REFERENCES

- Atwood, B.T., and Schowalter, W.R. (1989). Measurement of slip at the wall during flow of high density polyethylene through a rectangular conduit. <u>Rheologica Acta</u>, 28, 134-146.
- Brochard. F., and de Gennes, P.G. (1992). Shear-dependent slippage at a polymer/solid interface. Langmuir, 8, 3033-3037.
- Brochard, F., and Gay, C., and de Gennes, P.G. (1996). Slippage of polymer melts on grafted surfaces. <u>Macromolecules</u>, 29, 377-382.
- Chen, Y.-L., Larson, R.G., and Patel, S.S. (1994). Shear fracture of polystyrene melts and solutions. <u>Rheologica Acta</u>, 33, 243-256.
- Dealy, J.M., and Wissbrun, K.F. (1990). <u>Melt rheology and its role in plastic</u> processing, (pp 74-84). London : Chapman & Hall.
- Denn, M.M. (1990). Issues in viscoelastic fluid mechanics, <u>Annual Review of</u> Fluid Mechanic, 22, 13-34.
- Drda, P.A., and Wang, S.-Q. (1995). Stick-slip transition at polymer melt/solid interfaces. Physical Review Letters, 75, 2698-2701.
- Kissi, N., and Piau, J.M. (1990). The different capillary flow regimes of entangled polydimethysiloxane polymer : Macroscopic slip at the wall, Hysteresis and cork flow. <u>Journal of Non-Newtonian Fluid</u> <u>Mechanics</u>, 37, 55-94.
- Hatzikiriakos, S.G., and Dealy, J.M. (1991). Wall slip of molten high density polyethylenes. I. Sliding plate rheometer studies. <u>Journal of</u> <u>Rheology</u>, 35(4), 497-523.
- Hatzikiriakos, S.G., and Dealy, J.M. (1992). Wall slip of molten high density polyethylenes. II. Capillary rheometer studies. Journal of Rheology, 36(4), 703-741.

- Hatzikiriakos, S.G., and Dealy, J.M. (1992). Role of slip and fracture in the oscillating flow of HDPE in a capillary. Journal of Rheology, 36(5), 845-741-884.
- Hill, D.A., Hasegawa, T., and Denn, M.M. (1990). On the apparent relation between adhesive failure and melt fracture. Journal of Rheology, 34 (6), 891-918.
- Kalika, D.S., and Denn, M.M. (1987). Wall slip and extrudate distortion in linear low-density polyethylene. Journal of Rheology, 31, 815-834.
- Leger, L., Hervet, H., and Massey, G. (1997). The role of attached polymer molecules in wall slip. <u>Trends in Polymer Science</u>, 5(2), 40-45.
- Mhetar, V., and Archer, L.A., Slip in entangled polymer melts. I General features. <u>Macromolecules</u>, 31, 8607-8616.
- Migler, K.B., Hervet, H., and Leger, L. (1993). Slip transition of a polymer melt under shear stress. <u>Physical Review Letters</u>, 70(3), 287-290.
- Ramamurthy, A.V. (1986). Wall slip in viscous fluid and influence of materials of construction. Journal of Rheology, 30, 337-357.
- Vinogradov, G.V., and Insarova, N.I. (1972). Critical regimes of shear in linear polymers. <u>Polymer Engineering and Science</u>, 12(5), 323-334.

APPENDICES

APPENDIX A

CRITICAL CONDITIONS

Table A(1) Critical frequency at different strain amplitudes at the temperatures of 160, 180, and 200°C for H5690S (Data for Figure 3.12(a)).

Strain		160°C			180°C			200°C		
(%)	ω _d *		SD	ω _d *		SD	ω	,* 	SD	
15	41.0	-	-	43.0	-	-	-	-	-	
20	-	-	-	-	-	-	45.0	-	-	
30	8.0	-	-	8.6	8.7	0.07	20.0	-	-	
50	5.0	-	-	3.5	-	-	11.0	-	-	
70	2.0	-	-	2.1	2.2	0.07	5.0	-	-	
150	0.6	-	-	0.7	-	-	2.0	-	-	
300	0.3	0.3	0.0	0.4	-	-	0.5	0.6	0.07	

Table A(2) Critical stress at different strain amplitudes at the temperatures of 160, 180, and 200° C for H5690S.

