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One burden of high energy physics data analysis is uncertainty within the measurement,

both systematically and statistically. Even with sophisticated neural network techniques

that are used to assist in high energy physics measurements, the resulting measurement may

suffer from both types of uncertainties. Fortunately, most types of systematic uncertainties

are based on knowledge from information such as theoretical assumptions, for which

the range and behaviour are known. It has been proposed to mitigate such systematic

uncertainties by using a new type of neural network called adversarial neural network

(ANN) that would make the discriminator less sensitive to these uncertainties, but this has

not yet been demonstrated in a real LHC analysis.

This work investigates ANNs using as a benchmark the search for the production of

four top quarks, an extremely rare physics process at the LHC and one of the important

processes that can prove or disprove the Standard Model. The search for four top quarks in

some cases is sensitive to large systematic uncertainties. Discriminators based on traditional

and adversarial neural networks are trained and chosen via hyperparameter adjustment.

The expected cross section upper limit and expected significance for four top quark

production is calculated using traditional neural networks and adversarial neural networks

based on simulated proton-proton collisions within the Compact Muon Solenoid detector

within Large Hadron Collider, and are compared to existing results. The improvement and

further considerations to the search for rare processes at the LHC will be discussed.
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CHAPTER I

INTRODUCTION, BACKGROUND THEORY, AND

CHALLENGE

The latest discovery to the standard model (SM), the Higgs Boson, is discovered

in 2012 [1] and makes it the most comprehensive model of elementary particles to date.

Still, the model is currently under tests from many more and more complex particle

processes and phenomena. SM is expected to “break”, or unable to precisely predict a

phenomenon, at some point of precision, as it has happened to Newtonian mechanics

before. Newtonian mechanics has a predictive power at a certain scale, and predicting

physical phenomena beyond that scale requires all-new theories, such as General Relativity

which can predict black holes and Quantum mechanics which can explain such spooky

phenomena in subatomic particles. As such, if SM fails to describe one of the critical

phenomena, several theories by theoretical physicists might someday predict it, but we

have to prove that SM fails to do it in the first place.

The first four chapters in this thesis are mainly literature studies in terms of High

Energy Physics and Computer Science, particularly in the field of Machine Learning, while

new contributions presented in this thesis starts from Chapter 5 onwards. In this chapter,

one of the tests on SM, four top quark production, is presented, along with a challenge

in search of the production. Following theoretical background are the specifications of

the Compact Muon Solenoid (CMS) detector in Chapter 2. Chapter 3 presents basic

terminology in the field of machine learning, while Chapter 4 summarises previous analyses

for a search of four top quark production in the past using the CMS detector. An analysis

using a traditional neural network is presented in Chapter 5. Adversarial neural networks,

as a recent advancement in the field of machine learning (ML), is also introduced in this

chapter, although the thorough description of this type of neural network will be presented

in Chapter 6. To summarise the results of this thesis, Chapter 7 outlines the sensitivity

results from both traditional and adversarial neural networks, as well as a future outlook

to the application of the adversarial neural networks.

1.1 The top quark

Discovered in 1995 [2], the top quark is the heaviest quark currently discovered in SM.

As of current measurements, its mass is reported by [3] as 173.0± 0.4 GeV, heavier than

the mass of Higgs boson of 125.18± 0.16 GeV. Even after 20 years of discovery, the top
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quark remains an important study in High Energy Physics, since its properties raise many

questions to SM. According to SM, top quarks may be produced through various production

mechanisms, given that there is enough energy for the top quark to be produced in the first

place. A top quark instantly decays (96% of the time) to a W boson and a bottom quark,

and the W boson would further decay into either a pair of quark-antiquark or a lepton and

a neutrino of the corresponding flavour, as shown in Figure 1. This high branching ratio of

t → Wb decay mode is explained by a specific element Vtb as one of the diagonal terms of

Cabibbo-Kobayashi-Maskawa (CKM) matrix [4], which gives a particularly high probability

of a top quark decaying into a bottom quark (and a W boson due to charge conservation).

The current value of Vtb, derived from a global fit to all available measurements and SM

constraints, is Vtb = 0.999 105± 0.000 032 [3].

Quantum Chromodynamics (QCD), as the SU(3) component of SM (SU(3)×SU(2)×

U(1)), dictates that a single quark contains a quantum number called colour charge, either

“red”, “green”, or “blue”.1 It also gives rise to gluons (or gluon fields) as strong force

carriers and can alter the colour of quarks once interacted with them. A particle carrying

a colour charge cannot be isolated and must be grouped up with other particles carrying

colour charge to be colourless. For example, a quark with red colour charge must pair with

an antiquark with antired colour charge to form mesons. A quark with red colour charge

may also group up with two other quarks with blue and green colour charges respectively to

form baryons. The colour charge is different from an electrical charge, since particles may

possess electrical charges, such as electrons, and can be isolated freely. Due to this effect,

a single quark generated from particle collisions must be grouped up with other quarks,

originated from a vacuum. This process is called hadronization, and a shower of particles

generated from a quark via this process is called a particle jet. The only exception to this

rule from QCD is a top quark, as it decays before hadronization can occur due to its short

lifetime [5].

1.2 Single top quark production in t-channel and tW -channel

A single top quark may be created via a scattering of a light quark and a bottom

quark, or a light quark and a gluon, exchanging a W boson in the process and resulting

in a light quark of different flavour and a top quark, as shown in Figure 2. This process

is called t-channel process and is a dominant production mechanism in a single top quark

production. A less dominant process is called a tW -channel process, where a gluon and a

bottom quark scattered into a top quark and a W boson, as shown in Figure 3.
1Note that quarks do not actually have these colours.
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Figure 2: Tree diagrams for single top quark, t-channel process.
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Figure 3: Tree diagrams for single top quark, tW -channel process.
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Figure 4: Tree diagrams for top-antitop quark production.

The cross sections for t-channel and tW -channel processes of single top production,

measured by CMS detector with
√
s = 13 TeV, are 238 ± 13 (stat) ± 29 (syst) pb [6] and

63.1± 1.8 (stat) ± 6.4 (syst) pb [7] respectively. These measurements are reported to have

an agreement with predictions made by SM.

1.3 Top-antitop quark production

A top-antitop quark pair may be produced via a collision of two quarks or an

interaction between two gluons, as shown in Figure 4 [8]. The cross section for this

production has been measured numerous times by the CMS detector, and has been shown

to be consistent with predictions made by SM in the centre-of-mass energy of 7 TeV (such

as in [9]), and 13 TeV [10], to name a few. With the measurement of the cross section of

this process, the strong coupling strength αs and the pole mass of the top quark can be

extracted. [11]

1.4 Four top quark production

Within a single proton-proton collision, two pairs of top-antitop quarks may be created

due to an interaction between two gluons as shown in Figure 5. Right after the production,

the top quark will instantly decay into a bottom quark and either a pair of quark-antiquark

or a lepton and a neutrino.

In a four top quark production, each of the four top quarks has the freedom to

decay either hadronically (t → Wb → qq̄b at 66%) or leptonically (t → Wb → ℓνℓb at

33%) via the W boson decay. For a single lepton search, we are interested in finding such
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Figure 5: Tree diagram for four top quark production.

production giving a single lepton from one top quark decaying leptonically. The remaining

three top quarks must decay hadronically. Hence, we will require the collision event to

contain four bottom quarks (directly from top quark decay), one lepton and three pairs of

quark-antiquark.

The cross section of this process, according to SM prediction at next-to-leading order

(NLO) with 13 TeV centre-of-mass energy (
√
s), is 9.2 fb. By comparison, top-antitop

production as the most dominant background has its cross section, according to SM NLO

prediction at
√
s = 13 TeV, as high as 832 pb [10], almost 90 000 times greater than four

top quark production. Previous literature [12] has determined the expected upper limit for

four top quark production at
√
s = 13 TeV, up to 95% confidence level, as 20+10

−6 fb. To

this date, the data gathered from the CMS detector is not adequate enough to determine,

at enough significance, how small the cross section for four top quark production is.

Determining the four top quark production cross section is considered as a test for SM,

as well as theories colloquially called Beyond Standard Model (BSM), which are possible

extensions to SM itself. These theories propose “fixes” to SM should it fail to predict certain

phenomena. As for the case of four top quark production, many BSM models propose that

its cross section may be altered by top quark compositeness (or the top quark may contain

some other particles), dark matter, supersymmetry, extra dimensions, or much more [13].
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Figure 6: Feynman diagram for a possible four top quark production via supersymmetry particle.

σ represents sgluons, a superpartner of gluons. [14]

1.5 Challenge for four top quark production search

As stated in Section 1.4, the dominant background for four top quark production, top-

antitop production, is approximately 90 000 times larger than four top quark production.

This means we have to go through a huge collection of data collected by the CMS detector

containing millions of collision events just to find a handful of events that may contain four

top quark production. To make matters worse, we can only observe the final state of the

production, or the final decay products of the collision process, which may originate from

either four top quark production or top-antitop production.

