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CHAPTER I

INTRODUCTION

Questions about when, and whether, one set can cover another set are fun-

damental to study of shapes in geometry. These problems are called covering

problem.

Definition 1.1. Let K, K ′ and H be sets in Rn. We say K ′ is a congruent copy

of K if there is an isometry f on Rn such that f(K) = K ′. We say a set K covers
H if K contains a congruent copy of H. In this case, we also say H fits in K.

There are a lot of studies related to this question. In 1964, H. Steinhaus [5]

asked for a necessary and sufficient condition on the six sides a, b, c, a′, b′, c′ for the

triangle T ′ with sides a′, b′, c′ to fit into the triangle T with sides a, b, c. Separate

necessary conditions and sufficient conditions are easy to give, but a condition that

is both necessary and sufficient is more elusive. In 1993, K. A. Post [3] gave a list

of 18 inequalities which is both necessary and sufficient in the sense that if one

of the inequalities correct, the T ′ fits in T and if T ′ fits in T , then at least one

of the inequalities is correct. Moreover, in this paper K. A. Post also proved the

following theorem.

Theorem 1.2. If a largest scaled copy of a triangle is a subset of another triangle,

then one of its sides coincides along a side of the containing triangle.

In 2002, J. E. Wetzel [8] found the largest square that fits into a given triangle.

Later, J. M. Sullivan [6] generalized this theorem to the case of a convex polygon

in a triangle.

One problem related to these questions is Prince Rupert’s problem. More

than three hundred years ago, Prince Rupert won a wager that a hole could be cut

through one of two cubes with the same size to permit another cube to pass through
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it. This property is called a Rupert property for cube. In 1968, C. J. Scriba [4]

showed that the tetrahedron and the octahedron have the same property. In 2017,

R. P. Jerrard, J. E. Wetzel and L. Yuan [2] found that the dodecahedron and

the icosahedron also have the same property. Thus all Platonic solids, including

the tetrahedron, the cube, the octahedron, the dodecahedron and the icosahedron,

have Rupert property. Some compact, convex subsets in R3 do not have Rupert

property, such as the unit sphere and the circular cylinder with radius r and height

2r. That is a compact, convex subset in R3 does not need to have Rupert property.

Due to lack of counterexample, J. E. Wetzel and L. Yuan conjectured in [2] that

every convex polyhedron has Rupert property. Therefore, the interesting thing is

to check whether a given convex polyhedron has Rupert property.

In Chapter II, we recall some basic definitions and lemmas related to this work.

In Chapter III, we study some properties about covering of objects in R2 which

relate to this work.

In Chapter IV, we will mention many relations between Prince Rupert’s prob-

lem and covering problem.

In the last chapter, we suggest some ideas to study the further research about

Prince Rupert’s problem.



CHAPTER II

PRELIMINARIES

In this chapter, we recall some definitions and lemmas used in this work.

Throughout this work, we use an object to refer to a compact, convex subset

of R3. Moreover, we use a planar set to refer to a subset of R2 or an isometric

image of a subset of R2.

2.1 CONVEX SET AND AFFINE MAP

First, we introduce definitions about convex set and lemmas related to this

work.

Definition 2.1. A subset X ⊆ Rn is called convex if and only if, for points x1, x2

in X and λ ∈ [0, 1],

λx1 + (1− λ)x2 ∈ X.

The next definition is the definition of the convex hull of a set.

Definition 2.2. The convex hull of a set X of points in Rn is the smallest convex

set that contains X. Moreover, the convex hull C of a set of N points p1, . . . , pN is

then given by the expression

C = {
N∑
i=1

λipi : λi ≥ 0 for all i and
N∑
i=1

λi = 1}.

We will use H(X) refers to the convex hull of a set X.

In this work, we use some mappings which are affine map.

Definition 2.3. An affine transformation or affine map f : R3 → R3 is a map

of the form x 7→ L(x) + k where L is a linear map on the space R3, x is a point in

R3, and k is a point in R3.
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The next three lemmas are about convex set and affine map related to this

work.

Lemma 2.4. Let f : R3 → R3 be an affine map. If a set X ⊆ R3 is convex, then

f(X) is also convex.

Proof. Assume that a set X ⊆ R3 is convex. Let x1, x2 ∈ X and λ ∈ [0, 1]. Since

f is an affine map, f(x) = L(x) + k for some linear map L on R3 and some point

k in R3. We have

λf(x1) + (1− λ)f(x2) = λ (L(x1) + k) + (1− λ) (L(x2) + k)

= λL(x1) + λk + (1− λ)L(x2) + (1− λ)k

= L (λx1 + (1− λ)x2) + k

= f (λx1 + (1− λ)x2)

∈ f(X).

Hence f(X) is convex.

Lemma 2.5. Let f : R3 → R3 be an affine map and let p1, . . . , pn ∈ R3. Suppose

that λ1, . . . , λn ∈ R such that
n∑

i=1

λi = 1. Then f

(
n∑

i=1

λipi

)
=

n∑
i=1

λif(pi).

