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CHAPTER 1
INTRODUCTION

Questions about when, and whether, one set can cover another set are fun-
damental to study of shapes in geometry. These problems are called covering

problem.

Definition 1.1. Let K, K’ and H be sets in R”. We say K’ is a congruent copy
of K if there is an isometry f on R” such that f(K) = K'. We say a set K covers

H if K contains a congruent copy of H. In this case, we also say H fits in K.

There are a lot of studies related to this question. In 1964, H. Steinhaus [5]
asked for a necessary and sufficient condition on the six sides a, b, c,d’, b, ¢ for the
triangle T" with sides a', ', ¢ to fit into the triangle T with sides a, b, c. Separate
necessary conditions and sufficient conditions are easy to give, but a condition that
is both necessary and sufficient is more elusive. In 1993, K. A. Post [3] gave a list
of 18 inequalities which is both necessary and sufficient in the sense that if one
of the inequalities correct, the 7" fits in 7" and if 7" fits in 7', then at least one
of the inequalities is correct. Moreover, in this paper K. A. Post also proved the

following theorem.

Theorem 1.2. If a largest scaled copy of a triangle is a subset of another triangle,

then one of its sides coincides along a side of the containing triangle.

In 2002, J. E. Wetzel [8] found the largest square that fits into a given triangle.
Later, J. M. Sullivan [6] generalized this theorem to the case of a convex polygon
in a triangle.

One problem related to these questions is Prince Rupert’s problem. More
than three hundred years ago, Prince Rupert won a wager that a hole could be cut

through one of two cubes with the same size to permit another cube to pass through



it. This property is called a Rupert property for cube. In 1968, C. J. Scriba [4]
showed that the tetrahedron and the octahedron have the same property. In 2017,
R. P. Jerrard, J. E. Wetzel and L. Yuan [2] found that the dodecahedron and
the icosahedron also have the same property. Thus all Platonic solids, including
the tetrahedron, the cube, the octahedron, the dodecahedron and the icosahedron,
have Rupert property. Some compact, convex subsets in R® do not have Rupert
property, such as the unit sphere and the circular cylinder with radius r and height
2r. That is a compact, convex subset in R? does not need to have Rupert property.

Due to lack of counterexample, J. E. Wetzel and L. Yuan conjectured in [2] that
every convex polyhedron has Rupert property. Therefore, the interesting thing is
to check whether a given convex polyhedron has Rupert property.

In Chapter II, we recall some basic definitions and lemmas related to this work.

In Chapter I1I, we study some properties about covering of objects in R? which
relate to this work.

In Chapter IV, we will mention many relations between Prince Rupert’s prob-
lem and covering problem.

In the last chapter, we suggest some ideas to study the further research about

Prince Rupert’s problem.



CHAPTER II
PRELIMINARIES

In this chapter, we recall some definitions and lemmas used in this work.
Throughout this work, we use an object to refer to a compact, convex subset
of R®. Moreover, we use a planar set to refer to a subset of R? or an isometric

image of a subset of R%

2.1 CONVEX SET AND AFFINE MAP

First, we introduce definitions about convex set and lemmas related to this

work.

Definition 2.1. A subset X C R" is called convex if and only if, for points z1, xo
in X and A € [0,1],
Axq + (1 — )\)1'2 e X.

The next definition is the definition of the convex hull of a set.

Definition 2.2. The convex hull of a set X of points in R" is the smallest convex
set that contains X. Moreover, the convex hull C' of a set of N points pq, ..., py is

then given by the expression
N N
C={> Api:A>0foralliand » X =1}.
i=1 i=1

We will use H(X) refers to the convex hull of a set X.
In this work, we use some mappings which are affine map.

Definition 2.3. An affine transformation or affine map f : R* — R? is a map
of the form x ~ L(x) + k where L is a linear map on the space R* z is a point in

R?, and k is a point in R,



The next three lemmas are about convex set and affine map related to this

work.

Lemma 2.4. Let f: R> — R? be an affine map. If a set X C R? is convex, then

f(X) is also conver.

Proof. Assume that a set X C R3 is convex. Let z1,20 € X and \ € [0,1]. Since
f is an affine map, f(x) = L(z) + k for some linear map L on R* and some point

k in R3®. We have

M) + (1 =N f(z2) = A (L(z1) + k) + (1 — A) (L(z2) + k)
= AL(21) + M+ (1 — N)L() + (1 — Nk
=L(Ar1+ (1 =XNmzs) + k
= f(Azy 4+ (1 = N)x2)
€ f(X).