The very first discriminator used in Physics analyses is called “cut based” discriminator,

which is merely a set of rules based on variables in each event. If an event contains the

variables that pass all rules, the event would be classified by the cut-based discriminator

as a signal-like event. On the other hand, if an event fails on any rule, the event would

not be classified as a signal-like event. The cut-based discriminator is built by human, not

computers, and in some cases, the discriminator can achieve high purity of signal events

passing through the discriminator. In other cases, where high signal purity cannot be

achieved or there is overwhelmingly more background, the discriminator may also leave

many signal events behind to achieve high purity or allow many background events to pass

if it is designed to include as many signal events as possible. To alleviate this, several

machine learning (ML) techniques, such as boosted decision trees and neural networks, can

better distinguish the events by analysing and assessing the events in such a way that signal

events are included and background events are excluded as much as possible, based on the
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training dataset used. One of the advantages of these ML techniques, and multivariate

analyses (MVAs) in general is its multidimensionality: a cut-based discriminator rejects an

event if it does not have a value of a variable in a certain range, whereas ML techniques

tend to look at several variables at the same time to make a decision.

Boosted decision trees (BDT) [15], one of many techniques in ML, have been used in

an attempt to distinguish between four top quark production and top-antitop production.

By using the distribution of an output of BDT discriminator (that is trained properly

with simulated collision events), we can obtain the cross section expected limit of four top

quark production. However, even with traditional ML techniques, the calculated expected

limit is still subject to systematic uncertainties, where most of them are based on well-

known theoretical uncertainties and estimates, and can be modelled during particle collision

simulations. In fact, traditional ML techniques are designed to classify events based on

patterns within the data into classes such as a signal or background classes, but they are

not deliberately designed to lessen the impacts from uncertainties, even with systematic

uncertainties that we know their behaviours based on theoretical knowledge.

1.6 Use of adversarial neural networks

In 2017, Louppe et al. have shown [16] that it is possible to use another type of neural

network, called a pivoting adversarial neural network, to adjust the discriminator output

to be less susceptible to uncertainties. In essence, the adversary network will try to assess

features of an input that makes the discriminator network to give certain outputs. While

the goal of the discriminator is to classify the inputs, the adversary’s goal is to find out why

the discriminator makes such predictions. Normally adversarial neural networks are used

to generate fake input into a discriminator network so that the discriminator cannot tell

the difference between real input and fake input. With the normal use case, the adversary

network is mostly used to generate images that humans can recognise. A light-hearted

example of this use case is generating Japanese anime-styled girl portraits [17].

In Louppe’s work, the adversarial neural network is used in an entirely different

direction. Instead of generating fake inputs to the discriminator, the adversary is instead

designed to determine the uncertainty of the inputs as best as possible, by relying on the

output of the discriminator alone. The discriminator is then trained to fool the adversary

by giving the output that is indifferent under varying uncertainties. Shimmin et al. [18]

have further developed the adversarial network training to train the discriminator network

to classify particle jets without the effect of the jet’s mass. Still, this technique has been
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tested with “toy examples”, or simulated data only, and has never been used

in real-world cases such as a complete analysis at the Large Hadron Collider

(LHC). This thesis is the first ever attempt on the application of adversarial

neural networks in such analyses. With a promising use case of the adversarial network,

it is possible that we can use adversarial neural networks to train a discriminator to reduce

the effects of systematic uncertainties on search sensitivity, and we will investigate this

application in this thesis.



CHAPTER II

THE CMS DETECTOR

The Compact Muon Solenoid (CMS) detector is one of the four main particle

detectors situated on the Large Hadron Collider (LHC) along with A Toroidal LHC

Apparatus (ATLAS) experiment, Large Hadron Collider beauty (LHCb) experiment, and

A Large Ion Collider Experiment (ALICE). CMS collaboration, together with ATLAS

collaboration, discovered the Higgs boson in 2012 based on the data collected from

proton-proton collisions detected inside both of the detectors [1], confirming the almost-

fifty-year-old theory at the time proposed by several theorists.

The CMS detector is designed to be a general purpose particle detector, which mainly

detects photons, hadrons (both neutral and charged), electrons, and muons. The detector is

not designed to detect neutrinos, and tau leptons usually decay in almost an instant. Hence,

the detector is unable to detect tau leptons directly and all flavours of neutrinos. Decay

products of tau leptons, however, are still detectable. The ATLAS detector and the CMS

detector use different technology in its components, and both serve as a general purpose

particle detector located on the LHC.

2.1 Proton beams from LHC

The LHC is a circular particle accelerator that accelerates two beams of protons inside

and collides them at four main detector stations. It became operational on 19 September

2008, with an initial centre-of-mass energy of 7 TeV. Since then the accelerator has been

upgraded along with colliding proton beams for Physics purposes. As of this writing, the

centre-of-mass energy LHC can achieve is 13 TeV, and its peak instantaneous luminosity

of 1034 fb−1s−1 has been achieved. These two upgrades to the LHC causes more elusive

particle productions more detectable in particle detectors, including CMS.

2.2 Components of CMS detector

The CMS detector comprises four main components:

• Silicon tracker, the innermost component, detects tracks of charged particles that

occur right after the collision. It consists of several layers of silicon pixel detectors and

silicon microstrip detectors, forming the shape of a cylinder around the interaction

point where proton beams collide. Three layers of pixel detectors and ten layers of



10

Figure 7: Aerial view of Large Hadron Collider. [19]

Figure 8: Schematic diagram of CMS detector with its components. [20]
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silicon strip trackers form the tracker components in the shape of a cylinder with

no ends. To detect forward particles at the end of the cylinder, two layers of pixel

detectors and twelve layers of silicon strip trackers also cover the ends of the detector.

Charged particles will leave a trace of energy in an array of small pixels and silicon

strip detectors.

• Electromagnetic calorimeter (ECAL) detects photons and electrons. The

calorimeter is made of lead tungstate (PbWO4) crystals covering the pseudorapidity

range of |η| < 3 around the interaction region. Both particles leave high amounts of

energy and stop moving further in the detector.

• Hadronic calorimeter (HCAL) detects hadrons, both charged (i.e. protons) and

neutral (i.e. neutrons). It is based on scintillators, and its coverage is the same as

ECAL, |η| < 3. Neutral hadrons do not leave a trace in the silicon tracker and ECAL

but are detected in this layer.

• Muon chamber exclusively detects muons. It is made of four layers of drift tubes,

cathode strip chambers, and resistive plate chambers. Muons passing through this

part of the detector leave energy traces in an array of pixels, similar to other parts of

the detector.

The detector also contains a superconducting solenoid between HCAL and muon

chamber, providing a magnetic field inside the detector. With the magnetic field generated

from the solenoid, charged particles will have their trajectories curved depending on their

momentum and charge. This can help to identify the charge of individual particles occurring

after the collision.

To handle a large number of proton-proton collisions the LHC can deliver, the detector

must be able to reject uninteresting events to save data storage. This is achieved by the

use of several levels of trigger systems. Trigger systems are a combination of hardware and

software, designed to accept or reject collision events as fast as possible. The hardware

is also designed to resist the radiation from particle collisions over time. With the use of

triggers, collision events recorded by the detector can be reduced dramatically by a factor

of 106, allowing only interesting events to be recorded in limited storage.

A custom algorithm named Particle-flow algorithm [21] is also designed to help

reconstruct particle trajectories from raw data in each component of the detector. With

this algorithm, instead of dealing with raw data of energy residues in each detector pixels,
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we can obtain trajectory and energy information of particles created after the collision, such

as photons, electrons, muons, and particle jets. A complete description of the detector and

its components can be found in [22].



CHAPTER III

BASIC TERMINOLOGY IN NEURAL NETWORK

TRAINING

A neural network is a type of machine learning (ML) technique that is designed to

find underlying patterns within the data. As the technique comes straight from computer

sciences, there is a specific set of vocabulary that needs to be understood to work with it.

This chapter will present the terminology as well as general procedures of applying neural

networks to many use cases. The details of the neural network designed in this thesis will

be covered in Chapter 5.

3.1 What is machine learning?

In essence, machine learning (ML) is a collection of algorithms that can predict the

answer based on the inference of input data alone, without any instructions to answer.

These algorithms can read the data, predict answers, and adjust itself to give more and

more correct answers. Many algorithms have been devised, and the most notable algorithms

are boosted decision trees (BDT) and neural networks (NN). ML algorithms are nowadays

being used for a myriad of purposes, such as natural language processing, self-driving cars,

and particularly discoveries in High Energy Physics, such as the discovery of Higgs Boson in

2012 by CMS [1]. However, the use of machine learning in High Energy Physics can be dated

back as far as the era of Large Electron-Positron (LEP) collider, which was decommissioned

in 2000.

3.2 ML classifiers vs regressors

Several ML techniques can be used to either classify input entries into certain

categories, such as classifying a set of images into certain types, or predict the value of

something, such as predicting house value in certain areas. The predictor in the former use

case (that predicts the type, or class, of an input entry) is called a classifier, which can

also be called a discriminator in some places. The predictor in the latter use case (that

predicts arbitrary values) is called a regressor.

