CHAPTER VII DYNAMIC SIMULATION

Figure 7.1 Drawing of T - 101

.

7.1 Changing of Feed Inlet Temperature

Feed inlet temperature 140 °C

Operating condition :	Pressure	14.7	psia
	Feed inlet temperature	140	°С
	Product output temperature	89	°С
	Bottom output temperature	128	°C
	Feed flowrate	45	GPM
	Distillate (Rubber Solvent)	3.9	GPM
	Reflux feed rate	21.7	GPM

Table 7.1 Equilibrium Constant vs. Temperature

Tray No.	Temperature (^o C)	K _{C5}	K _{C6}	K _{C7}	K _{C8}
15	89.00	3.83	1.65	0.70	0.30
14	91.60	4.03	1.76	0.75	0.32
13	94.20	4.24	1.86	0.80	0.35
12	96.80	4.45	1.97	0.86	0.38
11	99.40	4.67	2.08	0.91	0.41
10	102.00	4.90	2.20	0.97	0.44
9	104.60	5.13	2.32	1.03	0.48
8	107.20	5.36	2.45	1.10	0.52
7	109.80	5.60	2.58	1.16	0.56
6	112.40	5.85	2.71	1.23	0.60
5	115.00	6.10	2.85	1.30	0.65
4	117.60	6.36	2.99	1.37	0.70
3	120.20	6.63	3.13	1.45	0.75
2	122.80	6.90	3.28	1.53	0.81
1	125.40	7.17	3.43	1.61	0.87
0	128.00	7.45	3.59	1.69	0.93

Tray No.	Temperature (^o C)	K _{C9}	K _{C10}	K _{C11}
15	89.00	0.118	0.045	0.0452
14	91.60	0.128	0.050	0.0503
13	94.20	0.140	0.056	0.0559
12	96.80	0.151	0.062	0.0620
11	99.40	0.164	0.069	0.0687
10	102.00	0.178	0.076	0.0760
9	104.60	0.192	0.084	0.0839
8	107.20	0.207	0.093	0.0926
7	109.80	0.222	0.102	0.1020
6	112.40	0.239	0.112	0.1122
5	115.00	0.257	0.123	0.1233
4	117.60	0.275	0.135	0.1353
3	120.20	0.295	0.148	0.1484
2	122.80	0.315	0.162	0.1624
1	125.40	0.336	0.178	0.1776
0	128.00	0.358	0.194	0.1940

 Table 7.2 Equilibrium Constant vs. Temperature (con't)

Product composition (from GC) : D = 3.9 GPM

C ₅	0.0175
C ₆	0.3290
C ₇	0.5977
C ₈	0.0534
C ₉	0
C ₁₀	0
C11	0
>C11	0.0006
Polynaphthene	0.0001

.

Bottom composition	on (from GC) : $B =$	41.04	GPM
C ₅	0.0008		
C_6	0.0105		
C ₇	0.0623		
C ₈	0.2289		
C ₉	0.2807		
C ₁₀	0.1804		
C ₁₁	0.0620		
>C11	0.1648		
Polynaphthene	0.0097		
Feed composition	(from GC) : F =	45	GPM
C ₅	0.0161		
C ₆	0.3018		
C ₇	0.5521		
C ₈	0.0687		
C ₉	0.0244		
C ₁₀	0.0157		
C ₁₁	0.0054		
>C11	0.0149		
Polynaphthene	0.0009		
From experiment :	Γ=	21.7	GPM
Density of	of Rubber solvent =	0.7397	
	Mass =	0.0608	kg/min.
MW. c	of Rubber solvent =	0.0954	kg/mol
	Γ=	0.6368	mol/min.
	D =	3.9	GPM
	D =	0.1144	mol/min.
	V =	L + D	
	V =	0.7512	mol/min.

F = 45 GPMDensity of feed = 0.7531 Mass = 0.1283 kg/min. MW. of feed = 0.0963 kg/mol F = 1.3313 mol/min. B = F - D B = 1.2169 mol/min.