Hence f(X) is convex. O

Lemma 2.5. Let f : R® — R® be an affine map and let p,...,p, € R®. Suppose

that My,..., A, € R such that » Xy = 1. Then f (Z Api | =) Nif(pi).
=1 =1 =1

Proof. Let Ai,..., A\, € R be such that Z/\i = 1. Since f is an affine map,
i=1
f(z) = L(x) + k for some linear map L on R® and some point k in R*. Then

f <Z )\ipi> =L (Z /\ipi> +k
i—1 i1
= i L(\ipi) + k
i1

= 2”: AiL(pi) + z": Aik
i—1 i—1



= Z Ai(L(pi) + k)
= Z Aif(l%)'

]

Lemma 2.6. Let P be a set of finite points in R>. A convex hull of an affine map
f of P is the image of a convex hull of P under f.

Proof. Since P C H(P), f(P) C f(H(P)). By Lemma @, f(H(P)) is convex.
Then H(f(P)) € f(H(P)).

n
On the contrary, let p be a point in H(p). Then p = Z \ip; where py,...,p, €
i=1

Pand A\,..., )\, > 0such that Z A; = 1 for some n € N. By Lemma @, we have
i=1

f) =171 (Z Am) = ZAif(pi) € H(/f(P)), Hence f(H(P)) CH(f(P)). O

2.2 OBJECTS RELATED TO THIS WORK

In this section, we will give definitions about objects which we study in this

work.

Definition 2.7. A polygon is a compact planar set bounded by a finite number

of straight line segments connected to form a closed polygonal chain.

Definition 2.8. A polyhedron is an object bounded by flat polygonal faces,

straight edges and sharp corners.

Definition 2.9. A Platonic solid is a regular, convex polyhedron which is con-
structed by congruent regular polygonal faces with the same number of faces meet-

ing at each vertex.



Platonic Solid

Figure

Tetrahedron A
Cube g
Octahedron
=N
Dodecahedron
Icosahedron

w

Table 2.2: List of all Platonic solids




Definition 2.10. An Archimedean solid is a convex polyhedron which has a
similar arrangement of nonintersecting regular convex polygons of two or more
different types arranged in the same way about each vertex with all sides the same

length.

Platonic Solid Figure

Truncated tetrahedron

Cuboctahedron

Truncated cube

Truncated octahedron




Rhombicuboctahedron

Truncated cuboctahedron

Snub cube

Icosidodecahedron

Truncated dodecahedron

eeceCer




Truncated icosahedron

Rhombicosidodecahedron

Truncated icosidodecahedron

Snub dodecahedron

Table 2.4: List of all Archimedean solids

The following is a definition of width of a nonempty compact subset of R

Definition 2.11. Let K be a nonempty compact subset of R? and [ be a line
in R%. The width of K in direction of [ is the minimum distance between two

lines perpendicular to [ with K in between them. The minimum width of K
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is the minimum of width among every direction. Similarly, for an object K in
R3, the width of K in direction of [ is the minimum distance between two planes

perpendicular to [ with K in between them.
The following is a definition of an interesting type of object in R?.

Definition 2.12. An object K is said to have constant width w if the width is

w in every direction.

A sphere and Meissner tetrahedra are the examples of objects with constant

width.

Figure 2.1: the sphere (left) and the Meissner tetrahedra (right)

2.3 RUPERT PROPERTY AND NIEUWLAND CONSTANT

From [E], R. P. Jerrard, J. E. Wetzel and L. Yuan gave a definition of Rupert

property stating as follows.

Definition 2.13. Let K be an object in R®. K has Rupert property if and only
if there are planes M and N so that the (orthogonally) projected images of K to
M fits in the interior of the (orthogonally) projected images of K to N.

From its definition, we may simply regard Rupert property as follows.

Lemma 2.14. Let K be an object in R*. K has Rupert property if and only if
there is a plane M and two congruent copies of K whose (orthogonally) projected

images to M has one image in the interior of the other.
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Remark 2.15. It is clear that Prince Rupert’s problem relates to a covering prob-

lem of the projections of 2 congruent copies of any given object.

In 1816, Pieter Nieuwland published [[7] the solution of the question of what is
the largest cube that can be passed through a cube of unit size, i.e., how large a
positive scalar v that a scaled congruent copy vC' of cube C' can pass through in
C. This question for any object is called Nieuwland’s question. For an object K

in R?, we define the Nieuwland’s constant v(K) by
v(K) =sup{v > 0 | there is a hole in K that an object K can pass through it}.

Note that for any convex object K, we have v(K) > 1. By direct observation,

we have the following obvious lemma.
Lemma 2.16. An object K in R has Rupert property if and only if v(K) > 1.