Proof. Let λ1, . . . , λn ∈ R be such that
n∑

i=1

λi = 1. Since f is an affine map,

f(x) = L(x) + k for some linear map L on R3 and some point k in R3. Then

f

(
n∑

i=1

λipi

)
= L

(
n∑

i=1

λipi

)
+ k

=
n∑

i=1

L(λipi) + k

=
n∑

i=1

λiL(pi) +
n∑

i=1

λik
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=
n∑

i=1

λi(L(pi) + k)

=
n∑

i=1

λif(pi).

Lemma 2.6. Let P be a set of finite points in R3. A convex hull of an affine map

f of P is the image of a convex hull of P under f .

Proof. Since P ⊆ H(P ), f(P ) ⊆ f(H(P )). By Lemma 2.4, f(H(P )) is convex.

Then H(f(P )) ⊆ f(H(P )).

On the contrary, let p be a point in H(p). Then p =
n∑

i=1

λipi where p1, . . . , pn ∈

P and λ1, . . . , λn ≥ 0 such that
n∑

i=1

λi = 1 for some n ∈ N. By Lemma 2.5, we have

f(p) = f

(
n∑

i=1

λipi

)
=

n∑
i=1

λif(pi) ∈ H(f(P )). Hence f(H(P )) ⊆ H(f(P )).

2.2 OBJECTS RELATED TO THIS WORK

In this section, we will give definitions about objects which we study in this

work.

Definition 2.7. A polygon is a compact planar set bounded by a finite number

of straight line segments connected to form a closed polygonal chain.

Definition 2.8. A polyhedron is an object bounded by flat polygonal faces,

straight edges and sharp corners.

Definition 2.9. A Platonic solid is a regular, convex polyhedron which is con-

structed by congruent regular polygonal faces with the same number of faces meet-

ing at each vertex.
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Platonic Solid Figure

Tetrahedron

Cube

Octahedron

Dodecahedron

Icosahedron

Table 2.2: List of all Platonic solids
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Definition 2.10. An Archimedean solid is a convex polyhedron which has a

similar arrangement of nonintersecting regular convex polygons of two or more

different types arranged in the same way about each vertex with all sides the same

length.

Platonic Solid Figure

Truncated tetrahedron

Cuboctahedron

Truncated cube

Truncated octahedron
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Rhombicuboctahedron

Truncated cuboctahedron

Snub cube

Icosidodecahedron

Truncated dodecahedron
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Truncated icosahedron

Rhombicosidodecahedron

Truncated icosidodecahedron

Snub dodecahedron

Table 2.4: List of all Archimedean solids

The following is a definition of width of a nonempty compact subset of R2.

Definition 2.11. Let K be a nonempty compact subset of R2 and l be a line

in R2. The width of K in direction of l is the minimum distance between two

lines perpendicular to l with K in between them. The minimum width of K
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is the minimum of width among every direction. Similarly, for an object K in

R3, the width of K in direction of l is the minimum distance between two planes

perpendicular to l with K in between them.

The following is a definition of an interesting type of object in R3.

Definition 2.12. An object K is said to have constant width w if the width is

w in every direction.

A sphere and Meissner tetrahedra are the examples of objects with constant

width.

Figure 2.1: the sphere (left) and the Meissner tetrahedra (right)

2.3 RUPERT PROPERTY AND NIEUWLAND CONSTANT

From [2], R. P. Jerrard, J. E. Wetzel and L. Yuan gave a definition of Rupert

property stating as follows.

Definition 2.13. Let K be an object in R3. K has Rupert property if and only

if there are planes M and N so that the (orthogonally) projected images of K to

M fits in the interior of the (orthogonally) projected images of K to N .

From its definition, we may simply regard Rupert property as follows.

Lemma 2.14. Let K be an object in R3. K has Rupert property if and only if

there is a plane M and two congruent copies of K whose (orthogonally) projected

images to M has one image in the interior of the other.
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Remark 2.15. It is clear that Prince Rupert’s problem relates to a covering prob-

lem of the projections of 2 congruent copies of any given object.

In 1816, Pieter Nieuwland published [7] the solution of the question of what is

the largest cube that can be passed through a cube of unit size, i.e., how large a

positive scalar ν that a scaled congruent copy νC of cube C can pass through in

C. This question for any object is called Nieuwland’s question. For an object K

in R3, we define the Nieuwland’s constant ν(K) by

ν(K) = sup{ν > 0 | there is a hole in K that an object νK can pass through it}.

Note that for any convex object K, we have ν(K) ≥ 1. By direct observation,

we have the following obvious lemma.

Lemma 2.16. An object K in R3 has Rupert property if and only if ν(K) > 1.

Table 2.5 from [2] shows the known estimates of the Nieuwland constants for

all Platonic solids.

