear viscosity, $\eta^{\prime}{}_0$, and the stress	
	at the onset of the slip velocity, τ^* , for LLDPE	
	(L2009F, L2020F and M3204RU) and HDPE	
	(H5604F, H5690S and H6205JU) at temperature	
	of 190°C. of different molecular weights	
3.4.1	The values of power law parameters A, m and the	79
	onset of wall shear stress, τ^* , at temperatures	
	between 150-230°C for LLDPE (L2020F) and	
	HDPE (H5690S)	
3.4.2	The values of the parameter C, at different	86
	temperatures for LLDPE (L2020F) and HDPE (H5690S)	
3.5.1	The values of power law parameters A and m at	89
	the temperature of 190°C for LLDPE and HDPE	
	of different molecular weights	
3.5.2	The values of the parameter C for LLDPE and	94
	HDPE of different molecular weights	
	 3.3.3 3.4.1 3.4.2 3.5.1 3.5.2 	 3.3.3 The values of G⁰_N, the zero complex viscosity, η[*]₀, the zero shear viscosity, η[']₀, and the stress at the onset of the slip velocity, τ[*], for LLDPE (L2009F, L2020F and M3204RU) and HDPE (H5604F, H5690S and H6205JU) at temperature of 190°C. of different molecular weights 3.4.1 The values of power law parameters A, m and the onset of wall shear stress, τ[*], at temperatures between 150-230°C for LLDPE (L2020F) and HDPE (H5690S) 3.4.2 The values of the parameter C, at different temperatures for LLDPE (L2020F) and HDPE (H5690S) 3.5.1 The values of power law parameters A and m at the temperature of 190°C for LLDPE and HDPE of different molecular weights

LIST OF FIGURES

FIGURE

.

(á.

.

PAGE

1.1(a) Plot of velocity field at the stick-slip transition in the	4
capillar corresponding to the "stick" state, with	
sufficient chain entanglement denoted by the	
dots and with zero slip velocity	
(b) Plot of velocity fiend at the transition corresponding to	
the "slip" state, with exaggerated depiction of	
zero chain entangments in the interfacial layer	
and a much larger apparent flow throughput	
due to a finite slip velocity	
1.2 Plot of three regimes of slip velocity in the plot between	6
the extrapolation length, b versus the slip velocity, V_s	
2.1 Plot of viscoty vs. the apparent strain rate	17
3.1 Plot of wall shear stress, τ_W , as a function of the apparent	24
strain rate, γ_a , for LLDPE(L2009F) at temperature	
of 190 °C	
3.2 Plot of wall shear stress, τ_W , as a function of the apparent	25
strain rate, γ_{a} , for LLDPE(2020F) at temperature	
of 190 °C	
3.1 Plot of wall shear stress, τ_W , as a function of the apparent	25
strain rate, γ_{W} , for MDPE (M3204RU) at temperature	
of 190 °C	

.

-

+

2.4. Plat of wall char stress r as a function of the apparent	26
5.4 FIOLOI wan shear shess, t_W , as a function of the apparent	20
strain rate, γ_a , for HDPE (H5690S) at temperature	
of 190 °C	
3.5 Plot of wall shear stress, τ_W , as a function of the apparent	26
strain rate, γ_a , for HDPE (H5604F) at temperature	
of 190 °C	
3.6 Plot of wall shear stress, τ_W , as a function of the temperature	27
strain rate, γ_a , for HDPE (H6205JU) at the temperature	
of 190 °C	
3.7 Stereomicroscope photography of the smooth extrudate	28
of LLDPE (L2009F) at temperature of 190 °C	
3.8 Stereomicroscope photography of the sharkskin extrudate	29
of LLDPE (L2009F) at temperature of 190 °C	
3.9 Stereomicroscope photography of the alternating surfaces	29
between smooth and sharkskin of LLDPE (L2009F) at	
temperature of 190 °C	
3.10 Stereomicroscope photography of the melt fracture	30
of LLDPE (L2009F) at temperature of 190 °C	
3.11 Plot of storage modulus, G', as a function of the frequency,	35
ω , of LLDPE (L2009F) melts at temperatures	
3.12 Plot of storage modulus, G', as a function of the frequency,	35
ω , of LLDPE (L2009F) melts at different temperatures	
3.13 Plot of storage modulus, G', as a function of the frequency,	36
ω , of LLDPE (M3204RU) melts at different temperatures	
3.14 Plot of storage modulus, G', as a function of the frequency,	36
ω , of HDPE (H5604F) melts at different temperatures	
-	