Table @ from [2] shows the known estimates of the Nieuwland constants for

all Platonic solids.

Platonic Solid Nieuwland Estimate

Tetrahedron ¥ V(%) > %\/_(\/6 — 1) > 1.004235

Cube € ¢) = 3v/2 > 1.060660

<

]

) > 33/2 > 1.060660

Dodecahedron ® | (D) > 15 > 1.005882

(
(
Octahedron O | i/
(
(

Icosahedron J v(J) > }égg > 1.009107

Table 2.5: Nieuwland constant estimates for all Platonic solids [2]

Besides 5 Platonic solids, Y. Chai, L. Yuan and T. Zamfirescu studied 8 of
the 13 Archimedean solids to find the estimates of their Nieuwland constants [L].
Table @ from [1] shows the estimates of the Nieuwland constants for 8 of the 13

Archimedean solids.



Solid

Nieuwland Estimate

Cuboctahedron C

v(C) > 1.01461

Truncated cube €,

v(€;) > 1.02036

Truncated octahedron O,

v(0,) > 1.00815

Rhombicuboctahedron R

Truncated cuboctahedron C,

v(R) > 1.00609
)

Icosidodecahedron 7

v(Z) > 1.00015

Truncated dodecahedron D,

v(Dy) > 1.00014

Truncated icosahedron I;

(
(
(
(
v(Cy) > 1.00370
(
(
(

v(I,) > 1.00004

12

Table 2.6: Nieuwland constant estimates for 8 of the 13 Archimedean solids [[]

In chapter IV, we will improve Nieuwland constant estimates for the tetrahe-

dron, the dodecahedron and the icosahedron. For the 13 Archimedean solids, the

truncated tetrahedron and the truncated icosidodecahedron have not been studied

yet. We show that their Nieuwland constant is greater than 1. Consequently, they

have Rupert property.



CHAPTER I11
COVERING OF OBJECTS IN 2D

In this chapter, we give some properties about covering of objects in R? which
relate to this work.

Recall that Prince Rupert’s problem can be converted to a covering problem
of the projections of 2 congruent copies of any given object. We will construct
lemmas and corollaries related to covering problem that may be helpful to study
Prince Rupert’s problem.

First, we have an obvious lemma by the property of width as follows.

Lemma 3.1. Let K and H be compact planar sets. If K is in the interior of H,
then the width of K is less than width of H for every direction.

The following corollary follows from Lemma El]

Corollary 3.2. Let K and H be compact, convex planar sets. If there exists a
direction such that the width of K is more than or equal to the width of H, then

K is not in the interior of H.

We will use Corollary @ to construct a lemma to check that a given object
does not have Rupert property in chapter IV.
If we use the property of convex hull, we will have a lemma about covering of

a set of points in a convex planar set as follows.

Lemma 3.3. A planar set H fits in the interior of a convex planar set K if and

only if a convex hull of H fits in the interior of K.

Proof. Assume that H fits in the interior of a convex planar set K. There is
an isometry f on R? such that f(H) C int(K). Then H C f~'(int(K)). Since
7 (int(K)) is convex, H(H) C H(f *(int(K))) C f*(int(K)). Thus f(H(H)) C
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int(K). On the contrary, assume that a convex hull of H fits in int(K). There is an
isometry f on R? such that f(H(H)) C int(K). Then H C H(H) C f~*(int(K)).
Therefore f(H) C int(K). O

In the case that we know the order of vertices of a convex polygon, we construct
lemmas and corollaries which are useful for numerical computation. By basic

property of a convex polygon, we have the following remark.

Remark 3.4. The interior of a convex polygon K is represented as the intersection

of every left side of counterclockwise edge around the polygon K.

Figure 3.1: the interior of a pentagon is the intersection of every left side of coun-

terclockwise edge around the pentagon

This remark leads to the following lemma.

Lemma 3.5. Let ay,as,...,a, be vertices of a convex polygon K in counterclock-
wise order. A point p is in the interior of K if and only if p lies to the left side of

the ray a;a;+1 for all 1 < i < n where a,+1 = a;.

In this work, we use two concepts to check whether a point lies to the left of a
ray. The first one is a concept using dot product. For another concept, we use a

mapping similar to a cross product in R* which is defined as follows.

Definition 3.6. A map ® : R? x R? — R is defined by (z1,11) ® (72,12) =
L1y — Topp for (1, 41), (22, y2) € R%
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For convenience, we will define the following definition.

Definition 3.7. Let ¥ be a vector in R%. A vector @ is the counterclockwise

rotation of the vector ¥ around (0,0) for angle g
Remark 3.8. For points p, ¢, € R%, we notice as follows.
1. q7 . cﬁ is equal to q7 & q?