In this thesis, we will focus on training a classifier alone, although training and using

a regressor is similar. The use of ML techniques in High Energy Physics is usually applied

for collision events recorded from particle detectors, so an input for any ML predictor,
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including neural networks, will be called an input event instead of an input entry in this

thesis. Also, we will refer to a classifier as a discriminator, as High Energy Physics research

papers tend to refer to this type of predictor as a discriminator.

3.3 Preparing the data

Just as one may not make any assumptions without supporting data, any ML

discriminator, not limited to neural networks, must require a set of data (the dataset) to

be trained on. The dataset must be separated into at least two sets: training dataset

and testing dataset. The training dataset is used to train the discriminator, while the

testing dataset is separated to evaluate the performance of the discriminator after the

training, such as its classification accuracy. During the training of the discriminator, it is

possible that the discriminator might have been trained to “memorise the answer” or trying

to memorise the output of each input event. This phenomenon is called overtraining,

and to prevent this we may reserve another set of data called validating dataset, which

the discriminator is not to be trained with, to calculate the classification accuracy of the

discriminator during the training.

3.4 Boosted decision trees

A single decision tree is a classification tree, similar to Dichotomous key in Biology.

To classify an event using the tree, a decision tree starts taking decisions based on one

variable at a time until a conclusion is reached. Even though a decision tree can tune itself

to give more prediction accuracy, an ensemble of decision trees, sometimes called forests,

are usually used, so-called boosted decision trees (BDT). During the training of a BDT-

based discriminator, each tree in the ensemble is trained by reweighting events, and the

final output of the discriminator is a weighted average of all outputs from all trees in the

ensemble. [15]

BDT-based discriminators have been used in numerous High Energy Physics analyses,

most notably the discovery of Higgs Boson in 2012 [1]. In these analyses, a BDT-based

discriminator is trained to discriminate between signal and background events, outputting

a single discriminator value which can later be used as a comparison between simulated

collision events and recorded collision data.
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Figure 9: A brief schematic diagram of a neural network.

3.5 Anatomy of a neural network

A neural network (NN) is a mathematical model designed to mimic working neurons

of the human brain. The most basic part of a neural network is a small computational

unit called a neuron. In traditional neural networks, several neurons form a layer of

neurons, and several stacked layers of neurons form a whole network with connections

between every two layers in the stack. Each neuron in a layer will take inputs from the

previous layer, multiply each input with individual weights, and calculate the weighted

sum from the inputs. Each neuron may also have a bias which is simply a number that

adds into the weighted sum. The weighted sum (with bias) is then passed to its designated

activation function. Examples of activation function are perceptron (f(x) = 1 if x > 0

or 0 otherwise), sigmoid (f(x) = 1
exp(x)+1), and hyperbolic tangent. After the calculation,

the neuron will pass the output from its activation function to the next layer of neurons,

and so on.

In a metaphorical sense, as introduced in many sources, a traditional neural network

is in a shape of consecutive layers of neurons as shown in Figure 9, with lines connecting

two neurons between consecutive layers. These lines, or “connections”, represent weights

used to calculate the weighted sum of each neuron from the previous layer. Two consecutive
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neuron layers are required to be interconnected, that is there must be a connection between

every two neurons in between two layers.

The first layer of a neural network, where inputs are fed, is called an input layer.

The final layer which gives out outputs is called an output layer. Every other layers in

between are called hidden layers.

3.6 How neural networks calculate the output

To obtain the output, or the prediction, of a neural network, the network requires an

input event to be fed into the first layer of a network called an input layer. An input event

is simply a set of numbers, and each number of input event, which can be called a feature

in computer science literature, must be fed to each neuron in the input layer. Each neuron

in the first hidden layer starts calculating a weighted sum of inputs using weights assigned

between itself and every neuron in the previous layer, add its bias to the weighted sum if

any, and applies its activation function to it. The hidden layer will pass on the outputs

from its neurons to the next layer, and the procedure repeats until the calculation reaches

the output layer.

Since this thesis mainly applies NN onto collision events, we will call features as input

variables to better represent the use of variables in Physics analysis as inputs for NN.

3.7 Loss function

A neural network is designed to predict which class the input belongs to, and the

training procedure for the network is supposed to configure the weights for the network to

be able to predict the input event’s correct class. During the training of a neural network,

the output, or the prediction, of a neural network can be compared to the input event’s truth

class. Since the training uses a large set of data, we can evaluate how close the prediction

from a network is by comparing the truth class of each input event and the predicted class

from the network. A loss function is used to compare the difference for each input event,

and it must be designed to give low output if the prediction is close to the truth value, and

high output if the prediction is far from the truth value. A loss function can be as simple as

a fraction of incorrect predictions to total predictions, or more complex functions such as

binary cross-entropy. Total loss of a network is the average of loss function outputs from

each input event, and as a result of loss function design, the total loss will be lower as the

network better predicts the output.
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Examples of loss function include mean squared error (y−p)2 and binary cross-entropy

−(y log p+(1−y) log(1−p)), where y is truth value and p is predicted value. These functions

give zero loss if the network predicts the value correctly but behave differently if the network

predicts incorrectly.

3.8 Event weighting

To emphasize the importance of some events over other insignificant events, event

weights may be introduced during the training. Normally, the total loss of a network is

the average of loss function outputs from each input event. If event weights are assigned,

the total loss of a network is simply a weighted average of loss function outputs from each

input event. Naturally, events with bigger weights are more significant than events with

smaller weights, as it has a bigger impact on the total loss of a network.

3.9 Neural network weight tuning

To optimise the performance of a neural network after training, or to reduce the

network loss, we must modify the weights of that neural network. The weights should not

be tuned by random, but with an algorithm with its goal of reducing the network loss.

The algorithm is called an optimiser. The most notable optimiser is Stochastic Gradient

Descent (SGD), which is an algorithm tuning network weights by calculating the gradient

of the loss concerning all network weights. During the training phase of the network, the

network loss is calculated from a set of training events. Network weights are then tuned

with the optimising algorithm. The duration in which the network loss is calculated and

the network weights are tuned is called an epoch. Very often one epoch of neural network

training is not enough to reduce the network loss to an optimal value, so several epochs of

training are required.

3.10 Neural network performance measurement using Receiver Operating

Characteristic curve

To measure the performance of a neural network, or any machine learning classifier,

the Receiver Operating Characteristic (ROC) curve may be plotted. The curve may

have several variants, but the variant used in this thesis is the plot of signal acceptance of

the model at certain background acceptance. Signal acceptance is the ratio of signal events

being accepted as signal-like events by the model, while background acceptance is the ratio

of background events being accepted as signal-like events by the model. The curve is plotted

by calculating the discriminator output value giving certain levels of background acceptance.
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Figure 10: Receiver Operating Characteristic (ROC) curve samples. A solid green curve has a

higher area under the curve than a dashed yellow curve, meaning the green curve is a better ROC

curve. A dotted red curve represents a random guess.

The signal acceptance for each level of background acceptance is then calculated using the

discriminator output value and plotted in a final ROC curve.

Using the ROC curve, we can calculate the area under the curve (AUC), which is

a metric representing the performance of a discriminator. More area under curve signifies

better signal acceptance at certain levels of background acceptance. As shown in Figure

10, the solid green line represents a better ROC curve since it contains more area under

the curve than the dashed yellow curve. The dotted red curve represents random guess,

which means one can obtain the equal signal and background acceptances with random

guess alone.



CHAPTER IV

PREVIOUS SEARCHES FOR FOUR TOP QUARK

PRODUCTION

Due to recent energy and luminosity upgrades to the LHC, four top quark production

becomes more visible in the CMS detector because its cross section (according to SM at

NLO) increases as the centre-of-mass energy increases from 8 TeV to 13 TeV. The integrated

luminosity (a quantity describing how large the data has been collected from the detector)

also increases due to recent upgrades to the LHC and longer periods of collection time. As

of this writing, at least three research articles have been released by CMS collaboration

that searches for four top quark production. In this thesis, we will perform an analysis

based on single lepton channel; that is we are mainly looking at events from four top quark

production decaying into a single lepton and jets. With this characteristic, this channel

is sometimes referred in CMS literature as lepton + jets channel. This chapter will hence

focus on previous analyses including the single lepton channel using the CMS detector: an

analysis using the data collected with 8 TeV in 2012 [23], an analysis using the data collected

with 13 TeV in 2015 [24], and an analysis using the data collected with 13 TeV in 2016 [12].

4.1 2012 analysis with
√
s = 8 TeV

This analysis, published in 2014, used the data recorded with a centre-of-mass energy

of 8 TeV and corresponded to an integrated luminosity of 19.6 fb−1. For a centre-of-mass

energy of 8 TeV, the cross section of four top quark production, as predicted by SM at

next-to-leading order, is extremely small at 1.3 fb. At the same centre-of-mass energy, top-

antitop production cross section is 245.8 pb [25], five orders of magnitude greater than four

top quark production cross section.