×

-

-z

PAGE

3.15 Plot of storage modulus, G', as a function of the frequency,	37
ω , of HDPE (H5690S) melts at different temperatures	
3.16 Plot of storage modulus, G', as a function of the frequency,	37
ω , of HDPE (H6205JU) melts at different temperatures	
3.17 Plot of storage modulus, G", as a function of the frequency,	38
ω , of LLDPE (L2009F) melts at different temperatures	
3.18 Plot of storage modulus, G'', as a function of frequency,	38
ω , of LLDPE (L2020F) melts at different temperatures	
3.19 Plot of storage modulus, G", as a function of frequency,	39
ω , of LLDPE (M3204RU) melts at different temperatures	
3.20 Plot of storage modulus, G", as a function of the frequency,	39
ω , of HDPE (H5604F) melts at different temperatures	
3.21 Plot of storage modulus, G", as a function of the frequency,	40
ω , of HDPE (H5690S) melts at different temperatures	
3.22 Plot of storage modulus,G", as a function of the frequency,	40
ω , of HDPE (H6205JU) melts at different temperatures	
3.23 Master curve of LLDPE (L2009F) melts at reference	42
temperature of 190 °C	
3.24 Master curve of LLDPE (L202F) melts at reference	42
temperature of 190 °C	
3.25 Master curve of LLDPE (M3204RU) melts at reference	43
temperature of 190 °C	
3.26 Master curve of HDPE (H5604F) melts at reference	43
temperature of 190 °C	
3.27 Master curve of HDPE (H5690S) melts at reference	44
temperature of 190 °C	

.

.

•

3.28 Master curve of HDPE (H6205JU) melts at reference	44
temperature of 190 °C	
3.29 Plot of viscosity as a function of the apparent strain rate	46
and frequency of LLDPE (L202F) melts by	
Cox-Merz rule at temperature of 150 °C	
3.30 Plot of viscosity as a function of the apparent strain rate	46
and frequency of LLDPE (L2020F) melts by	
Cox-Merz rule at temperature of 170 °C	
3.31 Plot of viscosity as a function of the apparent strain rate	47
and frequency of LLDPE melts (L2020F) melts by	
Cox-Merz at temperature of 190 °C	
3.32 Plot of viscosity as a function of the apparent strain rate	47
and frequency of LLDPE (L2020F) melts by	
Cox-Merz rule at temperature of 210 °C	
3.33 Plot of viscosity as a function of the apparent strain rate	48
and frequency of HDPE (H5690S) melts by	
Cox-Merz rule at temperature of 230 °C	
3.34 Plot of viscosity as a function of the apparent strain rate	48
and frequency of HDPE (H5690S) melts by	
Cox-Merz rule at temperature of 150 °C	
3.35 Plot of viscosity as a function of the apparent strain rate	49
and frequency of HDPE (H5690S) melts by	
Cox-Merz rule at temperature of 170 °C	
3.36 Plot of viscosity as a function of the apparent strain rate	49
and frequency of HDPE (H5690S) melts by	
Cox-Merz rule at temperature of 190 °C	

1.5

.

3.37 Plot of viscosity as a function of the apparent strain rate	50
and frequency of HDPE (H5690S) melts by	
Cox-Merz rule at temperature of 210 °C	
3.38 Plot of viscosity as a function of the apparent strain rate	50
and frequency of HDPE (H5690S) melts by	
Cox-Merz rule at temperature of 230 °C	
3.39 Plot of viscosity as a function of the apparent strain rate	51
and frequency of LLDPE (L2009F) melts by	
Cox-Merz rule at temperature of 190 °C	
3.40 The viscosity as a function of the apparent strain rate	52
and frequency of LLDPE (L2020F) melts by	
Cox-Merz rule at temperature of 190 °C	
3.41 Plot of viscosity as a function of the apparent strain rate	52
and frequency of LLDPE (M3204RU) melts by	
Cox-Merz rule at temperature of 190 °C	
3.42 Plot of viscosity as a function of the apparent strain rate	53
and frequency of HDPE (H5604F) melts by	
Cox-Merz rule at temperature of 190 °C	
3.43 Plot of viscosity as a function of the apparent strain rate	53
and frequency of HDPE (H5690S) melts by	
Cox-Merz rule at temperature of 190 °C	
3.44 Plot of viscosity as a function of the apparent strain rate	54
and frequency of HDPE (H6205JU) melts by	
Cox-Merz rule at temperature of 190 °C	
3.45 Plot of viscosity as a function of the frequency of	55
LLDPE (L2020F) melts at temperature of 150 °C	

2

.