2. A point p lies to the left side of ray ¢r if and only if q7 . qp > 0 if and only
if g @ qp > 0.

3. A point p lies to the right side of ray gr if and only if q7 g < 0if and only
if g ® qp < 0.

4. Points p, g, r are collinear if and only if q7* @ = 0 if and only if q7 ®q¢ = 0.
By Lemma @ and Remark @, we have two following lemmas.

Lemma 3.9. Let ay,as,...,a, be vertices of a convex polygon K in counterclock-
wise order. A point p is in the interior of K if and only if aiai_l,_l* -agp > 0 for all

1 <i <n where a,1 = ay.

Lemma 3.10. Let ay,as, . ..,a, be vertices of a convex polygon K in counterclock-
wise order. A point p is in the interior of K if and only if a;a;11 ® @ > 0 for all

1 <1< n where a1 = ay.
By basic property of convex sets, we have the following lemma.

Lemma 3.11. Let K and H be two convex polygons. Then K is in the interior

of H if and only if every vertex of K lies in the interior of H.
By Lemma @ and Lemma , we obtain the following corollary.

Corollary 3.12. Let ay,as,...,a, be vertices of a convex polygon H in counter-
clockwise order. A convex polygon K is in the interior of H if and only if every
vertex p of K satisfies conditions that aiaiﬂ* cap >0 for all 1 < ¢ < n where

Apy1 = A1
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By Lemma and Lemma , we obtain the following corollary.

Corollary 3.13. Let aq,as, ..., a, be vertices of a convexr polygon H in counter-
clockwise order. A convex polygon K is in the interior of H if and only if every
vertex p of K satisfies conditions that a;a;17 ® cﬁ > 0 for all 1 < i < n where

Apy1 = A1

Remark 3.14. If we know about the order of vertices of a convex polygon in
clockwise order, then we will have similar properties by flipping the inequality

sign.

Next, we will construct lemmas to verify whether a point fits in a convex hull

of arbitrary finite points. First, we define a definition of tangent strip as follows.

Definition 3.15. The tangent strip containing a set H in direction of ¥ is the

region between the two lines parallel to 7 and tangent to H.
We obtain the following lemma from a property of convex polygon.

Lemma 3.16. A convex polygon H s the intersection the tangent strips containing
H in every direction parallel to an edge of H. Moreover, let V be a set of vectors,
if vectors parallel to each edge of H is in V, then H is also the intersection the

tangent strips containing H in every direction o in V.

The next two lemmas follow from the geometric interpretations of the dot

product and the map ®.

Lemma 3.17. Let S be a tangent strip between lines ly and ly parallel to v with
p1 €l and py € ly. A point p lies on the interior of S if and only if A ? s
between V- ]7{ and V" - ]75

Lemma 3.18. Let S be a tangent strip between lines l; and ly parallel to v with
p1 € Iy and ps € ls. A point p lies on the interior of S if and only if 7@ ? i
between U & ]71) and ¥ @ 17%

By Lemma and Lemma , we have the following lemma.
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Lemma 3.19. Let H be a set of points a1, as,...,a,. A point p is in the interior

of H(H) if and only if min a,-a;* Ca;an < aiag-* -(ﬁ < max aiaj* - azaj, for all
1<k<n 1<k<n

1<4,j<nandi#j.
By Lemma and Lemma , we have the following lemma.

Lemma 3.20. Let H be a set of points ay, as,...,a,. A point p is in the interior

of H(H) if and only if min a;a; ® aa; < ai&; ® 5@ < max a;a; ® a;ai, for all
1<k<n 1<k<n

1<i,j<nandi#j.
By Lemma ﬂ and Lemma , we obtain the following corollary.

Corollary 3.21. Let H be a set of points ay,as,...,a,. A convexr polygon K is
in the interior of H(H) if and only if every vertex p of K satisfies conditions that

. \ K N * . . . .
min a;aj - a;ap < a;a; -@ < max a;a; -a;a foralll <i,5 <mn andi#j.
1<k<n 1<k<n

By Lemma ﬂ and Lemma , we obtain the following corollary.

Corollary 3.22. Let H be a set of points a1, as,...,a,. A conver polygon K is
in the interior of H(H) if and only if every vertex p of K satisfies conditions that

H}Cin a;a; @ a;ap, < a;a; @ cﬁ < max a;a; ® a;aj for alll <i,5 <n andi # j.
1<k<n 1<k<n

Remark 3.23. In Lemma , Lemma , Corollary and Corollary , it

is enough to consider a set of all vectors cTa; which are not parallel to each other

in this set instead of a set of vectors m forall 1 <i,5 <nandi#j.