Platonic Solid Nieuwland Estimate

Tetrahedron T ν(T) ≥ 2
5

√
3(
√
6− 1) > 1.004235

Cube C ν(C) = 3
4

√
2 ≥ 1.060660

Octahedron O ν(O) ≥ 3
4

√
2 ≥ 1.060660

Dodecahedron D ν(D) ≥ 171
170

> 1.005882

Icosahedron I ν(I) ≥ 1108
1098

> 1.009107

Table 2.5: Nieuwland constant estimates for all Platonic solids [2]

Besides 5 Platonic solids, Y. Chai, L. Yuan and T. Zamfirescu studied 8 of

the 13 Archimedean solids to find the estimates of their Nieuwland constants [1].

Table 2.6 from [1] shows the estimates of the Nieuwland constants for 8 of the 13

Archimedean solids.



12

Solid Nieuwland Estimate

Cuboctahedron C ν(C) > 1.01461

Truncated cube Ct ν(Ct) > 1.02036

Truncated octahedron Ot ν(Ot) > 1.00815

Rhombicuboctahedron R ν(R) > 1.00609

Truncated cuboctahedron Ct ν(Ct) > 1.00370

Icosidodecahedron I ν(I) > 1.00015

Truncated dodecahedron Dt ν(Dt) > 1.00014

Truncated icosahedron It ν(It) > 1.00004

Table 2.6: Nieuwland constant estimates for 8 of the 13 Archimedean solids [1]

In chapter IV, we will improve Nieuwland constant estimates for the tetrahe-

dron, the dodecahedron and the icosahedron. For the 13 Archimedean solids, the

truncated tetrahedron and the truncated icosidodecahedron have not been studied

yet. We show that their Nieuwland constant is greater than 1. Consequently, they

have Rupert property.



CHAPTER III

COVERING OF OBJECTS IN 2D

In this chapter, we give some properties about covering of objects in R2 which

relate to this work.

Recall that Prince Rupert’s problem can be converted to a covering problem

of the projections of 2 congruent copies of any given object. We will construct

lemmas and corollaries related to covering problem that may be helpful to study

Prince Rupert’s problem.

First, we have an obvious lemma by the property of width as follows.

Lemma 3.1. Let K and H be compact planar sets. If K is in the interior of H,

then the width of K is less than width of H for every direction.

The following corollary follows from Lemma 3.1.

Corollary 3.2. Let K and H be compact, convex planar sets. If there exists a

direction such that the width of K is more than or equal to the width of H, then

K is not in the interior of H.

We will use Corollary 3.2 to construct a lemma to check that a given object

does not have Rupert property in chapter IV.

If we use the property of convex hull, we will have a lemma about covering of

a set of points in a convex planar set as follows.

Lemma 3.3. A planar set H fits in the interior of a convex planar set K if and

only if a convex hull of H fits in the interior of K.

Proof. Assume that H fits in the interior of a convex planar set K. There is

an isometry f on R2 such that f(H) ⊆ int(K). Then H ⊆ f−1(int(K)). Since

f−1(int(K)) is convex, H(H) ⊆ H(f−1(int(K))) ⊆ f−1(int(K)). Thus f(H(H)) ⊆
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int(K). On the contrary, assume that a convex hull of H fits in int(K). There is an

isometry f on R2 such that f(H(H)) ⊆ int(K). Then H ⊆ H(H) ⊆ f−1(int(K)).

Therefore f(H) ⊆ int(K).

In the case that we know the order of vertices of a convex polygon, we construct

lemmas and corollaries which are useful for numerical computation. By basic

property of a convex polygon, we have the following remark.

Remark 3.4. The interior of a convex polygon K is represented as the intersection

of every left side of counterclockwise edge around the polygon K.

Figure 3.1: the interior of a pentagon is the intersection of every left side of coun-

terclockwise edge around the pentagon

This remark leads to the following lemma.

Lemma 3.5. Let a1, a2, . . . , an be vertices of a convex polygon K in counterclock-

wise order. A point p is in the interior of K if and only if p lies to the left side of

the ray aiai+1 for all 1 ≤ i ≤ n where an+1 = a1.

In this work, we use two concepts to check whether a point lies to the left of a

ray. The first one is a concept using dot product. For another concept, we use a

mapping similar to a cross product in R3 which is defined as follows.

Definition 3.6. A map ⊗ : R2 × R2 → R is defined by (x1, y1) ⊗ (x2, y2) =

x1y2 − x2y1 for (x1, y1), (x2, y2) ∈ R2.
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For convenience, we will define the following definition.

Definition 3.7. Let −→v be a vector in R2. A vector −→v
∗

is the counterclockwise

rotation of the vector −→v around (0, 0) for angle π

2
.

Remark 3.8. For points p, q, r ∈ R2, we notice as follows.

1. −→qr
∗
· −→qp is equal to −→qr ⊗−→qp.

2. A point p lies to the left side of ray qr if and only if −→qr
∗
· −→qp > 0 if and only

if −→qr ⊗−→qp > 0.

3. A point p lies to the right side of ray qr if and only if −→qr
∗
·−→qp < 0 if and only

if −→qr ⊗−→qp < 0.