Component A is a light non-key for this case is $C_5 - C_{11}$ Component B is the light key which choose component C_{11} as the reference

The operating equations for rectifying section are:

$$y_{i,j-1} = (L/V)X_{i,j} + (1 - L/V)X_{i,dist}$$

For the stripping section are :

 $y_{i,k-1} = (L'/V')X_{i,k} + (L'/V' - 1)X_{i,bot}$

Constant relative volatility systems

$$\alpha_{AB} = K_A / K_B$$

For any component i on stage j

$$X_{ij} = y_{ij} / (\alpha_{iB,j} * K_{Bj})$$
$$K_{Bj} = \Sigma (y_{ij} / \alpha_{iB})$$

Tray	$\alpha C_5 C_{11}$	$\alpha C_6 C_{11}$	$\alpha C_7 C_{11}$	$\alpha C_8 C_{11}$	$\alpha C_9 C_{11}$	$\alpha C_{10}C_{11}$	$\alpha C_{11}C_{11}$
15	84.81	36.60	15.56	6.55	2.61	1.00	1
14	80.21	34.91	14.96	6.40	2.55	1.00	1
13	75.89	33.30	14.38	6.26	2.50	1.00	1
12	71.84	31.78	13.83	6.12	2.44	1.00	1
11	68.03	30.34	13.30	5.98	2.39	1.00	1
10	64.45	28.97	12.79	5.85	2.34	1.00	1
9	61.08	27.66	12.30	5.73	2.28	1.00	1
8	57.92	26.43	11.83	5.61	2.23	1.00	1
7	54.94	25.25	11.39	5.49	2.18	1.00	1
6	52.14	24.14	10.96	5.38	2.13	1.00	1
5	49.50	23.08	10.54	5.27	2.08	1.00	1
4	47.01	22.07	10.15	5.17	2.03	1.00	1
3	44.67	21.11	9.77	5.06	1.99	1.00	1
2	42.46	20.20	9.40	4.97	1.94	1.00	1
1	40.37	19.34	9.06	4.87	1.89	1.00	1

Table 7.3 Relative Volatility

Tray (j)	Ус5,j-1	Ус6,ј-1	Ус7,ј-1	У _{С8,ј-1}	У _{С9,j-1}	Ус10,ј-1	У С11,j-1
15	0.0175	0.3290	0.5977	0.0534	0.0000	0.0000	0.0000
14	0.0059	0.1880	0.6756	0.1302	0.0000	0.0000	0.0000
13	0.0036	0.1152	0.6327	0.2481	0.0000	0.0000	0.0000
12	0.0031	0.0843	0.5220	0.3902	0.0000	0.0000	0.0000
11	0.0030	0.0721	0.4012	0.5233	0.0000	0.0000	0.0000
10	0.0030	0.0672	0.3067	0.6227	0.0000	0.0000	0.0000
9	0.0030	0.0653	0.2463	0.6851	0.0000	0.0000	0.0000
8	0.0030	0.0645	0.2123	0.7198	0.0000	0.0000	0.0000
7	0.0030	0.0643	0.1948	0.7375	0.0000	0.0000	0.0000
6	0.0030	0.0645	0.1867	0.7455	0.0000	0.0000	0.0000
5	0.0228	0.3757	0.5399	0.0482	0.0092	0.0032	0.0011
4	0.0049	0.1684	0.5311	0.1272	0.0881	0.0598	0.0205
3	0.0006	0.0344	0.2328	0.1389	0.2260	0.2734	0.0939
2	0.0001	0.0044	0.0498	0.0811	0.2325	0.4705	0.1616
1	0.0001	0.0019	0.0159	0.0545	0.1815	0.5553	0.1908