CHAPTER IV
COVERING OF OBJECTS RELATED TO RUPERT
PROPERTY

In this chapter, we will construct lemmas related to covering problem that may
be helpful to study Prince Rupert’s problem.

In this work, we will use XY-plane in Lemma M for convenience to nu-
merical optimization. Let my : R® — R? be a projection to XY -plane such that
mo((7,y,2)) = (x,y) for every point (z,y,2) in R*. By Lemma m and basic
property of rotation, without loss of generality we may use the projection my as in

the following lemma.

Lemma 4.1. An object K in R* has Rupert property if and only if there are
congruent copies K1 and Ky of K that mo(K1) is a subset of the interior of mo(K3).

4.1 OBJECTS WHICH DO NOT HAVE RUPERT PROP-
ERTY

Lemma [1] is suitable to check whether a given object K has Rupert property
but it is hard to check that a given object K does not have Rupert property because
there are uncountably many congruent copies of K that we need to consider. Thus
we will construct a lemma that can help to check that a given object does not
have Rupert property. The property related to this lemma is the width of compact
subsets of R%. From Corollary @ and Lemma El], we then have the following

criteria for an object that does not have Rupert property.

Lemma 4.2. Let K be an object in R>. If every congruent copy of K has the
same minimum width under the projection to the XY -plane, then K does not have

Rupert property.
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Proof. Assume that every congruent copy of K has the same minimum width w
under the projection to the XY-plane. Let K; and K5 be two congruent copies
of K. There is a line [ in R? such that the width of my(K>) in direction of [ is w.
Then the width of m(K7) is greater than or equal to width of 7y(K>) in direction
of [. By Corollary @, 7o(K1) is not in the interior of 7y(K3). By Lemma @, K
does not have Rupert property. [

Remark 4.3. By Lemma @, we then have the following observations.

1. We notice that an object with constant width w has every projection with
minimum width w. Then all objects of constant width do not have Rupert

property. Hence, as it is a constant width, every sphere does not have Rupert

property.

2. For the circular cylinder witch its radius is r and its height is greater than
or equal to 2r, the minimum width of its projection to the XY -plane is 2r.

Hence the circular cylinder does not have Rupert property.

3. For the prism which the base is a planar set of constant width [ and its
height is greater than or equal to [, the minimum width of its projection to

the XY -plane is [. Hence it does not have Rupert property.

Due to lack of counterexample, J. E. Wetzel and L. Yuan conjectured in [2]
that every convex polyhedron has Rupert property. Hence we will study about
Rupert property for two famous kinds of convex polyhedrons which are Platonic

solids and Archimedean solids in the next section.

4.2 OBJECTS WHICH HAVE RUPERT PROPERTY

In this section, we apply lemmas and corollaries to approximate the Nieuwland
constants for some convex polyhedrons.

By Lemma @, we can regard one congruent copy of polyhedron as its vertices.



20

Lemma 4.4. A polyhedron K has Rupert property if and only if there are congruent
copies Ky and Ky of K that every point which is a projected vertex from Ky by mg
fits in the interior of mo(Ky).

Proof. Let A be a set of points which are projected vertices from K; by m. By
Lemma @ and Lemma @, for congruent copies K; and K, of K, we have that
mo(K) fits in the interior of 7y(K>) if and only if wy(H(A)) fits in the interior of
mo(K) if and only if H(my(A)) fits in the interior of 7y(K3) if and only if mo(A)
fits in the interior of mo(K3). By Lemma @, we are done. O

Let Rgf be the rotation around X-axis for angle f (from Y-axis to Z-axis).
Similarly, let RZ and RY be the rotations around Y-axis for angle ¢ (from X-axis
to Z-axis) and around Z-axis for angle € (from X-axis to Y-axis), respectively.
Regardless of translation, a congruent copy of an object K can be written as
R? (Rg(R? (K))) for some 3, ¢ and . To check Rupert property for a given object
K in R? we can consider a projection 7y to XY -plane of all two possible congruent
copies of K as mo(Rf, (R}, (R (K)))) and 7o(R7, (R}, (R}, (K)))) for some S, ¢1,
01, P2, @2 and 65. By elementary property of compact, convex sets with nonempty

interiors and Lemma @, Nieuwland constant can be written as follows.