Strain	160°C			180°C			200°C		
(%)	σ _d * (×10 ⁻⁵)		SD	σ _d * (×10 ⁻⁵)		SD	σ _d (×10	1 [*]) ⁻⁵)	SD
15	2.40	-	-	1.90	-	-	-	-	-
20	-	-	-	-	-	-	3.50	-	-
30	2.16	-	-	1.62	1.65	0.02	3.00	-	-
50	1.80	-	-	1.38	-	-	2.70	-	-
70	1.49	-	-	1.26	1.21	0.04	2.00	-	-
150	1.42	-	-	1.19	-	-	1.80	-	-
300	1.38	1.35	0.02	1.15	-	-	1.67	1.62	0.04

r	<u> </u>							
γ (%)	σ (×10 ⁻⁵)	η _o (T) (×10 ⁻⁵)	ω	d*	∞ _d .ઔ (×1	(T)/T 0 ⁻³)	Mean ω _d •η _° (T)/T (×10 ⁻³)	SD
15	2.40	2.0	41.0	-	18.94	-	18.94	-
20	-	-	-	-	-	-	-	-
30	2.16	2.0	8.0	-	3.70	-	3.70	-
50	1.80	2.0	5.0	-	2.31	-	2.31	-
70	1.49	2.0	2.0	-	0.92	-	0.92	-
150	1.42	2.0	0.6	-	0.28	-	0.28	-
300	1.38	2.0	0.3	0.3	0.14	0.14	0.14	0.00

Table A(3) $\omega_{d} \cdot \eta_{o}(T)/T$ for H5690S at 160°C (Data for Figure 3.13).

Table A(4) $\omega_d \cdot \eta_o(T)/T$ for H5690S at 180°C (Data for Figure 3.13).

γ (%)	σ (×10 ⁻⁵)	η ₀ (T) (×10 ⁻⁵)	ω	d*	ω _d •η。 (×1	(T)/T 0 ⁻³)	Mean ω _d •η _• (T)/T (×10 ⁻³)	SD
15	1.90	5.7	43.0	-	5.30	-	5.30	-
20	-	-	-	-	-	-	-	-
30	1.64	5.7	8.6	8.7	1.08	1.09	1.085	0.007
50	1.38	5.7	3.5	-	0.43	-	0.430	-
70	1.24	5.7	2.1	2.2	0.26	0.27	0.265	0.007
150	1.19	5.7	0.7	-	0.09	-	0.09	-
300	1.15	5.7	0.4	-	0.05	-	0.05	-

γ (%)	σ (×10 ⁻⁵)	η₀(T) (×10 ⁻⁵)	ω	d*	ω _d •η (×1	(T)/T 0 ⁻³)	Mean ω _d •η _• (T)/T (×10 ⁻³)	SD
15	-	-	-	-	-	-	-	-
20	3.50	4.0	45.0	-	3.80	-	3.800	-
30	3.00	4.0	20.0	-	1.69	-	1.690	-
50	2.70	4.0	11.0	-	0.93	-	0.930	-
70	2.00	4.0	5.0	-	0.42	-	0.420	-
150	1.80	4.0	2.0	-	0.17	-	0.170	-
300	1.64	4.0	0.5	0.6	0.04	0.05	0.045	0.007

Table A(5) $\omega_{\sigma} \cdot \eta_{\circ}(T)/T$ for H5690S at 200°C (Data for Figure 3.13).

Table A(6) $\omega_{\sigma} \cdot \eta_{o}(T)M$ and $\omega_{\sigma} \cdot \eta_{o}(T)M^{3}$ for H5690S at 180°C (Data for Figures 3.14 and 3.15).

Mean ω _d *	η _o (T) (×10 ⁻⁵)	M (×10 ⁻⁴)	M ³ (×10 ⁻¹⁴)	ω _d *η _o (T)M (×10 ⁻¹⁴)	ω _d *η _o (T)M (×10 ⁻²⁰)
43.0	5.7	7.4	4.05	18.10	99.30
8.6	5.7	7.4	4.05	3.63	20.00
3.5	5.7	7.4	4.05	1.48	8.08
2.0	5.7	7.4	4.05	0.84	4.62
0.7	5.7	7.4	4.05	0.30	1.62
0.4	5.7	7.4	4.05	0.17	0.92

APPENDIX B ASYMPTOTIC TRANSIENT ANGULAR SLIP

Figure B(1) Transient angular slip as a function of time for H5690S sheared at amplitudes of 30% strains at 160° C.

Figure B(2) Transient angular slip as a function of time for H5690S sheared at amplitudes of 70% strains at 160° C.

Figure B(3) Transient angular slip as a function of time for H5690S sheared at amplitudes of 150% strains at 160° C.

Figure B(4) Transient angular slip as a function of time for H5690S sheared at amplitudes of 30% strains at 180° C.

Figure B(5) Transient angular slip as a function of time for H5690S sheared at amplitudes of 70% strains at 180° C.

Figure B(6) Transient angular slip as a function of time for H5690S sheared at amplitudes of 150% strains at 180°C.