Table 7.4 Multicomponent Distillation Calculation for Vapor Phase

Tray (j)	Х _{С5,j}	X _{C6,j}	x _{C7,j}	X _{C8,j}	X _{C9,j}	x _{C10,j}	X _{C11,j}
15	0.0175	0.3290	0.5977	0.0534	0.0000	0.0000	0.0000
14	0.0038	0.1627	0.6896	0.1440	0.0000	0.0000	0.0000
13	0.0011	0.0768	0.6390	0.2831	0.0000	0.0000	0.0000
12	0.0006	0.0403	0.5085	0.4507	0.0000	0.0000	0.0000
11	0.0004	0.0259	0.3659	0.6078	0.0000	0.0000	0.0000
10	0.0004	0.0202	0.2544	0.7250	0.0000	0.0000	0.0000
9	0.0004	0.0179	0.1832	0.7986	0.0000	0.0000	0.0000
8	0.0004	0.0170	0.1431	0.8396	0.0000	0.0000	0.0000
7	0.0004	0.0168	0.1224	0.8604	0.0000	0.0000	0.0000
6	0.0004	0.0169	0.1129	0.8699	0.0000	0.0000	0.0000
5	0.0054	0.1897	0.5967	0.1065	0.0513	0.0375	0.0129
4	0.0055	0.1915	0.5987	0.1050	0.0507	0.0362	0.0124
3	0.0005	0.0376	0.2562	0.1184	0.2090	0.2816	0.0967
2	0.0000	0.0032	0.0460	0.0520	0.2165	0.5079	0.1745
1	0.0000	0.0003	0.0071	0.0214	0.1580	0.6052	0.2079

Table 7.5 Multicomponent Distillation Calculation for Liquid Phase

Flash Distillation for Feed (Tray No. 5) First Guess :

> V/F = 1(V/F) 0.079278 (df/d(V/F)) = 1.456692 next guess for V/F = 1.054424

In this case V/F = 1 gives, f(V/F) = close to zero Therefore all feed fraction are evaporated.

So, V' = V = 0.75121

$$L' = L + L_F$$
 0.63677
 $F = 1.38797$

1

Tray	ΔH_{C5}	ΔH_{C6}	ΔH_{C7}	ΔH_{C8}	ΔH_{C9}	ΔH_{C10}	ΔH_{C11}
15	-8E+09	-3E+12	-1.3E+13	-2E+11	0	0	0
14	-2E+09	-2E+12	-1.6E+13	-5E+11	0	0	0
13	-1E+09	-1E+12	-1.7E+13	-1E+12	0	0	0
12	-1E+09	-8E+11	-1.5E+13	-2E+12	0	0	0
11	-1E+09	-7E+11	-1.2E+13	-3E+12	0	0	0
10	-1E+09	-7E+11	-9.6E+12	-3E+12	0	0	0
9	-1E+09	-7E+11	-8E+12	-4E+12	0	0	0
8	-1E+09	-8E+11	-7.2E+12	-4E+12	0	0	0
7	-2E+09	-8E+11	-6.9E+12	-5E+12	0	0	0
6	-2E+09	-9E+11	-7.1E+12	-5E+12	0	0	0
5	-2E+10	-7E+12	-2.9E+13	-6E+11	-9.4E+09	-4E+09	-5E+08
4	-6E+09	-5E+12	-3.1E+13	-9E+11	-2.3E+10	-1E+10	-1E+09
3	-7E+08	-1E+12	-1.4E+13	-1E+12	-7.8E+10	-6E+10	-8E+09
2	-1E+08	-1E+11	-3E+12	-6E+11	-8.6E+10	-1E+11	-1E+10
1	-9E+07	-3E+10	-7.8E+11	-4E+11	-7E+10	-2E+11	-2E+10

Table 7.6 Enthalpy for nth Tray

The other operating conditions are shown in Appendix B

7.2 Multicomponent Nonideal Distillation Column

The assumptions are :