3.46 Plot of viscosity as a function of the frequency of	56
LLDPE (L2020F) melts at temperature of 170 °C	
3.47 Plot of viscosity as a function of the frequency of	56
LLDPE (L2020F melts at temperature of 190 °C	
3.48 Plot of viscosity as a function of the frequency of	57
LLDPE (L2020F) melts at temperature of 210 °C	
3.49 Plot of viscosity as a function of the frequency of	57
LLDPE (L2020F) melts at temperature of 230 °C	
3.50 Plot of viscosity as a function of the frequency of	58
HDPE (H5690S) melts at temperature of 150 °C	
3.51 Plot of viscosity as a function of the frequency of	58
HDPE (H5690S) melts at temperature of 170 °C	
3.52 Plot of viscosity as a function of the frequency of	59
HDPE (H5690 melts at temperature of 190 °C	
3.53 Plot of viscosity as a function of the frequency of	59
HDPE (H5690S melts at temperature of 210 °C	
3.54 Plot of viscosity as a function of the frequency of	60
HDPE (H5690S) melts at temperature of 230 °C	
3.55 Plot of viscosity as a function of the frequency of	61
LLDPE (L2009F) melts at temperature of 190 °C	
3.56 Plot of viscosity as a function of the frequency of	61
LLDPE (L2020F) melts at temperature of 190 °C	
3.57 Plot of viscosity as a function of the frequency of	62
LLDPE (M3204RU) melts at temperature of 190 °C	
3.58 Plot of viscosity as a function of the frequency of	62
HDPE (H5604F) melts at temperature of 190 °C	

.

...

3.59 Plot of viscosity as a function of the frequency of	63
HDPE (H5690S) melts at temperature of 190 °C	
3.60 Plot of viscosity as a function of the frequency of	63
HDPE (H6205J) melts at temperature of 190 °C	
3.61 Plot of slip velocity, V_s , as a function of the wall	64
shear stress, τ_W , for LLDPE (L2020F) melts at	
temperature of 170 °C	
3.62 Plot of slip velocity. V_s , as a function of the wall	65
shear stress, τ_W , for LLDPE (L2020F) melts at	
temperature of 190 °C	
3.63 Plot of slip velocity, V_s , as a function of the wall	65
shear stress, τ_W , for LLDPE (L2020F) melts at	
temperature of 210 °C	
3.64 Plot of slip velocity, V_s , as a function of the wall	66
shear stress, τ_W for LLDPE (L2020F) melts at	
temperature of 230 °C	
3.65 Plot of slip velocity, V_s , as a function of the wall	66
shear stress, τ_W , for HDPE(H5690S) melts at	
temperature of 190 °C	
3.66 Plot of slip velocity, V_s , as a function of the wall	67
shear stress, τ_W , for HDPE(H5690S) melts at	
temperature of 210 °C	
3.67 Plot of slip velocity, V_s , as a function of the wall	67
shear stress, τ_W , for HDPE (H5690S) melts at	
temperature of 230 °C	

.

.

+

3.68 Plot of slip velocity. V_s , as a function of the wall	68
shear stress, τ_W , for LLDPE (L2009F) melts at	
temperature of 190 °C	
3.69 Plot of slip velocity, V_s , as a function of the wall	69
shear stress, τ_W , for LLDPE (L2020F) melts at	
temperature of 190 °C	
3.70 Plot of slip velocity, V_s , as a function of the wall	69
shear stress, τ_W , for LLDPE (M3204RU) melts at	
temperature of 190 °C	
3.71 Plot of slip velocity, V_s , as a function of the wall	70
shear stress, τ_W , for HDPE (H5690S) melts at	
temperature of 190 °C	
3.72 Plot of slip velocity, V_s , as a function of the wall	70
shear stress, τ_W for HDPE (H6205JU) melts at	
temperature of 190 °C	
3.73 Plot of apparent strain rate, γ_a , as a function of one over	73
diameter of a capillary, 1/d _c , for HDPE (H5690S) at	
temperature of 190 °C	
3.74 Plot of slip velocity, V_s , as a function of the wall	74
shear stress, τ_W of LLDPE (L2020F) at temperature	
of 150-230 °C	
3.75 (a) Plot of slip velocity, V_s , as a function of the wall	75
shear stress, τ_W , for HDPE (H5690S) at temperature	
of 150 °C, 190 °C and 230 °C	