Lemma 4.5. Let R, : R* — R? be the rotation around (0,0) for angle w. For an
object K,

v(K) = max{a > 0 | aRy(mo(Rf (R, (R5,(K))))) + (0, 40) C mo(Rg, (R, (R, (K))))
for w, By, ¢1,61, Ba, b2, 02, 0, yo € R}
= max{o > 0 | aR,(mo(RY, (R (K))) + (x0.u0) € mo( R, (R (K))

fOT’ W, Bl? ¢17 627 ¢27 Zo; Yo € R}

Proof. The first equality follows from the definition of Nieuwland constant and
elementary property of compact, convex set. We note that R, om oRQZ1 = R0, 070.
For A, B C R? we have that Ry, (A) C Ry,(B) if and only if Ry, ,(A) C Ro(B) =
B. Hence, for K, H C R?, we have that R, (m(Rj (K))) C mo(R7,(H)) if and only
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if Ry 10, (m0(K)) C Ry, (mo(H)) if and only if Ry 19, —,(mo(K)) C mo(H). Since w is

arbitrary, we may omit #; and 65 as in the last expression. O

For each object, we estimate its Nieuwland constant by using numerical opti-

mization according to Lemma @ to find a > 1 under variables w, 1, ¢1, 82, ¢2, Tg

and yo. In particular, to verify whether a planar image fits in another image, we

use Lemmas and corollaries in chapter 3 as the following corollary.

Corollary 4.6. These statements are equivalent.

1

A polyhedron K has Rupert property.

There are congruent copies Ky and Ko of K that mo(K1) is a subset of interior

Qfﬂb(h&).

There are congruent copies K1 and Ko of K that every point which is a

projected vertex from K, by g fits in the interior of mo(K3).

There are congruent copies Ky and Ky of K that every point p which is a
projected vertex from Ky by my satisfies conditions that, for all 1 <1 < n,
aiaiﬂ* ~c7$ > 0 which ay,as, ..., a, be vertices of mo(Kz) in counterclockwise

order and a,,1 = aj.

There are congruent copies K1 and Ky of K that every point p which is a

projected vertex from Ky by my satisfies conditions that, for all 1 <i,57 <n

and i # j, min cTa;* cazan < CTCL;* . cﬁ < max cTa;* - a;ai, which points
1<k<n 1<k<n

ai,Qs,...,a, are projected vertices from Ko by m.

There are (1, ¢1, 01, B2, ¢2, 02, xo and yo that every point p which is a
projected vertex from Rf (R} (R} (K))) + (z0,40) by o satisfies conditions

. . . . . N N * *
that, for alll <i,j <nandi # j, min a,aj -a;ar < a;a; ~@ < max a;a; -
1<k<n 1<k<n

azay which points ay, as, . .., a, are projected vertices from RGZQ(R;(Rég(K)))

by’ﬁg

Remark 4.7. By Remark @ and Remark 77, we will obtain a similar corollary

as Corollary @ by using concept of a map ®.
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We notice that we can find the Nieuwland constant as Lemma @ by replacing
a congruent copy K; of K in Lemma @ by aK; and then constructing processes to
find the maximum of a.. These processes give a lower bound of Nieuwland constant
for each given object. In this work, we improve Nieuwland constant estimates for
3 of 5 Platonic solids as in Table [1! We also have result for 7 of 13 Archimedean

solids about estimates of its Nieuwland constant as in Table @

Platonic solid Previous result Our result
Tetrahedron T | v(T) > 2v3(V6 — 1) > 1.004235 | v(T) > 1.014611
Cube € v(€) = %\/5 > 1.060660 v(€) > 1.060660
Octahedron O v(O) > %\/5 > 1.060660 v(9) > 1.060660
Dodecahedron © | v(D) > 14 > 1.005882 v(®) >1.010788
Icosahedron J v(J) > 1508 > 1.009107 v(J) > 1.010823

Table 4.1: Our Nieuwland constant estimates for all Platonic solids compare with

the previous result in [2]

Archimedean solid Previous result Our result
Truncated tetrahedron 7; - v(T;) > 1.014049
Cuboctahedron C v(€) > 1.01461 | v(C) > 1.014611
Truncated cube €, v(%)>1.02036 | v(¢;) > 1.013669
Truncated octahedron O, v(O;) > 1.00815 -
Rhombicuboctahedron R v(¥) > 1.00609 | v(R)> 1.012819
Truncated cuboctahedron C; v(%) > 1.00370 | v(C;) > 1.003005
Icosidodecahedron 7 v(¥) > 1.00015 | v(Z) > 1.000604
Truncated dodecahedron D, v(D;) > 1.00014 -
Truncated icosahedron I, v(l;) > 1.00004 -
Truncated icosidodecahedron Z; - v(Z;) > 1.001915

Table 4.2: Our Nieuwland constant estimates for 7 of 13 Archimedean solids
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Therefore these 7 solids have Rupert property. Among these 7 solids, the
truncated tetrahedron and the truncated icosidodecahedron have not yet been

studied before.



