CHAPTER II

THERMODYNAMIC PROPERTIES

2.1 Thermodynamic Properties at Steady State

From the second law of thermodynamics, a system at equilibrium can not undergo any spontaneous change as shown in Figure 2.1

Gibbs energy
$\mathrm{G}=\mathrm{H}-\mathrm{TS}$

Figure 2.1 The system moves toward a state of minimum Gibbs energy at constant T and P

The condition for equilibrium is therefore

$$
\begin{equation*}
\mathrm{d} \text { S total }=\mathrm{d} \mathrm{~S} \text { system }+\mathrm{d} \mathrm{~S} \text { surrounding }=0 \tag{2.1}
\end{equation*}
$$

It is more convenient to define equilibrium with reference to changes in the system only, without explicitly considering the environment. Suppose that the system and the surroundings are at the same temperature,

$$
\begin{equation*}
\mathrm{T} \text { system }=\mathrm{T} \text { surroundings } \tag{2.2}
\end{equation*}
$$

Suppose that a process occurs spontaneously in the system, and that an amount of heat dq leaves the system and enters the surroundings. This amount entering the surroundings may be written as dq surroundings, and is equal to the heat change -dq system in the system :

$$
\begin{equation*}
\mathrm{dq} \text { surroundings }=-\mathrm{dq} \text { system } \tag{2.3}
\end{equation*}
$$

The surroundings experience no volume change when heat is transferred to them, and dq surrounding is therefore equal to the change dU surrounding in the internal energy, which is a state function. It therefore does not matter whether the heat ad surrounding enters the surroundings reversibly or irreversibly; the heat dq surr irrev. $=\mathrm{dq}$ surr. Rev. $=\mathrm{dU}$ surr

The entropy change in the surroundings is

$$
\begin{equation*}
\mathrm{dS} \text { surr. }=(\mathrm{dq} \text { surr. }) /(\mathrm{T} \text { surr. }) \tag{2.5}
\end{equation*}
$$

But T surr $=T$ syst. and dq surr. $=-\mathrm{dq}$ syst. ; therefore

$$
\begin{equation*}
\text { dS surr. = -(dq syst. }) /(\mathrm{T} \text { syst. }) \tag{2.6}
\end{equation*}
$$

Or

$$
\begin{equation*}
\mathrm{dS} \text { total }=\mathrm{dS} \text { syst. }-(\mathrm{dq} \text { syst. } / \mathrm{T} \text { syst. })=0 \tag{2.7}
\end{equation*}
$$

Dropping the superscript "system", the condition for equilibrium will be written simply as :

$$
\begin{equation*}
\mathrm{dS}-(\mathrm{dq} / \mathrm{T})=0 \tag{2.8}
\end{equation*}
$$

Or

$$
\begin{equation*}
\mathrm{dq}-\mathrm{TdS}=0 \tag{2.9}
\end{equation*}
$$

Constant Temperature and Pressure : The Gibbs Energy

Chemical processes commonly occur in open vessels at constant pressure, in which case dq can be equated to dH , the enthalpy change. Equation 6.9 therefore becomes

$$
\begin{equation*}
\mathrm{dH}-\mathrm{TdS}=0 \tag{2.10}
\end{equation*}
$$

From the Gibbs energy "G"

$$
\begin{equation*}
\mathrm{G}=\mathrm{H}-\mathrm{TS} \tag{2.11}
\end{equation*}
$$

At constant temperature :

$$
\begin{equation*}
\mathrm{dG}=\mathrm{dH}-\mathrm{TdS} \tag{2.12}
\end{equation*}
$$

From equation 6.10 the condition for equilibrium at constant T and P is

$$
\begin{equation*}
\mathrm{dG}=0 \tag{2.13}
\end{equation*}
$$

Constant Temperature and Volume : The Helmholtz Energy

Similar to the Gibbs Energy, the quantity dq in equation 2.9 is equated to dU:

$$
\begin{equation*}
d U-T d S=0 \tag{2.14}
\end{equation*}
$$

The quantity $\mathrm{U}-\mathrm{TS}$, also a state function, is called the Helmholtz function or Helmholtz energy and is given the symbol A:

$$
\begin{equation*}
\mathrm{A}=\mathrm{U}-\mathrm{TS} \tag{2.15}
\end{equation*}
$$

Equation 2.14 therefore can be written as

$$
\begin{equation*}
\mathrm{dA}=0 \tag{2.16}
\end{equation*}
$$

2.2 Enthalpy Change versus \% Composition of the Products

The thermodynamic equilibrium constant K^{u} is related to the standard Gibbs energy change for the process by

$$
\begin{equation*}
\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{~K}^{\mathrm{u}} \tag{2.17}
\end{equation*}
$$

This thermodynamic equilibrium constant K^{u} is a dimensionless quantity. If the standard state for $\Delta \mathrm{G}^{0}$ is 1 atm pressure, K^{u} is $\mathrm{K}_{\mathrm{p}}^{\mathrm{u}}$, which is the dimensionless form of K_{p} in which pressures are in atmospheres; if the standard state is $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ the K^{u} is K^{u}, which is the dimensionless form of K_{c} in which concentrations are expressed in mol dm ${ }^{-3}$.

$$
\begin{equation*}
\ln \mathrm{K}_{\mathrm{p}} \mathrm{u}_{\mathrm{p}}-\Delta \mathrm{G}^{\circ} / \mathrm{RT}=-\left(\Delta \mathrm{H}^{\circ} / \mathrm{RT}\right)+\left(\Delta \mathrm{S}^{\circ} / \mathrm{R}\right) \tag{2.18}
\end{equation*}
$$