Table B(1) Asymptotic transient angular slip as a function of strain rate for H5690S sheared at amplitudes of 30, 70, and 150% strains at 160°C (Data for Figure 3.18 (a)).

Strain Rate (rad/s)	$\Delta \theta_{asymptotic}$ (30%Strain)	Strain Rate (rad/s)	$\Delta \theta_{asymptotic}$ (70%Strain)	Strain Rate (rad/s)	$\Delta \theta_{asymptotic}$ (150%Strain)
2.4	4.0×10 ⁻³	1.4	2.1×10 ⁻²	0.9	4.0×10 ⁻²
3.0	4.1×10 ⁻³	2.1	1.5×10 ⁻²	10.5	1.3×10 ⁻²
6.0	4.0×10 ⁻³	3.5	1.0×10 ⁻²	30.0	0.8×10 ⁻²
12.0	3.9×10 ⁻³	10.5	0.6×10 ⁻²	150.0	0.4×10 ⁻²
30.0	4.2×10 ⁻³	70.0	0.2×10^{-2}	-	-

Table B(2) Asymptotic transient angular slip as a function of strain rate for H5690S sheared at amplitudes of 30, 70, and 150% strains at 180° C (Data for Figure 3.18 (b)).

Strain Rate (rad/s)	$\frac{\Delta \theta_{asymptotic}}{(30\% Strain)}$	Strain Rate (rad/s)	$\Delta \theta_{asymptotic}$ (70%Strain)	Strain Rate (rad/s)	$\Delta \theta_{asymptotic}$ (150%Strain)
2.6	4.3×10 ⁻³	1.4	7.0×10 ⁻³	1.0	1.3×10 ⁻²
3.0	4.4×10 ⁻³	5.6	7.0×10 ⁻³	10.5	0.7×10 ⁻²
4.5	4.4×10 ⁻³	70.0	7.2×10 ⁻³	150.0	0.2×10 ⁻²
30.0	4.4×10 ⁻³	-	-	-	-

γ̈́	$\dot{\gamma} M^2/T$ (x10 ⁻⁷)	ΔG* (x10 ⁻⁵)	ΔG*M/T (x10 ⁻⁷)	G* _{asymptotic} (x10 ⁻⁵)	G* _{asymptotic} M/T (x10 ⁻⁷)
2.40	3.04	4.00	6.84	1.50	2.56
1.50	1.90	2.00	3.42	1.00	1.71
0.60	0.76	1.00	1.71	0.70	1.20
0.18	0.23	0.50	0.86	0.30	0.51
0.09	0.11	0.20	0.34	0.20	0.34

Table B(3) $\Delta G^*M/T$ and $G^*_{asymptotic}M/T$ for H5690S at 160°C (Data for Figure 3.19 and 3.20).

Table B(4) $\Delta G^*M/T$ and $G^*_{asymptotic}M/T$ for H5690S at 180°C (Data for Figure 3.19 and 3.20).

Ŷ	$\dot{\gamma} M^2/T$ (x10 ⁻⁷)	ΔG* (x10 ⁻⁵)	$\frac{\Delta G^*M/T}{(x10^{-7})}$	G* _{asymptotic} (x10 ⁻⁵)	$G^*_{asymptotic}M/T$ $(x10^{-7})$
6.45	7.80	7.00	11.4	5.00	9.80
2.58	3.12	2.50	4.08	2.00	2.61
1.75	2.12	1.00	1.63	1.00	1.63
1.47	1.78	0.90	1.47	0.80	1.31
1.05	1.27	0.30	0.49	0.40	0.65
1.20	1.45	0.20	0.33	0.20	0.33

Table B(5) $\Delta G^*M/T$ and $G^*_{asymptotic}M/T$ for H5603B at 180°C (Data for Figure 3.19 and 3.20).

Ŷ	γ M ² /T (x10 ⁻⁹)	ΔG* (x10 ⁻⁶)	ΔG*M/T (x10 ⁻⁹)	${G^*}_{asymptotic} (x10^{-6})$	G* _{asymptotic} M/T (x10 ⁻⁹)
13.50	8.69	2.30	2.74	2.30	2.74
3.00	1.93	1.20	1.43	1.00	1.19
1.50	0.97	0.45	0.54	0.30	0.36
0.35	0.22	0.17	0.20	0.20	0.24

Ŷ	$\dot{\gamma}\eta_o/T$ (x10 ⁻²)	ΔG* (x10 ⁻⁵)	$\frac{\Delta G^*/T}{(x10^{-2})}$	G* _{asymptotic} (x10 ⁻⁵)	G* _{asymptotic} /T (x10 ⁻²)
2.40	11.10	4.00	9.24	1.50	3.46
1.50	6.93	2.00	4.62	1.00	2.31
0.60	2.77	1.00	2.31	0.70	1.62
0.18	0.83	0.50	1.15	0.30	0.69
0.09	0.42	0.20	0.46	0.20	0.46

Table B(6) $\Delta G^*/T$ and $G^*_{asymptotic}/T$ for H5690S at 160°C (Data for Figure 3.21 and 3.22).