In this analysis, a search of four top quark production in single lepton channel

(both with single electron and single muon) was performed. Boosted decision trees were

used to discriminate between four top quark production and top-antitop production. The

discriminator used 10 vairables based on multiplicity of top quarks generated in a collision

event, the number and kinematics of jets, and the number of jets tagged as originating from

bottom quark, or b-tagged jets in CMS literature. The events themselves were separated in

three categories based on the number of jets: 6, 7, and > 7.
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After BDT training, the trained BDT discriminator was used to calculate how

likely a collision event is generated from four top quark production. BDT outputs of

simulated collision events from signal process (four top quark production) and certain

background process (including top-antitop production) were then populated in a histogram.

BDT outputs of real collision events from CMS detector were also populated into the

same histogram in order to compare and calculate the expected limits of four top quark

production.

The BDT output distributions from simulated collision events were compared with

the same distributions from real collision events. With three different event categories in two

channels (single electron and single muon), the expected limit of four top quark production

cross section is calculated with asymptotic CLs [26] method from six sets of BDT output

distributions. The calculated expected limit is 32± 17 fb, which is approximately 25 times

the prediction of SM. The expected limit is, however, not a final quantity that indicates the

validity of SM, as the data at this stage is inadequate for precise measurements.

4.2 2015 analysis with
√
s = 13 TeV

For this analysis, published in 2017, the data recorded from CMS detector was

generated from proton-proton collision with 13 TeV centre-of-mass energy, and corresponded

to an integrated luminosity of 2.6 fb−1. With upgraded centre-of-mass energy, the predicted

cross section for four top quark production, at SM NLO, jumps to 9.2 fb. Nevertheless, top-

antitop production cross section also increases to 831 pb (at SM NLO), still five orders of

magnitude greater than four top quark production cross section. The much higher increment

ratio of four top quark production cross section, compared to top-antitop quark production,

is due to its contributing terms at NLO.

This analysis presented searches for four top quark production both in single lepton

channel and opposite sign dilepton channel. The analysis still useed boosted decision tree

as a discriminator, which used 11 variables including number of jets, kinematic variables of

jet system in an event, and variables involved with event topology. The discriminators were

also trained separately for single lepton channel and opposite sign dilepton channel. The

events themselves were also separated into categories based on number of jets (6, 7, 8, and

> 8) and number of b-tagged jets (2, 3, and > 3).

As in the search in 2012, BDT outputs from certain processes, both from simulated

and real collision events, were compared in a histogram. The expected limit was also
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calculated with asymptotic CLs method based on the BDT distributions. With BDT

distributions from single lepton channel, separated into categories as described earlier, the

expected limit was 151+90
−52 fb, roughly 17 times greater than the predicted cross section.

4.3 2016 analysis with
√
s = 13 TeV

This analysis used the data collected from CMS detector with the same centre-of-mass

energy of 13 TeV. The data this time corresponded to an integrated luminosity of 35.8 fb−1,

almost 14 times larger than previous analysis. With the same centre-of-mass energy as in

the same search in 2015, the cross sections predicted by SM at NLO for both four top quark

production and top-antitop production are the same.

Fifteen variables derived from collision events were used to train the boosted decision

tree, based on event topology, kinematics, and bottom quark multiplicity:

• multitopness, the output of another BDT responsible for determining combinations

of three jets (trijet) decaying from top quark. The output is calculated from third

possible system of three jets

• HTH, or the ratio of the scalar sum of transverse momentum of all jets to the scalar

sum of momentum of all jets

• HTb, scalar sum of the transverse momentum values of all the b-tagged jets in the event

• HTRat, the ratio of the HT of the four leading jets in the event to the HT of the other

jets in the event

• HTX, the scalar sum of transverse momentum of all jets except jets in highest ranking

system of three jets (trijet)

• SumJetMassX, invariant mass of the system comprising all the jets except jets in highest

ranking system of three jets (trijet)

• 1st, 2nd, 5th, and 6th highest jet transverse momentum

• Lepton transverse momentum

• Third and fourth highest combined secondary vertex (CSV) discriminator value

• Transverse momentum of jets with third and fourth highest CSV discriminator value
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Table 1: Expected limit on the cross section of four top quark production in single lepton channel,

obtained from previous analyses.

Expected limit Expected limit

on cross section (fb) on cross section (×σSM
tt̄tt̄ )

2012 search 19.6 fb−1 data,
√
s = 8 TeV 32± 17 24.6± 13.1

2015 search 2.6 fb−1 data,
√
s = 13 TeV 151+90

−52 16.4+9.8
−5.7

2016 search 35.8 fb−1 data,
√
s = 13 TeV 86+40

−26 9.4+4.4
−2.9

Prior to event-level discriminator, a combined secondary vertex v2 (CSVv2) b-tagging

neural network was used to calculate how likely each jet in a collision event is caused by a

bottom quark. Each jet in a collision event was then assigned a value called CSV b-tagging

discriminator value.

The discriminator, based on boosted decision trees using scikit-learn [27] machine

learning package, was trained with four top quark production samples as signal dataset

against top-antitop production samples as background dataset, since top-antitop production

is the most important background with the highest cross-section.

By using the same asymptotic CLs method as in previous analyses, the expected limit

of four top quark production, calculated from single lepton channel, was calculated to be

86+40
−26 fb, 9.4 times greater than the predicted cross section.

The work in this thesis, which will be covered in subsequent chapters, will use the

same simulated Monte Carlo dataset used in the 2016 search, and will also employ the

same asymptotic CLs method in order to determine the sensitivity of the search for four

top quark production. The difference between the 2016 search and this thesis is the design

of machine learning discriminators. The discriminator in 2016 search is based on boosted

decision trees, while the discriminator used in this thesis will be based on neural networks.



CHAPTER V

FOUR TOP QUARK PRODUCTION ANALYSIS WITH

TRADITIONAL NEURAL NETWORK

As described in Section 1.6, the adversarial neural networks consist of two smaller

networks: the discriminator network and the adversary network. Before we can design

any adversary networks, the discriminator network must be designed in the first place.

This chapter presents the design of traditional neural network discriminator as well as

the implementation of the discriminator in four top quark production analysis, including

calculations on the expected limit of four top quark production and significance.

5.1 Monte Carlo simulated datasets used in this analysis

As with every ML technique training, our neural network requires a dataset to train

itself on. However, it is impossible to use real collision data to train our neural network

to discriminate between top-antitop production and four top quark production, since we

cannot determine exactly which process a collision event recorded with CMS detector comes

from. Instead, simulated collision events with the predetermined processes are used to train

the neural network. Simulated events generated from four top quark production are used

as signal events, while simulated events generated from top-antitop production are used

as background events, since top-antitop production is a dominant background. The Monte

Carlo dataset is simulated under the same CMS virtual detector with 13 TeV centre-of-mass

energy and is required to contain exclusively one lepton (electron or muon). The simulated

samples are produced and approved by CMS collaboration to use.

5.2 Data preselection

All simulated datasets used in neural network training must pass the preselection

criteria, the same as in 2016 analysis in Section 4.3, as follows:

• For single electron

– Missing transverse energy (MET) > 50 GeV

– Scalar sum of transverse momentum (HT) > 500 GeV

– Lepton pseudorapidity |η| < 2.1

– Lepton transverse momentum pT > 35 GeV
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– Number of reconstructed jets ≥ 8

– Passes trigger HLT_Ele32_eta2p1_WPTight_Gsf

• For single muon

– Missing transverse energy (MET) > 50 GeV

– Scalar sum of transverse momentum (HT) > 450 GeV

– Lepton pseudorapidity |η| < 2.1

– Lepton isolation < 0.15

– Lepton transverse momentum pT > 26 GeV

– Number of reconstructed jets ≥ 7

– Passes either trigger HLT_IsoMu24 or HLT_IsoTkMu24

All reconstructed jets in this analysis are required to have pT > 30 GeV and

|η| < 2.4. Furthermore, in real data analysis, triggers are used to filter collision events

from the detector. Since simulated datasets do not come from the detector itself, trigger

emulations are applied in the simulated datasets instead of triggers. Trigger emulations

applied on the simulated datasets provide roughly the same acceptance rate as in triggers

used in real data analysis.

5.3 Custom input variables

In the previous analysis, 15 variables available in the dataset, described in Section

4.3 are used as inputs. To better analyse for differences between four top quark production

(the signal process) and top-antitop production (the background process), more variables

are needed to be derived from each simulated collision event. These variables may contain

kinematics information of particles and the overall topology of the event.

Following is the list of variables that can be extracted directly from the simulated

collision events.

• 3rd and 4th highest jet transverse momentum

• LeadingBJetPt, highest value of transverse momentum among all jets having CSV

b-tagging discriminant higher than 0.8484

• jet5and6pt, a sum of fifth and sixth jet transverse momentum

• 1st to 4th highest CSV discriminator value
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• Transverse momentum of reconstructed jets with first and second highest CSV

discriminator value

• Number of reconstructed jets

Following is the list of variables further derived from the simulated collision events.