141

(b) Plot of slip velocity, V_s , as a function of the wall	75
shear stress, τ_W , for HDPE (H5690S) at temperature	
of 170 °C and 210 °C	
3.76 Plot of slip velocity, V_s , as a function of the wall	77
shear stress, τ_W , on log-log plot of	
LLDPE (L2020F) at temperatures of 150-230 °C	
3.77 (a) Plot of slip velocity, V_s , as a function of the wall	77
shear stress, τ_W , on log-log plot of HDPE (H5690S)	
at temperatures of 150 °C, 190 °C and 230 °C	
3.77(b) Plot of slip velocity, V_s , as a function of the wall	78
shear stress, τ_W , on log-log plot of HDPE (H5690S)	
at temperatures of 170 °C and 210 °C	
3.78 Plot of extrapolation length, b, as a function of the slip	81
velocity, Vs, of LLDPE (L2020F) at temperature	
of 150 °C	
3.79 Plot of extrapolation length, b, as a function of the slip	82
velocity, Vs, of LLDPE (L2020F) at temperature	
of 170 °C	
3.80 Plot of extrapolation length, b, as a function of the slip	82
velocity, Vs, of LLDPE (L2020F) at temperature	
of 190 °C	
3.81 Plot of extrapolation length, b, as a function of the slip	83
velocity, Vs, of LLDPE (L2020F) at temperature	
of 210 °C	

. . .

4

3.82 Plot of extrapolation length, b, as a function of the slip	83
velocity, Vs, of LLDPE (L2020F) at temperature	
of 230 °C	
3.83 Plot of extrapolation length, b, as a function of the slip	84
velocity, Vs, of HDPE (H5690S) at temperature	
of 170 °C	
3.84 Plot of extrapolation length, b, as a function of the slip	84
velocity, Vs, of HDPE (H5690S) at temperature	
of 190 °C	
3.85 Plot of extrapolation length, b, as a function of the slip	85
velocity, Vs of HDPE (H5690S) at temperature	
of 210 °C	
3.86 Plot of extrapolation length, b, as a function of the slip	85
velocity, Vs, of HDPE (H5690S) at temperature	
of 230 °C	
3.87 Plot of slip velocity, V_s , as a function of the wall	87
shear stress, τ_W , for LLDPE (L2020F) of	
different molecular weights	
3.88 Plot of slip velocity, V_s , as a function of the wall	87
shear stress, τ_W , for HDPE (H5690S) of	
different molecular weights	
3.89 Plot of slip velocity, V_s , as a function of the wall	88
shear stress, τ_W , on log-log plot of	
LLDPE (L2020F) of different molecular weights	

3.90 Plot of slip velocity, V_s , as a function of the wall	89
shear stress, τ_W , on log-log plot of	
HDPE (H5690S) of different molecular weights	
3.91 Plot of extrapolation length, b, as a function of the slip	91
velocity, V _s , at temperature of 190 °C for	
LLDPE (L2009F)	
3.92 Plot of extrapolation length, b, as a function of the slip	91
velocity, V _s , at temperature of 190 °C for LLDPE (L2020F)	
Plot of extrapolation length, b, as a function of the slip	
velocity, V _S , at temperature of 190 °C for	
LLDPE (L2020F)	
3.93 Plot of extrapolation length, b, as a function of the slip	92
velocity, V _s , at temperature of 190 °C for LLDPE (L2020F)	
Plot of extrapolation length, b, as a function of the slip	
velocity, V _S , at temperature of 190 °C for	
LLDPE (M3204RU)	
3.94 Plot of extrapolation length, b, as a function of the slip	92
velocity, V _S , at temperature of 190 °C for	
HDPE (H5604F)	
3.95 Plot of extrapolation length, b, as a function of the slip	93
velocity, V _s , at temperature of 190 °C for HDPE (H5690S)	
3.96 Plot of extrapolation length, b, as a function of the slip	93
velocity, V _s , at temperature of 190 °C for	
HDPE (H6205JU)	

3.97 Plot of e	xtrapolation length, b, vs. $(\eta'_{O}V_{S})/\tau^{*}$ for	95
LLDPE (L2020F) melts at temperatures	
between	170-230 °C	
3.98 Plot of e	xtrapolation length, b, vs. $(\eta'_{0}V_{s})/\tau^{*}$ for	96
HDPE (F	15690S) melts at temperatures	
between	190-230 °C	
3.99 Plot of e	xtrapolation length, b, vs. $(\eta'_{0}V_{s})/\tau^{*}$ for	97
LLDPE (L2009F, L2020F and M3204RU) at	
temperat	ure of 190 °C	
3.100 Plot of e	extrapolation length, b, vs. $(\eta'_0 V_S)/\tau^*$ for	97
HDPE (I	H5690S and H6205JU) at temperature 190 °C	