4. Points p, q, r are collinear if and only if −→qr
∗
·−→qp = 0 if and only if −→qr⊗−→qp = 0.

By Lemma 3.5 and Remark 3.8, we have two following lemmas.

Lemma 3.9. Let a1, a2, . . . , an be vertices of a convex polygon K in counterclock-

wise order. A point p is in the interior of K if and only if −−−→aiai+1

∗
· −→aip > 0 for all

1 ≤ i ≤ n where an+1 = a1.

Lemma 3.10. Let a1, a2, . . . , an be vertices of a convex polygon K in counterclock-

wise order. A point p is in the interior of K if and only if −−−→aiai+1 ⊗−→aip > 0 for all

1 ≤ i ≤ n where an+1 = a1.

By basic property of convex sets, we have the following lemma.

Lemma 3.11. Let K and H be two convex polygons. Then K is in the interior

of H if and only if every vertex of K lies in the interior of H.

By Lemma 3.9 and Lemma 3.11, we obtain the following corollary.

Corollary 3.12. Let a1, a2, . . . , an be vertices of a convex polygon H in counter-

clockwise order. A convex polygon K is in the interior of H if and only if every

vertex p of K satisfies conditions that −−−→aiai+1

∗
· −→aip > 0 for all 1 ≤ i ≤ n where

an+1 = a1.
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By Lemma 3.10 and Lemma 3.11, we obtain the following corollary.

Corollary 3.13. Let a1, a2, . . . , an be vertices of a convex polygon H in counter-

clockwise order. A convex polygon K is in the interior of H if and only if every

vertex p of K satisfies conditions that −−−→aiai+1 ⊗ −→aip > 0 for all 1 ≤ i ≤ n where

an+1 = a1.

Remark 3.14. If we know about the order of vertices of a convex polygon in

clockwise order, then we will have similar properties by flipping the inequality

sign.

Next, we will construct lemmas to verify whether a point fits in a convex hull

of arbitrary finite points. First, we define a definition of tangent strip as follows.

Definition 3.15. The tangent strip containing a set H in direction of −→v is the

region between the two lines parallel to −→v and tangent to H.

We obtain the following lemma from a property of convex polygon.

Lemma 3.16. A convex polygon H is the intersection the tangent strips containing

H in every direction parallel to an edge of H. Moreover, let V be a set of vectors,

if vectors parallel to each edge of H is in V , then H is also the intersection the

tangent strips containing H in every direction −→v in V .

The next two lemmas follow from the geometric interpretations of the dot

product and the map ⊗.

Lemma 3.17. Let S be a tangent strip between lines l1 and l2 parallel to v with

p1 ∈ l1 and p2 ∈ l2. A point p lies on the interior of S if and only if −→v ∗ · −→p is

between −→v ∗ · −→p1 and −→v ∗ · −→p2 .

Lemma 3.18. Let S be a tangent strip between lines l1 and l2 parallel to v with

p1 ∈ l1 and p2 ∈ l2. A point p lies on the interior of S if and only if −→v ⊗ −→p is

between −→v ⊗−→p1 and −→v ⊗−→p2 .

By Lemma 3.16 and Lemma 3.17, we have the following lemma.
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Lemma 3.19. Let H be a set of points a1, a2, . . . , an. A point p is in the interior

of H(H) if and only if min
1≤k≤n

−−→aiaj
∗
· −−→aiak < −−→aiaj

∗
· −→aip < max

1≤k≤n

−−→aiaj
∗
· −−→aiak for all

1 ≤ i, j ≤ n and i ̸= j.

By Lemma 3.16 and Lemma 3.18, we have the following lemma.

Lemma 3.20. Let H be a set of points a1, a2, . . . , an. A point p is in the interior

of H(H) if and only if min
1≤k≤n

−−→aiaj ⊗ −−→aiak < −−→aiaj ⊗ −→aip < max
1≤k≤n

−−→aiaj ⊗ −−→aiak for all

1 ≤ i, j ≤ n and i ̸= j.

By Lemma 3.11 and Lemma 3.19, we obtain the following corollary.

Corollary 3.21. Let H be a set of points a1, a2, . . . , an. A convex polygon K is

in the interior of H(H) if and only if every vertex p of K satisfies conditions that

min
1≤k≤n

−−→aiaj
∗
· −−→aiak < −−→aiaj

∗
· −→aip < max

1≤k≤n

−−→aiaj
∗
· −−→aiak for all 1 ≤ i, j ≤ n and i ̸= j.

By Lemma 3.11 and Lemma 3.20, we obtain the following corollary.

Corollary 3.22. Let H be a set of points a1, a2, . . . , an. A convex polygon K is

in the interior of H(H) if and only if every vertex p of K satisfies conditions that

min
1≤k≤n

−−→aiaj ⊗−−→aiak < −−→aiaj ⊗−→aip < max
1≤k≤n

−−→aiaj ⊗−−→aiak for all 1 ≤ i, j ≤ n and i ̸= j.