• H is the scalar sum of momentum from all jets

• pt3HT and pt4HT are the ratio of 3rd or 4th highest jet transverse momentum to the

sum of transverse momentum from all jets (HT) respectively

• sphericity is defined as S = (3/2)(λ2 + λ3) where λ2 and λ3 are the two smallest

eigenvalues of a matrix Sαβ = (
∑

i p
α
i p

β
i )/(

∑
i |p⃗i|2). Indices α and β represent one

of three components of a momentum vector for each jet. The definition is taken from

[24].

• invmass_34, invmass_35, invmass_36, invmass_45, invmass_46, invmass_56

represent the invariant mass of each dijet system (a system of two jets) where

each jet in a system has third to sixth highest CSV b-tagging discriminant. In other

words, a group of jets in each event are sorted based on CSV b-tagging discriminant,

and jets having third to sixth highest CSV b-tagging discriminant are chosen, two at

a time, to calculate the invariant mass of a dijet. For example, invmass_35 represents

the invariant mass of a dijet system composed of a pair of jets with third and fifth

highest CSV b-tagging discriminant.

• HT2M is the scalar sum of transverse momentum from all jets, minus transverse

momentum of two jets with highest CSV b-tagging discriminant (where the discriminant

must be greater than 0.8484).

• mean_csv is the mean of CSV b-tagging discriminant of all jets. For some jets,

the CSV b-tagging discriminator has insufficient information, and thus recorded the

discriminant as −10. Such jets will have its discriminant counted as 0.

• trijet1st_invmass, trijet2nd_invmass, and trijet3rd_invmass are the invariant

masses of each trijet (a system of three jets) chosen from an MVA discriminator

responsible for finding the most probable set of three jets that may originate from

a top quark. The MVA first picks the most probable set of three jets out of all jets in

an event and repeats the process for the most probable set out of remaining jets.



26

Table 2: Number of signal and background events by number of jets.

Number of events in

Number of jets Signal Background Signal/total events ratio

7 23 972 150 535 0.14

8 51 874 266 969 0.16

9 44 288 110 178 0.29

10 or more 53 776 44 145 0.55

• angletoplep is the angle between the most probable trijet system with the only lepton

in an event.

• angletop1top2 is the angle between two trijet system having the most and second

most probable to be originated from a top quark.

• pTRat1st and pTRat2nd are the ratios between transverse momentum from the first

and second trijet to the sum of transverse momentum of all jets.

• topness, ditopness, and tritopness are discriminant values from the MVA

responsible for choosing the trijets. They correspond to the first, second, and

third trijet in the event respectively.

With 15 original variables, 11 extracted variables, and 22 derived variables added

to the list, we now have 48 variables that may be used as input variables for our neural

network.

5.4 Training data choices

Since the neural network’s performance depends on the training dataset, we may

choose the dataset to have certain criteria on top of preselection criteria or remove some

input variables that do not give a positive contribution to the performance of the neural

network. This section discusses such choices for the training dataset.

5.4.1 Number of jets criteria

It is observed that, within the training dataset, events with 9 or more jets have

more signal/total events ratio, as shown in Table 2. With this fact, it is possible for us

to choose only events with 9 or more jets to train our neural network or choose all events

regardless of the number of jets. In this analysis, we have trained neural networks with
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both variants of the training dataset, and neural networks trained with each dataset will

have their performances compared.

5.4.2 Input variables used

To test whether an input variable has a positive contribution to the neural network’s

performance, a neural network is set up and trained by using all 48 variables as input

variables. A set of 48 new neural networks, with the same structure as the first neural

network, are then trained with all except one input variable, to determine the decrease in

network performance. It is found that a neural network with SumJetMassX input variable

removed and another neural network with pTRat2nd input variable removed has higher area

under curve (AUC) than a neural network with 48 input variables. We can then deduce

that both SumJetMassX and pTRat2nd input variables give a negative contribution to neural

network performance. With this discovery, we may choose to train our neural network to

include all 48 input variables or only 46 variables that don’t give a negative contribution

to the performance. As per the criteria of the number of jets, neural networks trained with

different sets of input variables will have their performances compared.

5.5 Event weighting

To better represent the proportions of signal and background events in real collisions,

events are weighted based on the process’s cross section. They are weighted in a way that

events from top-antitop production have 831 760 events per 9.2 events from four top quark

production. These numbers are based on the top-antitop production cross section and the

four top quark production cross section, which are 831 760 fb and 9.2 fb respectively. In

practice, however, event weighting only helps the network loss to converge much quicker,

with a tradeoff of having outputs of an event being skewed. With this advantage of event

weighting, it will be used in hyperparameter training only to save time. The final neural

network that is used to calculate discriminator output values will not be trained with event

weights.
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5.6 Neural network structure

The neural network is built with Keras Machine Learning package in Python [28]. It

consists of one batch normalization layer as an input layer, which “applies a transformation

that maintains the mean activation close to 0 and the activation standard deviation close

to 1”. With this input layer, the input variables are automatically normalised and do not

require us to preprocess them. The adjustment of this layer is carried out by using the

procedure described in [29].

After the batch normalization layer, a number of hidden layers and neurons are

permutated with hyperparameter search, which will be described in Section 5.8. With this

hyperparameter search, we don’t have to rely on only one particular network configuration,

and instead, we can find the configuration with the optimal performance we are looking

for. Finally, after several hidden layers, one final output layer will have one neuron with

sigmoid activation, which guarantees the output to be in the range of 0 and 1. The final

neuron will give its output close to 0 or 1 if the input event is background-like or signal-like

respectively.

The whole neural network will have binary cross-entropy function, −(y log p + (1 −

y) log(1− p)), as its loss function, where y is the event’s truth value and p is the predicted

value from the network. Since logarithm function is used, this loss function will heavily

punish the network if wrong predictions are made, making the training loss to converge

faster.

5.7 Performance evaluation with Receiver Operating Characteristic (ROC)

curve

In this analysis, several ROC curves (introduced in Section 3.10), as well as their area

under each curve, are plotted using the following categories of collision events as inputs for

the model:

• Low-jet multiplicity category (8 jets or lower, 8-J)

• 9 jets and 3 medium b-tagged jets (9J3M) category

• 9 jets and 4 or more medium b-tagged jets (9J4M) category

• 10 or more jets and 3 medium b-tagged jets (10J3M) category

• 10 or more jets and 4 or more medium b-tagged jets (10J4M) category
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Table 3: AUC calculated from two boosted decision tree discriminators used in previous analyses,

by jet categories.

AUC from category

8-J 9J3M 9J4M 10J3M 10J4M

BDT (2015) 0.6701 0.6102 0.6019 0.6426 0.6400

BDT1 (2016) 0.7244 0.6444 0.6375 0.6597 0.6272

Categories with 9 or more jets are considered as categories with higher probability to contain

signal events. The ROC curves are plotted using simulated dataset form top-antitiop

production as background events since the production is a dominant background and

simulated dataset four top quark production as signal events in corresponding categories.

In addition to calculating the AUC from neural networks, the ROC curve, along with

its AUC, is also calculated from BDT discriminators in previous analyses. Table 3 shows

the performance of the official BDT discriminators used.

5.8 Hyperparameter search

There is no absolute best neural network structure to work with, i.e. there is no golden

rule to determine the number of neuron layers, the number of neurons in each layer, and

many other properties in a neural network. Hence, we can experiment certain designs of a

neural network and test which design delivers the optimal performance, which is measured

by the area under the ROC curve in this analysis as described in Section 5.7. Such methods

to iterate over a set of possible configurations is called hyperparameter search. In this

analysis, configurations made throughout the hyperparameter search are:

• Two or three hidden layers

• 50, 100, or 200 neurons in each layer

These two possible sets of configurations lead to 2 × 2 + 2 × 2 × 2 = 36 permutations in

total. Each neural network created from a single permutation is equally trained within 30

epochs.

5.9 Performance evaluation results

With 2 sets of training data, 2 sets of input variables, and 36 permutations in

hyperparameter search, we can have 144 possible neural network combinations in total.
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Table 4: AUC calculated from 144 possible neural network configurations, sorted by AUC from

10J4M category. Shown in table are 20 neural network configurations giving best AUC in 10J4M

category.

Table 4 shows the best 20 out of 144 possible neural network combinations, sorted by AUC

from 10J4M category.

Coloured indicators in Table 4 represent the performance compared to BDT

discriminators used in previous analysis shown in Table 3. The green indicator represents

better performance than both official discriminators, yellow indicator represents the

performance in between two official discriminators, and red indicator represents worse

performance than both official discriminators. From the table, the best neural network

configuration in terms of AUC from 10J4M category has three hidden layers, with 200,

200, and 100 neurons in each layer. The network has a better performance in the 10J4M

category, albeit performing slightly worse in low-jet multiplicity category (with 8 jets or

less). The ROC curve from the best network is shown in Figure 11.

