PREPARATION AND CHARACTERIZATION OF CARBOXYMETHYLCHITIN/POLY (VINYL ALCOHOL) BLEND FILMS

Ms. Kamonrat Kuratchatchaval

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2001
ISBN 974-13-0731-4

Thesis Title:

Preparation and Characterization of

Carboxymethylchitin/Poly (vinyl alcohol) Blend Films

By:

Ms.Kamonrat Kuratchatchaval

Program:

Polymer Science

Thesis Advisor:

Professor Alexander M. Jamieson

Dr.Ratana Rujiravanit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of science.

K. Bunyalint.

College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Prof. Alexander M. Jamieson)

Ratana Rujienvanit

(Dr. Ratana Rujiravanit)

(Asst. Prof. Suwabun Chirachanchai)

บทคัดย่อ

กมลรัตน์ คูรัตน์ชัชวาล: การเตรียมและวิเคราะห์คุณสมบัติของฟิล์มที่ได้จากการผสม ระหว่างซีเอ็ม-ไคตินและพีวีเอ (Preparation and Characterization of CM-chitin/PVA Blend Films) อ. ที่ปรึกษา: ศ. อเล็กซานเคอร์ เอ็ม เจมิสัน และ อาจารย์รัตนา รุจิรวนิช, 69 หน้า ISBN 974-13-0731-4

ฟิล์มของสารพอลิเมอร์ผสมระหว่างซีเอ็ม-ไคตินและพีวีเอในอัตราส่วนที่ต่างกันได้ถูก เตรียมขึ้นโดยเปรียบเทียบระหว่างฟิล์มที่เติมและไม่เติมกลูตารัลดีไฮด์ซึ่งเป็นสารก่อการเชื่อมโยง ในงานวิจัยนี้ได้ทำการศึกษาถึงอิทธิพลของอัตราส่วนระหว่างซีเอ็ม-ไคตินและพีวีเอและสารก่อ การเชื่อมโยงต่อพฤติกรรมการบวมตัวและสมบัติทางกลของฟิล์มสารพอลิเมอร์ผสม สำหรับพฤติ กรรมการบวมตัวของฟิล์มสารพอลิเมอร์ผสมดังกล่าว พบว่า ฟิล์มของสารพอลิเมอร์ผสมให้การ บวมตัวที่สูงในสารละลายบัฟเฟอร์ที่เป็นเบสและสารละลายเกลือเมื่อปริมาณซีเอ็ม-ไคตินเพิ่มขึ้น นอกจากนี้ ฟิล์มพอลิเมอร์ผสมที่เติมสารก่อการเชื่อมโยงเพิ่มขึ้นจะมีค่าการบวมตัวลดลง สำหรับ ผลของสารละลายเกลือต่อค่าการบวมตัว พบว่า ฟิล์มของสารพอลิเมอร์ผสมจะให้ค่าการบวมตัวสูง สุดเมื่ออยู่ในสารละลายเกลือโซเดียมคลอไรค์และลิเธียมคลอไรค์ เกี่ยวกับสมบัติทางกล พบว่า ฟิล์มของสารผสมระหว่างซีเอ็ม-ไคตินและพีวีเอจะมีสมบัติการทนต่อแรงจึงสูงกว่าฟิล์มของซี เอ็ม-ไคตินและพีวีเอเพียงอย่างเดียวและจะได้ค่าสูงสุดในฟิล์มที่มีปริมาณซีเอ็ม-ไคติน 50% นอก จากนี้ ฟิล์มของสารพอลิเมอร์ผสมจะให้ค่าการซึมผ่านของก๊าซออกซิเจนที่ต่ำกว่าซีเอ็ม-ไคดินฟิล์ม และพีวีเอฟิล์ม

ABSTRACT

4272006063: POLYMER SCIENCE PROGRAM

Kamonrat Kuratchatchaval: Preparation and Characterization of

Carboxymethylchitin/Poly (vinyl alcohol) Blend Films.