Remark 3.23. In Lemma 3.19, Lemma 3.20, Corollary 3.21 and Corollary 3.22, it

is enough to consider a set of all vectors −−→aiaj which are not parallel to each other

in this set instead of a set of vectors −−→aiaj for all 1 ≤ i, j ≤ n and i ̸= j.



CHAPTER IV

COVERING OF OBJECTS RELATED TO RUPERT

PROPERTY

In this chapter, we will construct lemmas related to covering problem that may

be helpful to study Prince Rupert’s problem.

In this work, we will use XY -plane in Lemma 2.14 for convenience to nu-

merical optimization. Let π0 : R3 → R2 be a projection to XY -plane such that

π0((x, y, z)) = (x, y) for every point (x, y, z) in R3. By Lemma 2.14 and basic

property of rotation, without loss of generality we may use the projection π0 as in

the following lemma.

Lemma 4.1. An object K in R3 has Rupert property if and only if there are

congruent copies K1 and K2 of K that π0(K1) is a subset of the interior of π0(K2).

4.1 OBJECTS WHICH DO NOT HAVE RUPERT PROP-

ERTY

Lemma 4.1 is suitable to check whether a given object K has Rupert property

but it is hard to check that a given object K does not have Rupert property because

there are uncountably many congruent copies of K that we need to consider. Thus

we will construct a lemma that can help to check that a given object does not

have Rupert property. The property related to this lemma is the width of compact

subsets of R2. From Corollary 3.2 and Lemma 4.1, we then have the following

criteria for an object that does not have Rupert property.

Lemma 4.2. Let K be an object in R3. If every congruent copy of K has the

same minimum width under the projection to the XY -plane, then K does not have

Rupert property.
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Proof. Assume that every congruent copy of K has the same minimum width w

under the projection to the XY -plane. Let K1 and K2 be two congruent copies

of K. There is a line l in R2 such that the width of π0(K2) in direction of l is w.

Then the width of π0(K1) is greater than or equal to width of π0(K2) in direction

of l. By Corollary 3.2, π0(K1) is not in the interior of π0(K2). By Lemma 4.1, K

does not have Rupert property.

Remark 4.3. By Lemma 4.2, we then have the following observations.

1. We notice that an object with constant width w has every projection with

minimum width w. Then all objects of constant width do not have Rupert

property. Hence, as it is a constant width, every sphere does not have Rupert

property.

2. For the circular cylinder witch its radius is r and its height is greater than

or equal to 2r, the minimum width of its projection to the XY -plane is 2r.

Hence the circular cylinder does not have Rupert property.

3. For the prism which the base is a planar set of constant width l and its

height is greater than or equal to l, the minimum width of its projection to

the XY -plane is l. Hence it does not have Rupert property.

Due to lack of counterexample, J. E. Wetzel and L. Yuan conjectured in [2]

that every convex polyhedron has Rupert property. Hence we will study about

Rupert property for two famous kinds of convex polyhedrons which are Platonic

solids and Archimedean solids in the next section.

4.2 OBJECTS WHICH HAVE RUPERT PROPERTY

In this section, we apply lemmas and corollaries to approximate the Nieuwland

constants for some convex polyhedrons.

By Lemma 4.1, we can regard one congruent copy of polyhedron as its vertices.
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Lemma 4.4. A polyhedron K has Rupert property if and only if there are congruent

copies K1 and K2 of K that every point which is a projected vertex from K1 by π0

fits in the interior of π0(K2).

Proof. Let A be a set of points which are projected vertices from K1 by π0. By

Lemma 2.6 and Lemma 3.3, for congruent copies K1 and K2 of K, we have that

π0(K1) fits in the interior of π0(K2) if and only if π0(H(A)) fits in the interior of

π0(K2) if and only if H(π0(A)) fits in the interior of π0(K2) if and only if π0(A)

fits in the interior of π0(K2). By Lemma 4.1, we are done.

Let RX
β be the rotation around X-axis for angle β (from Y -axis to Z-axis).

Similarly, let RY
ϕ and RZ

θ be the rotations around Y -axis for angle ϕ (from X-axis

to Z-axis) and around Z-axis for angle θ (from X-axis to Y -axis), respectively.

Regardless of translation, a congruent copy of an object K can be written as

RZ
θ (R

Y
ϕ (R

X
β (K))) for some β, ϕ and θ. To check Rupert property for a given object

K in R3 we can consider a projection π0 to XY -plane of all two possible congruent

copies of K as π0(R
Z
θ1
(RY

ϕ1
(RX

β1
(K)))) and π0(R

Z
θ2
(RY

ϕ2
(RX

β2
(K)))) for some β1, ϕ1,

θ1, β2, ϕ2 and θ2. By elementary property of compact, convex sets with nonempty

interiors and Lemma 4.1, Nieuwland constant can be written as follows.