5.10 Neural network discriminator structure conclusion

From the performance evaluation shown in Sections 5.6 and 5.9, we may conclude

that the optimal neural network structure in which we will use in this analysis contains

hidden layers as follows:

• One batch normalization layer

• Two hidden layers with 200 neurons each
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(a) inclusive category (b) 10J4M category

Figure 11: ROC curves from the best neural network configuration, calculated from inclusive and

10J4M category.

• One hidden layer with 100 neurons and tanh activation

• One final layer with one output neuron and sigmoid activation

The neural network is also trained with a dataset containing events with 9 or more

jets only, using all 48 variables as described in Subsection 5.4.2. The final neural network

discriminator will have the structure as described earlier and retrained with the same

dataset, albeit without any event weighting.

5.11 Using neural network output in four top quark analysis

After obtaining the final neural network mentioned in Section 5.10, the neural network

output is then calculated from the final network. All simulated events, including events

generated from four top quark production as signal events, top-antitiop quark production

as background events, and other background processes, are given a neural network output

value for each process. The output values are then populated on histograms, categorised

by single electron channel and single muon channel, number of jets, and number of b-jets.

The neural network output distribution, shown in Figures 12 and 13, can be used to

calculate the cross section expected limit for the four top quark production, using asymptotic

CLs method. [26] This method calculates the expected limit of a parameter called signal

strength µ. For event measurements, the expectation value ni for the ith bin can be written

as E[ni] = µsi + bi, where si and bi are the numbers of signal and background events in
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(a) 8 jets (b) 9 jets

(c) 10+ jets

Figure 12: Histograms of traditional neural network output distribution from single electron

channel.
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(a) 7 jets (b) 8 jets

(c) 9 jets (d) 10+ jets

Figure 13: Histograms of traditional neural network output distribution from single muon channel.
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the ith bin respectively. µ = 0 represents the case where signal events are not expected,

so-called background-only hypothesis, where µ = 1 represents the case where the number of

signal events is expected to be observed as described in signal bins. The expected limits for

signal strength are calculated from profile likelihood, a quantity that describes how likely

signal strength would have a certain value, based on the Poisson probabilities from each

histogram bin.

In this work, blind expected limits will be calculated. In many High-Energy Physics

analyses, blind analysis means an analysis in which data events, or the events recorded

directly from CMS, are not used or blinded. For blind expected limits, this means that the

expectation value for each bin in each histogram is merely from background histograms, not

data histograms. Since the data is blinded in this analysis, Figures 12 and 13 do not have

data points present in them.

The CLs method requires the histogram of neural network output from certain

background processes, such as top-antitop production, and the signal process (four top

quark production). It also requires the histogram not to contain any bins with zero events

from all background processes. To obtain stable statistical behaviour of the simultaneously

binned maximum-likelihood fit used in this method, each histogram must be binned in such

a way that each bin would contain a roughly equal amount of background events. With

the CLs method, systematic uncertainties also appear in the form of the uncertainty of the

number of events in each histogram bin. The uncertainty in the histogram bins can impact

the statistical fit for the expected limit.

The expected limit of four top quark production cross section calculated from the

traditional neural network output discriminator is compared against the expected limits

calculated in previous analysis in Table 5, comparing the results from this analysis to the

results from boosted decision tree (BDT) discriminator used in 2016 analysis as described

in Section 4.3.

As shown in Table 5, the expected limit uncertainty range calculated from the

traditional neural network is smaller compared to the uncertainty range from BDT

discriminator outputs. Our goal in this thesis is not to reduce the central value of

the expected limit (90 fb from BDT versus 78 fb from traditional neural network), but to

reduce the range of the upper limit, which is 37+ 24 = 61 fb for traditional neural network

versus 42 + 27 = 69 fb for BDT.
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Table 5: Expected limit and significance of four top quark production cross section, at 35.8 fb−1,

calculated from traditional neural network output (NN), compared to sensitivity of boosted decision

tree (BDT).

For 35.8 fb−1 data

BDT NN

Expected limit (fb) 90+42
−27 78+37

−24

Expected significance 0.21 0.25

Table 6: Expected limit and significance of four top quark production cross section, at 200 fb−1,

calculated from traditional neural network output (NN), compared to the sensitivity of boosted

decision tree (BDT).

For 200 fb−1 data

BDT NN

Expected limit (fb) 46+21
−14 36+17

−11

Expected significance 0.41 0.52

5.12 Expectations on 200 fb−1 data

We may also expect to use more data recorded from the CMS detector over time.

The data with integrated luminosity of 200 fb−1 is expected to achieve with Run 2 CMS

dataset recorded in 2015 - 2018, and until we obtain such amount of data, we may calculate

expected limits and significances achievable at this amount of integrated luminosity, in the

same manner explained in Section 5.11.

As shown in Table 6, the expected limit uncertainty range becomes smaller. Once

again, we do not aim to reduce the central value of the expected limit (46 from BDT

versus 36 from traditional neural network), but we focus on lessening the uncertainty range

from 21 + 14 = 35 fb for BDT to 17 + 11 = 28 fb for traditional neural network. Also,

the expected significance becomes higher for the traditional neural network. This slight

improvement leads to another question: would the expected limit uncertainty decrease if we

design a neural network to be resilient to the systematic uncertainty with most impact? The

analysis involving adversarial neural networks, which aims to design such neural network,

will be discussed in the next chapter.



CHAPTER VI

FOUR TOPS PRODUCTION ANALYSIS WITH

ADVERSARIAL NEURAL NETWORK

In the previous chapter, we have seen that a traditional neural network can give

better results than boosted decision tree in terms of expected limits and significance. Still,

the neural network is susceptible to systematic uncertainties, as we did not design it to be

resilient to any of them. This chapter discusses the design of adversarial neural networks,

as well as the analysis using a discriminator based on the adversarial networks.

6.1 What are adversarial networks?

As described in Section 1.6, an adversarial neural network (ANN) are an extra neural

network that determines why a discriminator network classify an event as signal-like or

background-like events. The adversary network takes only the outputs of the discriminator

as inputs and predicts certain features depending on its design, as shown in Figure 14.

With the adversary network, we now have two networks to train with: a discriminator

neural network and an adversarial neural network, with each network containing its loss.

The loss for this discriminator network is calculated from how incorrectly the discriminator

predicts the class of individual entries, while the loss for the adversary network is calculated

from how incorrectly the adversary predicts the features of the input event.

In our case of adversary network training, the total loss for both discriminator and

adversary networks is usually L = LD − λLA, where LD is discriminator network loss

and LA is adversary network loss. One parameter λ signifies the importance of adversary

discriminator adversary
Figure 14: Simple diagram of adversarial networks.
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network loss over discriminator network loss. Given the total loss in this form, the entire

network can reduce the total loss by either reducing the discriminator loss, which improves

the accuracy of discriminator network classifying the events, or increasing the adversarial

loss, which worsens the accuracy of the adversary network. Our goal of training with the

adversary network is we want the output of the discriminator network to be resilient to the

most impactful systematic uncertainty. We also want to design the adversary network to

guess whether an event contains that uncertainty. If we can train the discriminator network

to increase the adversarial loss, we will have the discriminator network that is resilient to

such systematic uncertainty.

6.2 Systematic uncertainty with most impact

Before designing the adversary network, we must first determine which systematic

uncertainty induces most impact on the signal strength (as described in Section 5.11). To

calculate an impact each particular uncertainty induces, we may calculate the deviation of

signal strength when the uncertainty is added to the variable distribution (which, in this

case, is traditional neural network output) by +1σ or −1σ.

In this work, we have also calculated the impacts upon the signal strength of each

uncertainty, both systematic and statistical. The summary plot is shown in the right part

of Figure 15. From the summary plot, it is shown that HeavyFlav uncertainty, which

is the uncertainty in the rate of tt̄+ bb̄ in top-antitop production, has the most impact on

signal strength.

With this information, it is clear that we may choose to design our adversary network

to mitigate the impacts on HeavyFlav uncertainty only. Hence, for the rest of this chapter,

HeavyFlav uncertainty will be focused, and the adversary network will be designed to handle

this particular uncertainty.

6.3 Adversary network structure

The adversary network, like the discriminator network described in Chapter 5, is

also built using Keras ML package written in Python [28]. Due to the constraint of time,

permutating through several hidden layer structures is not possible. The adversary network

contains an input layer, which directly takes the output of the discriminator network as its

input. The input layer is then followed by a batch normalization layer, which normalizes

the input in the same way as in the discriminator network. Three hidden layers with

50 neurons, each having a sigmoid activation function (in the form of 1/(1 + ex)) as its
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activation function, follows the batch normalization layer. A final output layer contains

two (or three) neurons with softmax activation function, guaranteeing that the sum of all

outputs of the network will be 1. Each neuron in the final output layer represents the

probability in which an event falls into a particular category. A diagram depicting the

adversary network structure is shown in Figure 16.

