SHEAR FRACTURE OF HIGH DENSITY POLYETHYLENE MELTS

Ms. Montara Thammachart

.

٩.

.

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 1999 ISBN 974-331-925-5

119337632

Thesis Title	:	Shear Fracture of High Density Polyethylene Melts
By	:	Ms. Montara Thammachart
Program	:	Polymer Science
Thesis Advisors	:	Professor Ronald G. Larson
		Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

. College Director

(Prof. Somchai Osuwan)

Thesis Committee :

Grue O

(Prof. Ronald G. Larson)

Anuallinwal

(Assoc. Prof. Anuvat Sirivat)

Ralme Represent

(Dr. Ratana Rujiravanit)

บทคัดย่อ

นางสาวมนทรา ธรรมชาติ : การศึกษาผิวขรุขระบริเวณผิวหน้าของพอลิเอททิลีนความ หนาแน่นสูง (Shear Fracture of High Density Polyethylene Melts) อาจารย์ที่ปรึกษา : ศ. คร. รอนาลด์ ลาร์สัน และ รศ. คร. อนุวัฒน์ ศิริวัฒน์ 67 หน้า ISBN 974-331-925-5

การศึกษาการไหลของของเหลวผ่านภายในท่อและช่องต่างๆนั้นมีความสำคัญมากใน กระบวนการผลิตและขึ้นรูปของพลาสดิกที่มีขนาดเล็ก การวิจัยนี้เป็นการศึกษาการลื่นที่ผนังของ แข็งของพอลิเอททิลีนความหนาแน่นสูงโดยใช้เครื่องมือวัดสมบัติการไหลแบบโคนและเพลท ความถี่วิกฤตและความเครียดวิกฤตซึ่งคือความถี่และความเครียดที่การลื่นเกิดขึ้นมีแนวโน้มเพิ่ม ขึ้นเมื่อความเค้นที่ให้เข้าไปแก่ระบบเพิ่มขึ้น การทดลองแบ่งเป็นสองช่วงคือช่วงวิสโคอิลาสติกที่ เป็นเส้นตรงและไม่เป็นเส้นตรง สำหรับช่วงวิสโคอิลาสดิกที่เป็นเส้นตรงที่อุณหภูมิ 160 และ 180 องสาเซลเซียสพบว่ากลไกการลื่นมีสองแบบร่วมกันคือการหลุดของสายพอลิเมอร์ที่ผิวของแข็ง และการเกิดรูที่ผิวพอลิเมอร์ที่สัมผัสกับผิวของแข็ง ส่วนในช่วงวิสโคอิลาสดิกที่ไม่เป็นเส้นตรง พบว่ากลไกการลื่นคือการหลุดของสายพอลิเมอร์เพียงอย่างเดียว ที่อุณหภูมิ 200 องศาเซลเซียส ก่าโมดูลัสเซิงซ้อนประพฤติตัวต่างไปจากที่ 160 และ 180 องศาเซลเซียส นั่นคือ ก่าโมดูลัส เชิงซ้อนมีแนวโน้มทั้งเพิ่มขึ้นและลดลงขึ้นอยู่กับความถี่ที่ให้เข้าไป การเพิ่มขึ้นของโมดูลัส เชิงซ้อนเกิดจากการเชื่อมกันของสายพอลิเมอร์ที่อุณหภูมิสูง ส่วนการลดลงของโมดูลัสเชิงซ้อน เกิดจากการเกิดรูที่ผิวพอลิเมอร์ที่สัมผัสกับผิวของแข็ง

ABSTRACT

972010 : POLYMER SCIENCE PROGRAM

KEY WORDS : Shear Fracture/ Slip/ Desorption/ Disentanglement

Ms. Montara Thammachart: Shear Fracture of High Density Polyethylene Melts. Thesis Advisors: Prof. Ronald G. Larson and Assoc. Prof. Anuvat Sirivat, 67 pp. ISBN 974-331-925-5

Surface smoothness is one of the critical requirements in plastic processing of small-scale products, which require accurate manufacturing. Therefore skin roughness posses a challenging problem for micron-size manufacturing. The rheological properties of HDPE were measured using cone-and-plate rheometer in dynamic mode in order to study the slippage on a solid surface. Critical frequencies and critical stresses, which are the frequencies and stresses that slippage occur, increase with the strain imposed. Our data can be divided into linear viscoelastic regime (LVR) and nonlinear viscoelastic regime (NVR). The mechanisms of slip in both regimes are different depending on temperature. For the NVR at the temperatures of 160 and 180° C, decay in *G** was caused by desorption between polymer chains and solid wall, while in the LVR desorption and voids formation were observed. Different results were obtained at 200°C, in which *G** rose and decayed. Rising in *G** was caused by cross-linking while the decay in *G** was caused by voids formation.