Lemma 4.5. Let Rω : R2 → R2 be the rotation around (0, 0) for angle ω. For an

object K,

ν(K) = max{α > 0 | αRω(π0(R
Z
θ1
(RY

ϕ1
(RX

β1
(K))))) + (x0, y0) ⊆ π0(R

Z
θ2
(RY

ϕ2
(RX

β2
(K))))

for ω, β1, ϕ1, θ1, β2, ϕ2, θ2, x0, y0 ∈ R}

= max{α > 0 | αRω(π0(R
Y
ϕ1
(RX

β1
(K)))) + (x0, y0) ⊆ π0(R

Y
ϕ2
(RX

β2
(K)))

for ω, β1, ϕ1, β2, ϕ2, x0, y0 ∈ R}.

Proof. The first equality follows from the definition of Nieuwland constant and

elementary property of compact, convex set. We note that Rω◦π0◦RZ
θ1
= Rω+θ1◦π0.

For A,B ⊆ R2, we have that Rθ1(A) ⊆ Rθ2(B) if and only if Rθ1−θ2(A) ⊆ R0(B) =

B. Hence, for K,H ⊆ R3, we have that Rω(π0(R
Z
θ1
(K))) ⊆ π0(R

Z
θ2
(H)) if and only
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if Rω+θ1(π0(K)) ⊆ Rθ2(π0(H)) if and only if Rω+θ1−θ2(π0(K)) ⊆ π0(H). Since ω is

arbitrary, we may omit θ1 and θ2 as in the last expression.

For each object, we estimate its Nieuwland constant by using numerical opti-

mization according to Lemma 4.5 to find α > 1 under variables ω, β1, ϕ1, β2, ϕ2, x0

and y0. In particular, to verify whether a planar image fits in another image, we

use Lemmas and corollaries in chapter 3 as the following corollary.

Corollary 4.6. These statements are equivalent.

1. A polyhedron K has Rupert property.

2. There are congruent copies K1 and K2 of K that π0(K1) is a subset of interior

of π0(K2).

3. There are congruent copies K1 and K2 of K that every point which is a

projected vertex from K1 by π0 fits in the interior of π0(K2).

4. There are congruent copies K1 and K2 of K that every point p which is a

projected vertex from K1 by π0 satisfies conditions that, for all 1 ≤ i ≤ n,
−−−→aiai+1

∗
·−→aip > 0 which a1, a2, . . . , an be vertices of π0(K2) in counterclockwise

order and an+1 = a1.

5. There are congruent copies K1 and K2 of K that every point p which is a

projected vertex from K1 by π0 satisfies conditions that, for all 1 ≤ i, j ≤ n

and i ̸= j, min
1≤k≤n

−−→aiaj
∗
· −−→aiak < −−→aiaj

∗
· −→aip < max

1≤k≤n

−−→aiaj
∗
· −−→aiak which points

a1, a2, . . . , an are projected vertices from K2 by π0.

6. There are β1, ϕ1, θ1, β2, ϕ2, θ2, x0 and y0 that every point p which is a

projected vertex from RZ
θ1
(RY

ϕ1
(RX

β1
(K))) + (x0, y0) by π0 satisfies conditions

that, for all 1 ≤ i, j ≤ n and i ̸= j, min
1≤k≤n

−−→aiaj
∗
·−−→aiak < −−→aiaj

∗
·−→aip < max

1≤k≤n

−−→aiaj
∗
·

−−→aiak which points a1, a2, . . . , an are projected vertices from RZ
θ2
(RY

ϕ2
(RX

β2
(K)))

by π0.

Remark 4.7. By Remark 3.8 and Remark ??, we will obtain a similar corollary

as Corollary 4.6 by using concept of a map ⊗.



22

We notice that we can find the Nieuwland constant as Lemma 4.5 by replacing

a congruent copy K1 of K in Lemma 4.6 by αK1 and then constructing processes to

find the maximum of α. These processes give a lower bound of Nieuwland constant

for each given object. In this work, we improve Nieuwland constant estimates for

3 of 5 Platonic solids as in Table 4.1. We also have result for 7 of 13 Archimedean

solids about estimates of its Nieuwland constant as in Table 4.2.

Platonic solid Previous result Our result

Tetrahedron T ν(T) ≥ 2
5

√
3(
√
6− 1) > 1.004235 ν(T) > 1.014611

Cube C ν(C) = 3
4

√
2 ≥ 1.060660 ν(C) ≥ 1.060660

Octahedron O ν(O) ≥ 3
4

√
2 ≥ 1.060660 ν(O) ≥ 1.060660

Dodecahedron D ν(D) ≥ 171
170

> 1.005882 ν(D) > 1.010788

Icosahedron I ν(I) ≥ 1108
1098

> 1.009107 ν(I) > 1.010823

Table 4.1: Our Nieuwland constant estimates for all Platonic solids compare with

the previous result in [2]