CHAPTER V
FURTHER RESEARCH

In this dissertation, we study some properties to check whether some objects
have Rupert property. Moreover, we get a lower bound of Nieuwland constant of

some polyhedrons. We suggest some ideas to extend the research as follows.

1. In this work, we study Rupert property for 7 of the 13 Archimedean solids.
So there are the remaining 6 of 13 Archimedean solids that we did not study
yet. Hence we may find a new method to check whether the remaining object

has Rupert property.

2. We may find a new method to improve a lower bound of Nieuwland constant

of some polyhedrons.

3. We can use this method to check Rupert property of some kinds of polyhe-

dron, such as Catalan solids and Johnson solids.

4. We may construct some lemmas to check that some objects do not have

Rupert property.
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CHAPTER VI
APPENDIX

We will give the algorithm that we use to find a lower bound of Nieuwland

constant for a given convex polyhedron K using concept of dot product as follows.

1. Find a set of vertices of a given convex polyhedron K.
2. Find set of all vector edges of K which are not parallel to each other in set.

3. Find the maximum value of scalar « such that every point p which is a
projected vertex from Rj (R), (R5 (K))) + (z0,40) by 7o satisfies conditions
that 1I<1r1k1£1 C_LZ'—CL_;* . a_;Z < m* . &% < 1rgka<x ZL}—a_;-* . @ which vectors ELZ-—a_;- are
projec’ge(i edges from R(;(RE(Q(K )) by ;roifrom step 2.

4. Show the result, including the maximum value of o with values 31, ¢1, 61, 5o,

02, To, Yo and figure of two projected images which one image in the interior

of the other.
Using concept of a map ®, we have the algorithm as follows.

1. Find a set of vertices of a given convex polyhedron K.
2. Find set of all vector edges of K which are not parallel to each other in set.

3. Find the maximum value of scalar a such that every point p which is a
projected vertex from Ry (R} (R5 (K))) + (0, y0) by 7o satisfies conditions
—

that min a;a; ® a_;: < a;a; @ oﬁ < max a;a; ® @ which vectors a,aj are
1<k<n 1<k<n

projecged edges from R;; (Rég(K )) by Woifrom step 2.
4. Show the result, including the maximum value of o with values 31, ¢1, 61, 5o,
02, Tg, Yo and figure of two projected images which one image in the interior

of the other.



m= nhame = ""Cube';
Proj [{X_,Y_, Z_}] = {X, Y};
rot[{x_, y_}1={-y, X};
scale[a_, pl1_, pO_] := apl+p0;
p0O = {x0, y0};

(*Find a set of vertices of a given convex polyhedronsx)
vertices = N[PolyhedronData[name, "VertexCoordinates"]];
(xFind set of all vector edges which are not parallel to each otherx)
allvec = {};
allvecid = {};
Do[
Vv = vertices[[Vvi[[1]]]] -vertices[[VIi[[2]]]]:
Do[If[Cross[u, Vv] == {0, O, O}, Goto[nextv]], {u, allvec}];
AppendTo[allvec, Vv];
AppendTo[allvecid, vi];
Label [nextv]
, {vi, PolyhedronData[name, "Edgelndices']}];
(*Find the maximum value of scalar alphax)
nm = FindMaximum[Join[{a, a < 1.5},
pls = RotationTransform[el] /eproj /@RotationTransform[¢l, {0, -1, 0}] /e
RotationTransform[B1l, {1, 0, 0}] /e vertices;
p2s = proj /@ RotationTransform[¢2, {0, -1, 0}] /e
RotationTransform[B2, {1, 0, 0}] /evertices;
n2 = Table[rot[p[[1]] -p[[2]1]1]1, {p, Table[p2s[[i]], {i, allvecid}]}];
Table[{min, max} = MinMax[Table[p.-n, {p, p2s}]1];
min < scale[a, pl, p0].n < max, {pl, pls}, {n, n2}11,
{a, {x0, 0}, {yO, 0}, 61, ¢1, B1, ¢#2, B2}, Maxlterations -» 5000] ;
(*Show Resultx)

pls = (RotationTransform[el] /@eproj /@RotationTransform[¢1l, {0, -1, 0}] /e
RotationTransform[B1l, {1, 0, 0}] /@vertices) /-nm[[2]];
p2s = (proj /@RotationTransform[¢2, {0, -1, 0}] /@

RotationTransform[B2, {1, 0, 0}] /@vertices) /-nm[[2]];

pO =p0 /. Nm[[2]];
Print[Column[{nm[[2]1}]11]:

IF[NMI[1]] > 1, Print[Msxxxskxssskkrnkdrrsx RUPEIT sxkrrkkrrnskrrnkkxx' ]];
Print[

Graphics3D[{{Red, Translate[Rotate [Rotate[Rotate[PolyhedronData[name, "Edges"],

B1, {1, 0, 0}1, ¢1, {O, -1, O}1, €1, {0, O, 1}1, {x0, yO, 0}1},
Rotate [Rotate [PolyhedronData[nhame, "Edges'], B2, {1, 0, 0}1, ¢2, {O, -1, 0}1} /-
nm[[2]], Boxed -» False, ViewPoint -» {0, O, 100}],
Show[ConvexHul IMesh[p2s], Graphics[{Red, Translate[Point[pls], p0]}]11]



{a - 1.06066, x0 > -1.50327x107*%, y0 - 3.63224x107*%, 61 » -0.321751,
¢l » 4.12443 x 107, Bl 5 -2.34299%x107'?, ¢2 - 0.729728, B2 - 1.10715}

Kkkkhkkkkkkkkkhkkkx RUDCLT *kskkkkhkkkhkhdkkkkhx

n[17)= name = "Cube";
proj[{x_, y_, z_}] = {x, ¥}’
rot[{x_, y_}] = {-y, x};
cross[{x1_, yl_}, {x2_, y2_}] :=x1y2-x2yl;
scale[a_, pl_, p0_] :=apl+p0;
pO = {x0, yO0};

(*Find a set of vertices of a given convex polyhedronx)
vertices = N[PolyhedronData[name, "VertexCoordinates"]];
(#Find set of all vector edges which are not parallel to each otherx)
allvec = {};
allvecid = {};
Do[
v = vertices[[vi[[1]]]] - vertices[[vi[[2]]1]]"
Do[If[Cross[u, v] == {0, 0, 0}, Goto[nextv]], {u, allvec}];
AppendTo[allvec, v];
AppendTo[allvecid, vi];
Label [nextv]
, {vi, PolyhedronData[name, "EdgeIndices"]}];
(*Find the maximum value of scalar alphax)
nm = FindMaximum[Join[{a, a < 1.5},
Pls = RotationTransform[61l] /@proj /@ RotationTransform[¢l, {0, -1, 0}] /@
RotationTransform[B81l, {1, 0, 0}] /@vertices;
P2s = proj /@RotationTransform[¢2, {0, -1, 0}] /@
RotationTransform[B32, {1, 0, 0}] /@vertices;
E2 = Table[p[[1]] -p[[2]], {p, Table[p2s[[i]], {i, allvecid}]}]:;
Table[{min, max} = MinMax[Table[cross[e, p]l, {pP, P2s}]];
min < cross[e, scale[a, pl, p0]] <max, {pl, pls}, {e, E2}]],
{a, {x0, 0}, {yO0, 0}, 61, 91, B1, ¢2, B2}, MaxIterations -» 5000] ;
(*Show Resultx*)
pls = (RotationTransform[el] /@proj /@RotationTransform[¢l, {0, -1, 0}] /@
RotationTransform[B1l, {1, 0, 0}] /@vertices) /. nm[[2]];
P2s = (proj /@RotationTransform[¢2, {0, -1, 0}] /@



RotationTransform[B32, {1, 0, 0}] /@vertices) /. nm[[2]];

p0=p0 /. nm[[2]];

Print[Column[{nm[[2]]}]];

If[nm[[1]] > 1, Print["s**xk*kkkkkkkhkkkhkkd*x RUPErt *xdkrkkrhhkrkkrkkrx"]];
Print|[

Graphics3D[{{Red, Translate[Rotate[Rotate[Rotate[PolyhedronData[name, "Edges"],

p1L, {1, 0, 0}1, ¢1, {O, -1, 0}], €1, {0, O, 1}], {x0, yO, 0}1},
Rotate[Rotate[PolyhedronData[name, "Edges"], 82, {1, 0, 0}]1, ¢2, {O, -1, 0}1} /.
nm[[2]], Boxed » False, ViewPoint » {0, 0, 100}],
Show[ConvexHullMesh[p2s], Graphics[{Red, Translate[Point[pls], p0]}]]]

{a - 1.06066, x0 - -1.50327x107*%, y0O - 3.63224x10°*>, 61 - -0.321751,
¢l » 4.12443 x 107 'Y, Bl » -2.34299%x107'?, ¢2 - 0.729728, B2 - 1.10715}

kkhkkkhkhkkhkhkkhkkhkkhkkkkkx Rupert *khkkkhkkhkkkkkkkkkkkkkk
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