In this work, two variants of total losses of the entire network are designed and will

be discussed in Section 6.6.

6.4 Training data used in adversary network training

The dataset used to train our adversary network is the same dataset used to train

our final neural network described in Section 5.10. This means the dataset will have

events with 9 or more jets and passes the same preselection criteria as described in Section

5.2. Furthermore, to add useful information for an adversary network, the information on

whether or not an event contains HeavyFlav uncertainty is also recorded and can be used

as truth values for the adversary network.

Since the training dataset is derived from simulated Monte Carlo datasets, each event

is originated from a preassigned process, along with preassigned uncertainties. In other

words, we know exactly which process an event in training dataset is originated from, and

what kind of uncertainties does the event contain. This allows us to label truth values of

each training event for the adversary network.

6.5 Adversary network training procedure

The adversary network training procedure, adapted from Louppe’s algorithm in [16],

is as follows:

1. Pretrain the discriminator network with the training dataset. In this case, we have

already obtained the pre-trained discriminator network from Section 5.10, so we can

use it as a basis for the discriminator network.

2. Pretrain the adversary network. The adversary network in this work is trained for 30

epochs. During the training of the adversary network, each training event is inputted

into the discriminator network. The output of the discriminator network is then

inputted into the adversary network. Finally, the adversary network will be adjusted

based on the output from the adversary network, compared to the truth value (i.e.
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whether or not the event contains the systematic uncertainty). The discriminator

network is not yet adjusted in this step of the training.

3. For several epochs, such as 200 epochs,

(a) Train the discriminator network for one epoch, using a small batch of training

data. During the training, the adversary network is locked, which means the

weights in the adversary network does not change.

(b) Train the adversary network for five epochs, using another batch of training data

with the same size. As with discriminator network training, the discriminator

network is locked this time, fixing weights in the discriminator network.

4. After a sufficient number of epochs in the previous step, the discriminator network is

extracted. The extracted discriminator network is said to be trained with an adversary

network.

6.6 Network loss schemes

For the following loss function definitions, let HF, NHF, and sig denote background

events with HeavyFlav uncertainty, background events without HeavyFlav uncertainty, and

signal events. Also, let y and p denote truth and predicted value respectively. For the

discriminator network, let yD and pD denote discriminator truth and predicted values.

Two network loss variants are devised for the adversary network. They are:

1. Standard variant

In this case, the adversary network is naïvely designed, using simple loss function.

This variant of the adversary network is trained with all events, both background

and signal events. As such, the adversary network has two outputs that determine

whether an event contains HeavyFlav uncertainty or not, based on the information of

discriminator output alone. The discriminator loss function is binary cross-entropy,

while the adversarial loss function is categorical cross-entropy since there are multiple

outputs from the adversary network.

The total loss function during discriminator network training is simply LD−λLA,

where LD and LA are discriminator loss and adversarial loss respectively. During

adversary network training, the adversary network will be trained based on adversarial

loss alone. With λ parameter present in a total loss, this parameter serves as the

importance of adversary training in this variant of the adversary network.
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The problem with this variant, however, is that only background events may

have HeavyFlav uncertainty, while signal events are not affected by this uncertainty.

HeavyFlav uncertainty is derived from the uncertainty of the rate of tt̄ + bb̄ in top-

antitop production (the dominant background process), which does not affect four

top quark production (the signal process). This difference between background and

signal events means events not containing HeavyFlav uncertainty may be background

or signal events, which should have different discriminator output distributions.

The discriminator output distribution for events without HeavyFlav uncertainty is,

therefore, a mix between background events and signal events, and this will confuse the

training of discriminator network during adversary training. This problem becomes a

motivation for the second loss variant.

2. “New loss” variant

For this variant of the adversary network, the adversary network is designed

to make discriminator outputs from background events with and without HeavyFlav

uncertainty to be the same, while retaining the shape of discriminator outputs from

signal events to be as close to 1 as possible. With this goal, the adversary network

contains three outputs that determine whether an event is a background event with

HeavyFlav uncertainty, a background event without HeavyFlav uncertainty, or a signal

event. As with standard variant, the adversary network will use the information of

discriminator output alone.

The total loss function during the training is defined separately for discriminator

network training and adversary network training. While adjusting the adversary

network, the loss is simply in the form of categorical cross-entropy:

− [yHF log pHF + yNHF log pNHF + ysig log psig]

On the other hand, the total loss while adjusting the discriminator network is

− [yD log pD + (1− yD) log(1− pD)] + λ [yHF log pHF + yNHF log pNHF ]

Once again, λ parameter signifies the importance of adversary training.

6.7 Hyperparameter training for adversary network

As shown in Section 6.6, there are two variants of network loss with different training

goals. This means we must use different criteria to choose the optimal value of the

hyperparameter λ for each network variant.
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Table 7: AUC of neural networks trained with the adversary network, standard variant, and several

values of λ hyperparameter. AUC calculated from different event categories based on the number

of jets and the number of b-tagged jets. AUC calculated using boosted decision tree in [12] (BDT)

and neural network not trained with the adversary network (No tuning) are also shown.

λ 8-J 9J3M 9J4M 10J3M 10J4M

0.01 0.72082 0.69336 0.68709 0.73012 0.71473

0.05 0.72198 0.69406 0.68778 0.73028 0.71597

0.1 0.71974 0.69260 0.68672 0.72952 0.71438

0.5 0.72242 0.69259 0.68466 0.72944 0.71304

1 0.72499 0.69305 0.68346 0.72947 0.71414

5 0.72893 0.69044 0.67866 0.72953 0.71445

10 0.73095 0.68729 0.67454 0.72866 0.71306

50 0.73808 0.68392 0.66987 0.72645 0.70465

100 0.73819 0.68420 0.67088 0.72450 0.70569

BDT 0.72440 0.64440 0.63750 0.65970 0.62720

No tuning 0.74333 0.68775 0.68170 0.72805 0.71151

For the standard variant, the goal of hyperparameter tuning is to choose the optimal

value of λ that gives the optimal AUC value in 10J4M category (events containing 10 or

more jets, with 4 or more jets tagged as b-tagged jets). Due to a limited time in this thesis,

the optimal value of λ is chosen from a limited set of values from 0.01 to 100, as shown in

Table 7.

By inspecting the AUC calculated from 10J4M category in Table 7, a neural network

trained with λ value of 0.05 has the best AUC in the 10J4M category. With this result, we

may use a neural network trained with adversary network and with λ = 0.05 as the best

possible network in the standard variant of the adversary network. As stated earlier, the λ

parameter only indicates the importance of adversary training. It does not represent any

weighting of systematic uncertainties over statistical uncertainty. Rather, having unsuitable

values of λ can give too much or too little significance of the training towards the goal to

increase the adversarial network loss. If the value of λ is too much, the discriminator

will abandon the goal of discriminating the events to make the output indistinguishable to

adversary network. On the other hand, if the value of λ is too little, the effect of adversary

training will be unnoticeable, similar to the case with no training (or λ = 0).

For the “new loss” variant of adversary network training, the goal is set differently.

Since the discriminator network is designed to give output distribution from background
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Figure 17: Neural network output distribution before adversary training, normalised.

events with and without HeavyFlav uncertainty, while retaining the output distribution

from signal events to be the same, we will primarily inspect the output distribution of three

categories of events: background events with HeavyFlav uncertainty, background events

without HeavyFlav uncertainty, and signal events. We expect that the AUC achievable

by NN discriminators after adversary training will be reduced, as a tradeoff to obtain the

discriminator with the exact behaviour we want.

The output distribution for the traditional neural network is shown in Figure 17,

separated by three categories of events. To check for signs of overtraining, the distribution

is further separated into training and testing datasets. The distribution for training and

testing datasets in the same category must be identical, which means overtraining does not

occur.

Adversarial network pivoting with varying values of λ has been performed to obtain

the discriminator that perfectly accomplishes our goal. By tuning the values of λ, the best

value of λ giving the perfect distribution is found to be λ = 0.3, and the output distribution
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Figure 18: Neural network output distribution after adversary training with “New loss” scheme

and λ = 0.3, normalised.
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Table 8: Expected limit and significance of four top quark production cross section, at 35.8 fb−1,

calculated from the output from both variants of adversarial neural networks (ANN), compared to

sensitivities of traditional neural network (NN) and boosted decision tree (BDT).

For 35.8 fb−1 data

BDT NN ANN (Standard) ANN (New loss)

Expected limit (fb) 90+42
−27 78+37

−24 79+37
−24 83+39

−25

Expected significance 0.21 0.25 0.24 0.23

obtained via adversary training with the optimal value is shown in Figure 18. As shown

in the figure, two distribution shapes from background events with and without HeavyFlav

uncertainty are identical, while both of them are different from distribution shape from

signal events. The distributions between training and testing datasets also do not show

any signs of overtraining. With this perfect behaviour, we may use this neural network

discriminator as the best possible network in the “New loss” variant.