Archimedean solid Previous result Our result

Truncated tetrahedron Tt - ν(Tt) > 1.014049

Cuboctahedron C ν(C) > 1.01461 ν(C) > 1.014611

Truncated cube Ct ν(T) > 1.02036 ν(Ct) > 1.013669

Truncated octahedron Ot ν(Ot) > 1.00815 -

Rhombicuboctahedron R ν(T) > 1.00609 ν(R) > 1.012819

Truncated cuboctahedron Ct ν(T) > 1.00370 ν(Ct) > 1.003005

Icosidodecahedron I ν(T) > 1.00015 ν(I) > 1.000604

Truncated dodecahedron Dt ν(Dt) > 1.00014 -

Truncated icosahedron It ν(It) > 1.00004 -

Truncated icosidodecahedron It - ν(It) > 1.001915

Table 4.2: Our Nieuwland constant estimates for 7 of 13 Archimedean solids
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Therefore these 7 solids have Rupert property. Among these 7 solids, the

truncated tetrahedron and the truncated icosidodecahedron have not yet been

studied before.



CHAPTER V

FURTHER RESEARCH

In this dissertation, we study some properties to check whether some objects

have Rupert property. Moreover, we get a lower bound of Nieuwland constant of

some polyhedrons. We suggest some ideas to extend the research as follows.

1. In this work, we study Rupert property for 7 of the 13 Archimedean solids.

So there are the remaining 6 of 13 Archimedean solids that we did not study

yet. Hence we may find a new method to check whether the remaining object

has Rupert property.

2. We may find a new method to improve a lower bound of Nieuwland constant

of some polyhedrons.

3. We can use this method to check Rupert property of some kinds of polyhe-

dron, such as Catalan solids and Johnson solids.

4. We may construct some lemmas to check that some objects do not have

Rupert property.
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CHAPTER VI

APPENDIX

We will give the algorithm that we use to find a lower bound of Nieuwland

constant for a given convex polyhedron K using concept of dot product as follows.

1. Find a set of vertices of a given convex polyhedron K.

2. Find set of all vector edges of K which are not parallel to each other in set.

3. Find the maximum value of scalar α such that every point p which is a

projected vertex from RZ
θ1
(RY

ϕ1
(RX

β1
(K))) + (x0, y0) by π0 satisfies conditions

that min
1≤k≤n

−−→aiaj
∗
· −→ak < −−→aiaj

∗
· −→αp < max

1≤k≤n

−−→aiaj
∗
· −→ak which vectors −−→aiaj are

projected edges from RY
ϕ2
(RX

β2
(K)) by π0 from step 2.

4. Show the result, including the maximum value of α with values β1, ϕ1, θ1, β2,

ϕ2, x0, y0 and figure of two projected images which one image in the interior

of the other.

Using concept of a map ⊗, we have the algorithm as follows.

1. Find a set of vertices of a given convex polyhedron K.

2. Find set of all vector edges of K which are not parallel to each other in set.

3. Find the maximum value of scalar α such that every point p which is a

projected vertex from RZ
θ1
(RY

ϕ1
(RX

β1
(K))) + (x0, y0) by π0 satisfies conditions

that min
1≤k≤n

−−→aiaj ⊗ −→ak < −−→aiaj ⊗ −→αp < max
1≤k≤n

−−→aiaj ⊗ −→ak which vectors −−→aiaj are

projected edges from RY
ϕ2
(RX

β2
(K)) by π0 from step 2.

4. Show the result, including the maximum value of α with values β1, ϕ1, θ1, β2,

ϕ2, x0, y0 and figure of two projected images which one image in the interior

of the other.



In[1]:= name = "Cube";

proj[{x_, y_, z_}] = {x, y};

rot[{x_, y_}] = {-y, x};

scale[α_, p1_, p0_] := α p1 + p0;

p0 = {x0, y0};

(*Find a set of vertices of a given convex polyhedron*)

vertices = N[PolyhedronData[name, "VertexCoordinates"]];

(*Find set of all vector edges which are not parallel to each other*)

allvec = {};

allvecid = {};

Do[

v = vertices[[vi[[1]]]] - vertices[[vi[[2]]]];

Do[If[Cross[u, v] ⩵ {0, 0, 0}, Goto[nextv]], {u, allvec}];

AppendTo[allvec, v];

AppendTo[allvecid, vi];

Label[nextv]

, {vi, PolyhedronData[name, "EdgeIndices"]}];

(*Find the maximum value of scalar alpha*)

nm = FindMaximum[Join[{α, α < 1.5},

p1s = RotationTransform[θ1] /@ proj /@ RotationTransform[ϕ1, {0, -1, 0}] /@

RotationTransform[β1, {1, 0, 0}] /@ vertices;

p2s = proj /@ RotationTransform[ϕ2, {0, -1, 0}] /@

RotationTransform[β2, {1, 0, 0}] /@ vertices;

n2 = Table[rot[p[[1]] - p[[2]]], {p, Table[p2s[[i]], {i, allvecid}]}];

Table[{min, max} = MinMax[Table[p.n, {p, p2s}]];

min ≤ scale[α, p1, p0].n ≤ max, {p1, p1s}, {n, n2}]],

{α, {x0, 0}, {y0, 0}, θ1, ϕ1, β1, ϕ2, β2}, MaxIterations → 5000];