Table B(7) $\Delta G^*/T$ and $G^*_{asymptotic}/T$ for H5690S at 180°C (Data for Figure 3.21 and 3.22).

Ŷ	$\dot{\gamma}\eta_c/T$ (x10 ⁻²)	ΔG* (x10 ⁻⁵)	$\Delta G^{*/T}$ (x10 ⁻²)	${G^*}_{asymptotic} (x10^{-5})$	G* _{asymptotic} /T (x10 ⁻²)
6.45	8.12	7.00	15.5	5.00	11.00
2.58	3.25	2.50	5.52	2.00	4.42
1.75	2.20	1.00	2.21	1.00	2.21
1.47	1.85	0.90	1.99	0.80	1.77
1.05	1.32	0.30	0.66	0.40	8.83
1.20	1.51	0.20	0.44	0.20	4.42

Table B(8) $\Delta G^*/T$ and $G^*_{asymptotic}/T$ for H5603B at 180°C (Data for Figure 3.21 and 3.22).

Ŷ	$\dot{\gamma}\eta_o/T$ (x10 ⁻⁴)	ΔG* (x10 ⁻⁶)	∆G*/T (x10 ⁻³)	${\operatorname{G}}^*{}_{\operatorname{asymptotic}}{\operatorname{(x10^{-6})}}$	G* _{asymptotic} /T (x10 ⁻³)
13.50	7.45	2.30	5.08	2.30	5.08
3.00	1.66	1.20	2.65	1.00	2.21
1.50	0.83	0.45	0.99	0.30	0.66
0.35	0.19	0.17	0.38	0.20	0.44

APPENDIX C SLIP VELOCITY AND SLIP LENGTH

Table C(1) Slip velocity and slip length for H5690S at 160° C (Data for Figure 3.23 (a) and (b)).

30%S	Strain	70%5	Strain	150%Strain	
V_s (cm/s) b (cm)		$V_s (\text{cm/s}) b (\text{cm})$		V_s (cm/s)	<i>b</i> (cm)
0.020	0.0106	0.027	0.0362	0.015	0.0288
0.026	0.0109	0.028	0.0203	0.057	0.0063
0.100	0.0105	0.031	0.0116	0.283	0.0020
0.267	0.0114	0.063	0.0071	0.100	0.0036
0.050	0.0106	0.113	0.0017	-	-

Table C(2) Slip velocity and slip length for H5690S at 180° C (Data for Figure 3.23 (a) and (b)).

30%S	Strain	70%\$	Strain	150%Strain	
V_s (cm/s)	$V_s (\text{cm/s})$ $b (\text{cm})$		<i>b</i> (cm)	V_s (cm/s)	<i>b</i> (cm)
0.024	0.0116	0.009	0.0074	0.0053	0.0057
0.027	0.0119	0.035	0.0074	0.0308	0.0032
0.040	0.0116	0.427	0.0072	0.1256	0.0008
0.283	0.0123	-	-	-	-

APPENDIX D

ANOMALOUS DATA AT 200°C

Table D(1) Critical frequencies for G^* decays and rises for H5690S at 200°C (Data for Figure 3.30 (a)).

.....

Strain (%)		G* rises		G* decays		
	ω _r *		SD	ω _d *		SD
20	19.0	-	-	45.0	-	-
30	10.0	9.0	0.7	20.0	-	-
50	4.0	-	-	11.0	-	-
70	1.0	-	-	5.0	-	-
150	0.3	-	-	2.0	-	-

Table D(2) Critical stresses for G^* decays and rises for H5690S at 200°C (Data for Figure 3.30 (b)).

Strain (%)	G* rises			G* decays		
	σ _r * (×10 ⁻⁵)		SD	σ _d * (×10 ⁻⁵)		SD
20	1.06	-	-	2.60	-	-
30	0.90	0.88	0.01	2.70	-	-
50	0.84	-	-	2.65	-	-
70	0.62	-	-	2.75	-	-
150	0.46	-	-	2.14	-	-

Figure D(1) SEM micrograph of H5690S after having been sheared at its critical condition at 200°C.

Figure D(2) SEM micrograph of H5690S after having been sheared above its critical condition at 200° C.

CURRICULUM VITAE

Name:Ms. Montara ThammachartBirth Date:June 1, 1976Nationality:ThaiUniversity Education:Bachelor's Degree of Chemistry

Bachelor's Degree of Chemistry King Mongkut's University of Technology Thonburi, Bangkok

.....