Thesis Advisors: Prof. Alexander M. Jamieson, and Dr. Ratana

Rujiravanit, 69 pp ISBN 974-13-0731-4

Keywords: CM-chitin film/ PVA film/ CM-chitin and PVA blend film/

Degree of swelling/ Mechanical properties/ Oxygen

permeability

Films of CM-chitin/PVA blends were prepared with various ratios of CM-chitin to PVA, with and without glutaraldehyde as a cross-linking agent. The effects of the ratio of CM-chitin to PVA and cross-linking agent on swelling behavior and mechanical properties of the blend films were studied. For swelling behavior, the blend films exhibited a dramatic change in the degree of swelling when the blend films were immersed in basic solutions (pH>7). The degree of swelling of the films increased as the CM-chitin content increased. It appeared that cross-linking occurred in the blend films reduced the swelling capacity of the films. For the effect of salt type, the films immersed in various types of aqueous salt solutions, i.e., NaCl, LiCl, CaCl₂, and FeCl₃. Among these salts, the films immersed in NaCl and LiCl aqueous solutions gave the highest degree of swelling. For mechanical properties, the maximum tensile strength of the films was obtained for the blend films containing 50% CM-chitin. Furthermore, the tensile strength increased with the increasing of the amount of cross-linking agent whereas the elongation at break decreased. In addition, the effect of CM-chitin content on the oxygen permeability was investigated. It was found that the blend films had lower oxygen permeability than those of pure CM-chitin and PVA films.

ACKNOWLEDGEMENTS

I would like to thank the Petroleum and Petrochemical College, Chulalongkorn University where I have gained the knowledge in polymer science. I also would like to thank Surapol Food Company for the support of the raw materials used in throughout this work.

I would like to express the grateful appreciation to my advisors, Prof. Alexander M. Jamieson and Dr. Ratana Rujiravanit for their invaluable suggestions and criticism. I also wish to give special thanks to Prof. Seiichi Tokura and Mr. John W. Ellis for providing technical knowledge and helpful suggestions.

Finally, I would like to thank my friends for their friendship, helpfulness, cheerfulness, suggestions, and encouragement. I am also greatly indebted to my parents for their support, understanding and patience during this pursuit.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	xii
СНАРТЕ	R	
I	INTRODUCTION	1
	1.1 Chitin	3
	1.2 Carboxymethylchitin (CM-chitin)	5
	1.3 Poly (vinyl alcohol)	7
II	LITERATURE SURVEY	9
	2.1 Carboxymethylchitin (CM-chitin)	9
	2.2 Poly (vinyl alcohol) Based Polymer Blend	11
	2.3 Poly (vinyl alcohol) Based Hydrogel	13
II	EXPERIMENTAL	15
	3.1 Materials	15
	3.2 Equipment	15
	3.2.1 Restch Sieving Machine	15
	3.2.2 Capillary Viscometer	15
	3.2.3 Elemental Analysis	15
	3.2.4 FTIR Spectrophotometer	16

CHAPTER				PAGE
	3.2.5	Wide-an	gle X-ray Diffractometer (WAXD)	16
	3.2.6	Differen	tial Scanning Calorimeter (DSC)	16
	3.2.7	Thermog	gravimetric Analyzer (TGA)	16
	3.2.8	Lloyd Te	ensile Tester	17
	3.2.9	Gas Pern	neability Tester	17
	3.3 Metho	odology		17
	3.3.1	Preparati	on of Chitin	17
	3.3.2	Preparati	on of CM-chitin	18
	3.3.3	Degree o	of Deacetylation of Chitin	18
	3.3.4	Viscosity	/-average Molecular Weight	
		of Chitin		19
	3.3.5	Degree o	f Substitution of CM-chitin	20
	3.3.6	Viscosity	-average Molecular Weight	
		of CM-cl	hitin	20
	3.3.7	Preparati	on of PVA/CM-chitin Blend Films	21
		3.3.7.1	Preparation of PVA Solution	21
		3.3.7.2	Preparation of CM-chitin	
			Solution	21
		3.3.7.3	Preparation of Blend Films	21
	3.3.8	Equilibri	um Water Content (EWC)	21
	3.3.9	Swelling	Behavior	22
	3.3.10	Mechani	cal Properties	22
	3.3.11	Oxygen 1	Permeability Testing	22
IV	RESULT	S AND D	ISCUSSION	
	4.1 Prepa	ration of (Chitin	24
	4.2 Prepa	ration of (CM-chitin	26