ACKNOWLEDGEMENTS

The author would like to acknowledge all professors who have taught her at the Petroleum and Petrochemical College, Chulalongkorn University, especially those in the Polymer Science Program.

The author greatly appreciates the efforts of her research advisors, Professor Ronald G. Larson and Associate Professor Anuvat Sirivat for their useful suggestions and proof-reading of this manuscript. The author would like to give sincere thanks to Dr. Ratana Rujiravanit for being a thesis committee member.

The author would like to thanks Thai Polyethylene Co., Ltd. for supporting the materials.

Finally, the author is deeply indebted to her parents and her friends for their love, understanding encouragement, and for being a constant source of her inspiration.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	x
List of Symbols	xiv

CHAPTER

Ι	INTRODUCTION	1
	1.1 Brochard and de Gennes Theory	2
	1.2 Slip Mechanisms	3
	1.3 Literature Survey	4
	1.4 Objectives	9
	1.5 Scope of Work	9
II	EXPERIMENTAL	10
	2.1 Materials	10
	2.2 Characterization	10
	2.2.1 Rheological Properties	10
	2.2.2 Melt Flow Index Determination	14
	2.2.3 Molecular Weight Determination	15
	2.2.4 Percentage of Crystallinity	16
	2.2.5 Fractured Surface Studies	17

53

III	RESULTS AND DISCUSSION	18
	3.1 Charaterization	18
	3.1.1 Master Curves	18
	3.1.2 Viscosity	21
	3.1.3 Viscoelastic Regime	23
	3.2 Critical Conditions	24
	3.2.1 Critical Conditions for Decay in Complex	
	Modulus	24
	3.2.2 Effect of Temperature	28
	3.2.3 Effect of Molecular Weight	30
	3.3 Asymptotic Transient Angular Slip	32
	3.3.1 Derivation of Transient Angular Slip	32
	3.3.2 Effect of Strain Rate	34
	3.3.3 Effect of Molecular Weight and	
	Temperature	35
	3.4 Slip Velocity and Slip Length	39
	3.5 Morphology of Polymers at Interface	42
	3.5.1 Outer Surfaces	42
	3.5.2 Inner Surfaces	45
	3.6 The Analysis of the Anomalous Data at 200°C	47
	3.6.1 Decays in Complex Modulus	49
	3.6.2 Rises in Complex Modulus	50
IV	CONCLUSIONS	52

REFERENCES

vii

CHAPTER	PAGE
APPENDIX	55
CURRICULUM VITAE	67

LIST OF TABLES

TABLE

3.1	Horizontal shift factor a_T for each temperature of high	
	Density polyethylene (H5690S and H5603B)	19
3.2	Zero shear viscosity at different temperatures for H5690S	
	and H5603B	22
3.3	Linear and nonlinear viscoelastic regimes	24
3.4	Critical frequency at different strain amplitudes at the	
	Temperatures of 160, 180, and 200°C for H5690S	27
3.5	Critical stress at different strain amplitudes at the	
	Temperatures of 160, 180, and 200°C for H5690S	27
3.6	Slip velocity and slip length in LVR and NVR for H5690S	41

LIST OF FIGURES

1.1	Surface-anchored N chain and a mobile P chain	2
1.2	Three regimes of Brochard and de Gennes theory	2
1.3	Sketch showing the hypothetical tube assumed by Doi	
	and Edwards	3
1.4	Desorption of polymer chain to solid surface	4
2.1	Cone and plate rheometer fixtures	11
2.2	Viscosity vs. shear rate curve for a shear thinning	
	material	14
3.1	Master curves of G' and G" for H5690S at the reference	
	temperature of 160°C	18
3.2	Master curves of G' and G" for H5690S at the reference	
	temperature of 180°C	19
3.3	Plot between lna_T vs. $[(1/T)-(1/T_o)]$ for H5690S	20
3.4	Plot between lna_T vs. $[(1/T)-(1/T_o)]$ for H5603B	21
3.5	Plot between viscosity vs. shear rate for H5690S	21
3.6	Plot between viscosity vs. shear rate for H5603B	22
3.7	Plot between complex modulus G^* vs. strain for H5690S	23
3.8	Plot between complex modulus G^* vs. strain for H5603B	23
3.9	Plot between complex modulus G^* vs. time for H5690S	
	sheared at an amplitude of 30% at 160°C	25
3.10	Plot between complex modulus G^* vs. time for H5690S	
	sheared at an amplitude of 30% at 180°C	25
3.11	Plot between complex modulus G^* vs. time for H5690S	
	sheared at an amplitude of 30% at 200°C	26