(*Show Result*)

p1s = RotationTransform[θ1] /@ proj /@ RotationTransform[ϕ1, {0, -1, 0}] /@

RotationTransform[β1, {1, 0, 0}] /@ vertices /. nm[[2]];

p2s = proj /@ RotationTransform[ϕ2, {0, -1, 0}] /@

RotationTransform[β2, {1, 0, 0}] /@ vertices /. nm[[2]];

p0 = p0 /. nm[[2]];

Print[Column[{nm[[2]]}]];

If[nm[[1]] > 1, Print["****************** Rupert ******************"]];

Print[

Graphics3D[{{Red, Translate[Rotate[Rotate[Rotate[PolyhedronData[name, "Edges"],

β1, {1, 0, 0}], ϕ1, {0, -1, 0}], θ1, {0, 0, 1}], {x0, y0, 0}]},

Rotate[Rotate[PolyhedronData[name, "Edges"], β2, {1, 0, 0}], ϕ2, {0, -1, 0}]} /.

nm[[2]], Boxed → False, ViewPoint → {0, 0, 100}],

Show[ConvexHullMesh[p2s], Graphics[{Red, Translate[Point[p1s], p0]}]]]



α → 1.06066, x0 → -1.50327 × 10-14, y0 → 3.63224 × 10-15, θ1 → -0.321751,ϕ1 → 4.12443 × 10-11, β1 → -2.34299 × 10-12, ϕ2 → 0.729728, β2 → 1.10715
****************** Rupert ******************

In[17]:= name = "Cube";

proj[{x_, y_, z_}] = {x, y};

rot[{x_, y_}] = {-y, x};

cross[{x1_, y1_}, {x2_, y2_}] := x1 y2 - x2 y1;

scale[α_, p1_, p0_] := α p1 + p0;

p0 = {x0, y0};

(*Find a set of vertices of a given convex polyhedron*)

vertices = N[PolyhedronData[name, "VertexCoordinates"]];

(*Find set of all vector edges which are not parallel to each other*)

allvec = {};

allvecid = {};

Do[

v = vertices[[vi[[1]]]] - vertices[[vi[[2]]]];

Do[If[Cross[u, v] ⩵ {0, 0, 0}, Goto[nextv]], {u, allvec}];

AppendTo[allvec, v];

AppendTo[allvecid, vi];

Label[nextv]

, {vi, PolyhedronData[name, "EdgeIndices"]}];

(*Find the maximum value of scalar alpha*)

nm = FindMaximum[Join[{α, α < 1.5},

p1s = RotationTransform[θ1] /@ proj /@ RotationTransform[ϕ1, {0, -1, 0}] /@

RotationTransform[β1, {1, 0, 0}] /@ vertices;

p2s = proj /@ RotationTransform[ϕ2, {0, -1, 0}] /@

RotationTransform[β2, {1, 0, 0}] /@ vertices;

E2 = Table[p[[1]] - p[[2]], {p, Table[p2s[[i]], {i, allvecid}]}];

Table[{min, max} = MinMax[Table[cross[e, p], {p, p2s}]];

min ≤ cross[e, scale[α, p1, p0]] ≤ max, {p1, p1s}, {e, E2}]],

{α, {x0, 0}, {y0, 0}, θ1, ϕ1, β1, ϕ2, β2}, MaxIterations → 5000];

(*Show Result*)

p1s = RotationTransform[θ1] /@ proj /@ RotationTransform[ϕ1, {0, -1, 0}] /@

RotationTransform[β1, {1, 0, 0}] /@ vertices /. nm[[2]];

p2s = proj /@ RotationTransform[ϕ2, {0, -1, 0}] /@

2     Thesis3.nb

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



RotationTransform[β2, {1, 0, 0}] /@ vertices /. nm[[2]];

p0 = p0 /. nm[[2]];

Print[Column[{nm[[2]]}]];

If[nm[[1]] > 1, Print["****************** Rupert ******************"]];

Print[

Graphics3D[{{Red, Translate[Rotate[Rotate[Rotate[PolyhedronData[name, "Edges"],β1, {1, 0, 0}], ϕ1, {0, -1, 0}], θ1, {0, 0, 1}], {x0, y0, 0}]},

Rotate[Rotate[PolyhedronData[name, "Edges"], β2, {1, 0, 0}], ϕ2, {0, -1, 0}]} /.

nm[[2]], Boxed → False, ViewPoint → {0, 0, 100}],

Show[ConvexHullMesh[p2s], Graphics[{Red, Translate[Point[p1s], p0]}]]]

α → 1.06066, x0 → -1.50327 × 10-14, y0 → 3.63224 × 10-15, θ1 → -0.321751,ϕ1 → 4.12443 × 10-11, β1 → -2.34299 × 10-12, ϕ2 → 0.729728, β2 → 1.10715
****************** Rupert ******************
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