CHAPTER		PAGE
	4.3 Characterization of CM-chitin/PVA Blend Films	29
	4.3.1 FTIR Analysis of the Blend Films	29
	4.3.2 X-ray Diffraction Patterns	30
	4.3.3 Thermal Property	31
	4.3.4 Thermal Stability	33
	4.4 Swelling Study	35
	4.4.1 Equilibrium Water Content	35
	4.4.2 Effect of pH	37
	4.4.3 Effect of Salt Type	40
	4.5 Mechanical Properties	42
	4.6 Oxygen Permeability	46
V	CONCLUSIONS	48
	REFERENCES	49
	APPENDICES	55
	CURRICULUM VITAE	69

LIST OF TABLES

TABLE	
1.1 Some applications of chitin-based materials	5
1.2 Current practical uses of CM-chitin	6
4.1 Yield of chitin production from shrimp shells	24
4.2 FTIR characteristic absorption bands of CM-chitin	27
A1 Effect of time on equilibrium content (EWC) of blend fi	lms
at 15 min	55
A2 Effect of time on equilibrium content (EWC) of blend fi	lms
at 30 min	55
A3 Effect of time on equilibrium content (EWC) of blend fi	lms
at 60 min	56
A4 Effect of time on equilibrium content (EWC) of blend fi	lms
at 90 min	56
A5 Effect of time on equilibrium content (EWC) of blend fi	lms
at 120 min	57
A6 Effect of time on equilibrium content (EWC) of blend fi	lms
at 180 min	57
A7 Effect of time on equilibrium content (EWC) of blend fi	lms
at 24 h	58
B1 Degree of swelling of blend films in pH buffer solution	
pH = 3	58
B2 Degree of swelling of blend films in pH buffer solution	
pH = 4	59
B3 Degree of swelling of blend films in pH buffer solution	
pH = 5	59

TABLE	PAGE
B4 Degree of swelling of blend films in pH buffer solution	n
pH = 6	60
B5 Degree of swelling of blend films in pH buffer solution	n
pH = 7	60
B6 Degree of swelling of blend films in pH buffer solution	n
pH = 8	61
B7 Degree of swelling of blend films in pH buffer solution	
pH = 9	61
B8 Degree of swelling of blend films in pH buffer solution	n
pH = 10	62
B9 Degree of swelling of blend films in pH buffer solution	n
pH = 11	62
B10 Degree of swelling of CM-chitin/PVA: 50/50 in pH b	uffer
solution $pH = 3$	63
B11 Degree of swelling of CM-chitin/PVA: 50/50 in pH be	uffer
solution $pH = 4$	63
B12 Degree of swelling of CM-chitin/PVA: 50/50 in pH bi	uffer
solution $pH = 5$	63
B13 Degree of swelling of CM-chitin/PVA: 50/50 in pH but	uffer
solution $pH = 6$	64
B14 Degree of swelling of CM-chitin/PVA: 50/50 in pH bu	ıffer
solution $pH = 7$	64
B15 Degree of swelling of CM-chitin/PVA: 50/50 in pH bi	uffer
solution pH = 8	64
B16 Degree of swelling of CM-chitin/PVA: 50/50 in pH but	ıffer
solution $pH = 9$	65

TABLE	PAGE
B17 Degree of swelling of CM-chitin/PVA: 50/50 in pH buffer	
solution $pH = 10$	65
B18 Degree of swelling of CM-chitin/PVA: 50/50 in pH buffer	
solution $pH = 11$	65
B19 Effect of time on degree of swelling of CM-chitin/PVA: 50/5	50
in pH buffer solution pH = 6 and pH = 10	66
C1 Degree of swelling of blend films in 0.25 M LiCl	67
C2 Degree of swelling of blend films in 0.25 M NaCl	67
C3 Degree of swelling of blend films in 0.25 M CaCl ₂	68
C4 Degree of swelling of blend films in 0.25 M FeCl ₃	68