FIGURE	
3.12 (a) Plot between ω_d^* vs. strain for H5690S at different	
temperature	28
(b) Plot between ω_d^* vs. stress for H5690S at different	
temperature	28
3.13 Plot between $\omega_d * \eta_o(T)/T$ vs. stress for H5690S	29
3.14 Plot between $\omega_d * \eta_o(T) M$ vs. stress for H5690S and H56	03B
at 180°C	30
3.15 Plot between $\omega_d * \eta_o(T) M^3$ vs. stress for H5690S and H56	603B
at 180°C	30
3.16 Plot between $\omega_d * \eta_o(T) M/T$ vs. stress for H5690S and H5	5603B
at 180°C	31
3.17 Plot between transient angular slip vs. time for H5690S	
sheared at an amplitude of 30% at 160°C	33
3.18 Plot between asymptotic transient angular slip vs. strain	rate
for H5690S at	
(a) 160°C	34
(b) 180°C	34
3.19 Plot between $\Delta G^*M/T$ vs. $\dot{\gamma}M^2/T$ for H5690S and H56	03B
at 160 and 180°C	36
3.20 Plot between $G^*_{asymptotic}M/T$ vs. $\dot{\gamma}M^2/T$ for H5690S and	1
H5603B at 160 and 180°C	36
3.21 Plot between $\Delta G^*/T$ vs. $\gamma \eta_o / T$ for H5690S and H5603	В
at 160 and 180°C	37
3.22 Plot between $G^*_{asymptotic}/T$ vs. $\dot{\gamma}\eta_o/T$ for H5690S and H	5603B
at 160 and 180°C	37

.

.

FIGURE

PAGE

3.23	Plot between slip length vs. slip velocity for H5690S at 160	
	and 180°C at strain amplitudes of	
	(a) 30%	40
	(b) 150%	40
3.24	SEM micrographs of the H5690S samples after have been	
	sheared below critical conditions at 160°C in	
	(a) LVR	42
	(b) NVR	42
3.25	SEM micrographs of the H5690S samples after have been	
	sheared at critical conditions at 160°C in	
	(a) LVR	43
	(b) NVR	43
3.26	SEM micrographs of the H5690S samples after have been	
	sheared above critical conditions at 160°C in	
	(a) LVR	44
	(b) NVR	44
3.27	SEM micrographs of the inner surface of the H5690S samples	
	after have been sheared below critical conditions at 160°C in	
	(a) LVR	45
	(b) NVR	45
3.28	SEM micrographs of the inner surface of H5690S samples	
	after have been sheared at critical conditions at 160°C in	
	(a) LVR	46
	(b) NVR	46
3.29	Plot between G* vs. time for H5690S sheared at an amplitude	
	of 30% at 200°C	47

FIGURE	PAGE
3.30 (a) Plot between critical frequency vs. strain for H5690S	
sheared at an amplitude of 30% at 200°C	48
(b) Plot between critical stress vs. strain for H5690S	
sheared at an amplitude of 30% at 200°C	
3.31 SEM micrographs of H5690S samples after have been	
sheared at 200°C at	
(a) Below ω_d^*	49
(b) At ω_d^*	49
(c) Above ω_d^*	49
3.32 Rouse-Mooney theory	50
3.33 Plot between G' vs. frequency for H5690S before and after	
having been sheared under the condition that make G^* rising	g
at 200°C	51

xiii

LIST OF SYMBOLS

SYMBOL

G'	Storage modulus (dyn/cm ²)
G″	Loss modulus (dyn/cm ²)
G*	Complex modulus (dyn/cm ²)
η	Viscosity (Poise)
η'	Storage viscosity (Poise)
η″	Loss viscosity (Poise)
ηο	Zero shear viscosity (Poise)
М	Molecular weigh (g/mole)
ρ	Density (g/cm ³)
Т	Temperature (K)
ω	Angular frequency (rad/s)
f	Oscillating frequency (1/s)
λ	Relaxation time (s)
σ	Stress (dyn/cm ²)
γ	Strain (%)
Ν	Normal force different (dyn/cm ²)
θ	Angular displacement (rad)
β	Cone angle (rad)
$\Delta \theta$	Transient angular slip (rad)
b	Slip/ Extrapolation length (cm)
Vs	Slip velocity (cm/s)