6.8 Expected limit and significance calculated for 35.8 fb−1 data

Both of the best neural networks tuned with hyperparameter in each variant from

Section 6.7 are then used to calculate the expected limit and significance in the same manner

as described in Section 5.11. The expected limits of four top quark production cross section

and expected significances calculated from both variants of adversary network training are

shown in Table 8.

As shown in Table 8, the expected limit uncertainties from both variants of adversarial

neural networks does not improve over the traditional neural network. Also, the expected

significances of both variants also decreas slightly. As this is the first ever attempt for

adversarial neural networks, these results are comparable to the results from the traditional

neural network.

However, further investigations on HeavyFlav uncertainty have shown that the

uncertainty distribution from adversary network in “New loss” variant becomes flatter

when compared to those from the traditional neural network. Figures 19 and 20 show

the difference between HeavyFlav uncertainty distributions for a neural network with and

without adversary network training. Both figures represent the number of events from

top-antitop production from each bin in each histogram generated by the procedure stated

in Section 5.11, along with HeavyFlav uncertainty according to each bin. Both figures are

also provided with their ratio plot below.
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Figure 19: HeavyFlav uncertainty distributions from both types of neural network in single elctron

channel.

The uncertainty distributions shown from both figures indicate that adversarial

network training (with New loss variant) does its job: HeavyFlav uncertainty has been

adjusted to be a flat uncertainty, almost having the same ratio, for each bin in a single

histogram, leading to a reduction in the dependence of the shape of HeavyFlav uncertainty.

With this modification introduced by adversarial network training, this may cause the data

to be constrained more easily during the cross section expected limit calculation, as well as

expected significance.

6.9 Expected limit and significance calculated for 200 fb−1 data

By applying the same speculation of data recording as described in Section 5.12,

we may also calculate the expected limit and significance from both variants of adversary

networks at 200 fb−1.

Even with the uncertainty distribution modification introduced in the New loss variant

of the adversary network, both variants of the adversarial neural network still do not improve

the uncertainty of expected limits over the traditional neural network. The results shown

in Table 9 and Figures 19 and 20 indicates one possibility: it is possible that reducing

the dependence of the shape of HeavyFlav uncertainty alone does not help in reducing the

uncertainty of expected limits and increasing expected significance. We will discuss possible

studies that may be conducted in the future in the next chapter.
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Figure 20: HeavyFlav uncertainty distributions from both types of neural network in single muon

channel.

Table 9: Expected limit and significance of four top quark production cross section, at 200 fb−1,

calculated from the output from both variants of adversarial neural networks (ANN), compared to

sensitivities of traditional neural network (NN) and boosted decision tree (BDT).

For 200.0 fb−1 data

BDT NN ANN (Standard) ANN (New loss)

Expected limit (fb) 46+21
−14 36+17

−11 39+18
−12 41+19

−12

Expected significance 0.41 0.52 0.48 0.46



CHAPTER VII

CONCLUSION AND POSSIBLE FUTURE STUDIES

We have seen, throughout this thesis, that a traditional neural network alone, without

any adversarial training, can already give better sensitivity than a boosted decision tree

discriminator. This improvement by the traditional network without adversarial network

training may be caused by the number of input variables used and the neural network’s

complexity. The results are more pronounced when we scale the amount of expected data

up from the current integrated luminosity of 35.8 fb−1 to 200 fb−1.

We may compare the expected cross section limit obtained with both traditional

neural networks, with and without adversarial training, to the latest four top quark

production search conducted by the ATLAS collaboration [30], as well as analyses in the

past conducted by the CMS collaboration [12] [24] with
√
s = 13 TeV. From Table 10, we

can see the expected limit on cross section derived from different integrated luminosity

and different channels. As the data becomes more abundant, the uncertainty range for the

expected limit becomes narrower. The inclusion of different final state channels, such as

the dilepton channel, also reduces the uncertainty range significantly. (Unfortunately, the

ATLAS 2018 search does not mention the uncertainty of its expected limit.) This thesis,

however, only focuses on the single lepton channel, and the inclusion of dilepton channels to

neural-network-based analysis, both same-sign and opposite-sign, is an interesting approach

that can be done in the future.

We may also compare our speculation of expected sensitivity of the search for four top

quark production to the projection of expected sensitivity achievable by High Luminosity

LHC (HL-LHC) and High Energy LHC (HE-LHC) upgrades within the CMS detector. The

search conducted in the HL-LHC projection [31] does not fully utilise any machine learning

techniques in the search, and the expected significance is calculated with an integrated

luminosity of 300 fb−1, with
√
s = 14 TeV. The projection also takes three scenarios of

systematic uncertainties evolution into account. While this comparison seems unfair, due

to the centre-of-mass energy and more integrated luminosity, we may apply traditional

neural networks for the search, at the same amount of centre-of-mass energy and integrated

luminosity, to achieve better expected significance than this speculation.

Throughout this thesis, only the results from expected limit on cross section and

expected significance are shown. The results are supposed to be accurate if SM predictions
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Table 10: Expected limit on the cross section of four top quark production, compared with previous

literature.

Expected limit on cross section

This thesis 35.8 fb−1 data,
√
s = 13 TeV

Single lepton NN 78+37
−24 fb

Single lepton ANN (Standard) 79+37
−24 fb

Single lepton ANN (New loss) 83+39
−25 fb

CMS 2015 search [24] 2.6 fb−1 data,
√
s = 13 TeV

Single lepton BDT 151+90
−52 fb

Opposite-sign dilepton BDT 227+154
−84 fb

Single lepton + Opposite-sign dilepton BDT 118+76
−41 fb

CMS 2016 search [12] 35.8 fb−1 data,
√
s = 13 TeV

Single lepton BDT 86+40
−26 fb

Dilepton BDT 67+41
−23 fb

Single lepton + Dilepton BDT 52+26
−17 fb

ATLAS 2018 search [30] 36.1 fb−1 data,
√
s = 13 TeV

Single lepton + Dilepton 33 fb

Table 11: Expected significance projection for four top quark production search.

Expected significance

This thesis 200 fb−1 data,
√
s = 13 TeV

Boosted decision tree 0.41

Traditional neural network 0.52

Adversarial neural network (Standard) 0.48

Adversarial neural network (New loss) 0.46

HL-LHC 300 fb−1 data,
√
s = 14 TeV

Systematic uncertainties unchanged 2.71

Best case scenario 2.93
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are correct. To determine whether or not SM predictions are correct, however, we need

to compare the expected limit to the observed cross section limit, and we can obtain the

observed cross section limit only by unblinding the analysis, i.e. use the recorded data from

the detector itself. Unblinding the analysis is also another interesting work that can also be

done.

With the introduction of adversarial neural network training, the sensitivity slightly

drops from the case where the traditional neural network is used. The results for adversarial

network approach are also comparable for 200 fb−1 amount of data. Even with this slight

drop, there is one variant of the adversarial network that has successfully modified the shape

of only one systematic uncertainty distribution in a way that its shape may be ignored. With

this modification and the sensitivity results shown, we may conclude that modifying the

shape of one systematic uncertainty is not enough to lower the sensitivity impacts altogether,

and focusing on only one systematic uncertainty may not give us better sensitivity in terms

of expected limits and significances.

As stated in the introduction of this thesis, this is the first ever attempt to incorporate

adversarial neural networks in a real-life LHC analysis. Due to these findings, I would like

to propose three possible approaches to further tackle the sensitivity impacts problem using

the same adversary network approach.

1. Determine other systematic uncertainties that are also correlated The

work in this thesis tackles only one systematic uncertainty, with no regard to other

systematic uncertainties that may also be correlated. One variant of the adversarial

networks have successfully weakened one systematic uncertainty, but it is also possible

that there might be other systematic uncertainties correlated to the one the adversarial

network is trained against. Determining other uncertainties and training the adversary

network against these systematic uncertainties can lower the impact altogether, which

leads to the second approach.

2. Design the adversary network to train on multiple uncertainties altogether.

We may create an adversarial neural network and train it to be a classifier, which

classifies whether certain systematic uncertainties are present. We may also create an

adversarial network to classify multiple systematic uncertainties at the same time, i.e.

whether an input event contains any systematic uncertainties at all. For an optimistic

approach, we may also train the adversarial network to be a regressor to assess the

factor caused by several systematic uncertainties.
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3. Design the adversary network so that the uncertainty of discriminator

output distribution decreases at signal-rich values (close to 1). We have

seen that we may design an adversarial network in such a way that a distribution from

one systematic uncertainty becomes almost flat. To constrain the data further during

expected limits calculation, we may cause the uncertainty distribution to become

smaller at signal-rich values. With this way, a histogram bin containing high numbers

of signal-like events will have smaller systematic uncertainty, causing the bin to be

more constrained.

The results presented throughout this thesis is just the beginning, as this is the first

attempt to use the adversarial neural network to pivot neural network discriminators in

real-life LHC analysis. With two possible approaches proposed above, the outlook for this

approach to be used in LHC analyses can be said to be fruitful, possibly leading us to more

and more precise measurements within the LHC in the future.
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