LIST OF FIGURES

FIGUI	TIGURE		
1.1	Chemical structure of chitin	4	
1.2	Chemical structure of CM-chitin	5	
4.1	FTIR spectrum of chitin powder	25	
4.2	Reduced viscosity $[(\eta_{sp}/C)$ and $(ln(\eta_{rel}/C)]$ versus concentrate	ion	
	of chitin solution, \bullet : η_{sp}/C , \blacktriangle : $\ln (\eta_{rel})/C$	26	
4.3	FTIR spectrum of CM-chitin	27	
4.4	4 Reduced viscosity (η_{sp}/C) and $(\ln(\eta_{rel})/C)$ versus concentration		
	of CM-chitin solution, \bullet : η_{sp}/C , \blacktriangle : $\ln (\eta_{rel})/C$	28	
4.5	FTIR spectra of pure and blend films at various composition	S	
	of CM-chitin to PVA, CM-chitin/PVA composition: (a) 0/10	0	
	(PVA); (b) 20/80; (c) 40/60; (d) 50/50; (e) 60/40; (f) 20/80;		
	(g) 100/0 (CM-chitin).	30	
4.6	Wide-angle X-ray diffraction patterns of CM-chitin/PVA		
	blend films, CM-chitin/PVA composition: (a) 0/100 (PVA);		
	(b) 20/80; (c) 40/60; (d) 50/50; (e) 60/40; (f) 80/20;		
	(g) 100/0 (CM-chitin).	31	
4.7	DSC thermograms of CM-chitin/PVA blend films,		
	CM-chitin/PVA composition: (a) 0/100 (PVA); (b) 20/80;		
	(c) 40/60; (d) 50/50; (e) 60/40; (f) 80/20;		
	(g) 100/0 (CM-chitin).	32	
4.8	TGA thermograms of CM-chitin/PVA blend films,		
	CM-chitin/PVA composition: (a) 0/100 (PVA); (b) 50/50;		
	(c) 100/0 (CM-chitin).	34	
4.9	Thermal decomposition temperature of CM-chitin/PVA		
	blend films as a function of CM-chitin content	34	

FIGURE PAGE

4.10	Effect of immersion time on equilibrium water content of	
	CM-chitin/PVA blend films with the addition of 0.01%	
	glutaraldehyde, CM-chitin/PVA composition: ●: 100/0	
	(CM-chitin); \blacksquare : 80/20; \triangle : 60/40; x: 50/50; \square : 40/60;	
	○: 20/80; ▲: 0/100 (PVA)	36
4.11	Equilibrium water content of CM-chitin/PVA blend films	
	with the addition of 0.01% glutaraldehyde	36
4.12	Degree of swelling of CM-chitin/PVA blend films with the	
	addition of 0.01% glutaraldehyde as a funtion of CM-chitin	
	content, CM-chitin/PVA composition: ●: 100/0 (CM-chitin);	
	■: $80/20$; △: $60/40$; x: $50/50$; □: $40/60$; ○: $20/80$;	
	▲: 0/100 (PVA)	37
4.13	Effect of glutaraldehyde concentration on degree of swelling	
	of CM-chitin/PVA blend films as a function of pH,	
	○: 0.005% glutaraldehyde; □: 0.01% glutaraldehyde;	
	△: 0.05% glutaraldehyde	38
4.14	Degree of swelling of CM-chitin/PVA blend films with	
	50/50 blend ratio containing 0.01% glutaraldehyde on	
	a step change in pH	40
4.15	Effect of salt type on degree of swelling of CM-chitin/PVA	
	blend films with the addition of 0.01% glutaraldehyde	
	as a function of CM-chitin content, x: H_2O ; Δ : NaCl;	
	O: LiCl; □: CaCl ₂ ; *: FeCl ₃	41
4.16	Tensile strength of CM-chitin/PVA blend films as	
	a function of CM-chitin content, O: films without glutaradehyd	le;
	☐ : films with 0.01% glutaraldehyde.	43

FIGURE	PAGE

4.17 Tensile strength of CM-chitin/PVA blend films with	
50/50 blend ratio as a function of percent of glutaraldehyde	43
4.18 Elongation at break of CM-chitin/PVA blend films as	
a function of CM-chitin content, □: films without glutaradeh	yde;
O: films with 0.01% glutaraldehyde.	44
4.19 Elongation at break of CM-chitin/PVA blend films with	
50/50 blend ratio as a function of glutaraldehyde	45
4.20 Oxygen permeability rate of CM-chitin/PVA blend films	
as a function of CM-chitin content	47