1

- 1. Liquid on the tray is perfectly mixed and incompressible.
- 2. Tray vapor holdups are negligible.
- 3. Dynamics of the condenser and the reboiler will be neglected.
- 4. Vapor and Liquid are in thermal equilibrium but not in phase equilibrium.
- A general nth tray is sketched in Figure 7.2

Figure 7.2 nth tray of multicomponent column

The equation describing this tray is :

 $\underline{dM}_{\underline{n}} = L_{n+1} + F_n^L + F_{n-1}^V + V_{n-1} - V_n - L_n - S_n^L - S_n^V$ (7.1)

 $\frac{dM_{15}}{dt} = L_{16} + F_{15}L + F_{14}V + V_{14} - V_{15} - L_{15} - S_{15}L - S_{15}V$

Where:	$L_{16} =$	0	
	L ₁₅ =	Reflux flow rate	= 21.7 GPM
	$F_{15}L =$	No liquid inlet @ tray 15	= 0
	$F_{14}V =$	No vapor inlet @ tray 14	= 0
	V ₁₄ =	L ₁₄ /K _{operating} Line	$= L_{14}/1.688$
	V ₁₅ =	L ₁₅ /K _{operating} Line	= 2.3099/1.688
			= 1.3684

$$L_{14} = Liquid over weir = h_{OW}$$

$$= 0.48 F_W^* (Q/l_W)^{2/3}$$
Fw = Weir constriction correction factor (From Chart)
$$Q/(l_W)^{2.5} = Liquid load/Weir length = 21.7 \text{ GPM}/(2.133 \text{ ft})^{2.5}$$

$$= 3.2657$$
Ratio weir length/Tower diameter = 650/850 = 0.7647

Therefore: $F_{W} = 1.025$

L ₁₅ =	2.3099	
$S_{15}L =$	No side-draw of tray 15	= 0
$S_{15}V =$	Flow of product	= 12.857 GPM

Tray (n)	L _n	Fn ^L	F _n V	Vn	S _n L	S _n V
16	0	0	0	0	0	0
15	0.0006	0	0	0.0013	0	0.0007
14	0.0006	0	0	0.0013	0	0
13	0.0006	0	0	0.0013	0	0
12	0.0006	0	0	0.0013	0	0
11	0.0006	0	0	0.0013	0	0
10	0.0006	0	0	0.0013	0	0
9	0.0006	0	0	0.0013	0	0
8	0.0006	0	0	0.0013	0	0
7	0.0006	0	0	0.0013	0	0
6	0.0006	0	0	0.0013	0	0
5	0.0018	0.0012	0	0.0013	0	0
4	0.0018	0	0	0.0013	0	0
3	0.0018	0	0	0.0013	0	0
2	0.0018	0	0	0.0013	0	0
1	0.0018	0	0	0.0013	0.0005	0
0	0.0018	0	0	0.0013	0	0
		L	L	L	1	L

Table 7.7 Streams on nth tray

7.3 Mathematical Models of Multicomponent Column

Tray 15 @ C5 composition

Total continuity :

$$\underline{dM_n} = L_{n+1} + F_n^{-L} + F_{n-1}^{-V} + V_{n-1} - V_n - L_n - S_n^{-L} - S_n^{-V}$$
(7.1)

 $\frac{dM_{15}}{dt} = L_{16} + F_{15}^{L} + F_{14}^{V} + V_{14} - V_{15} - L_{15} - S_{15}^{L} - S_{15}^{V}$ (7.2)

Component continuity equations :

$$\frac{d(M_n X_{nj})}{dt} = L_{n+1} X_{n+1,j} + F_u^{L} X_{n,j}^{F} + F_{n-1}^{V} y_{n-1,j}^{F} + V_{n-1} Y_{n-1,j} - V_n Y_{n,j}$$

$$-L_n X_{n,j} - S_n^{L} X_{n,j} - S_u^{V} Y_{n,j}$$
(7.3)

 $\frac{d(M_{15}X_{15,C5})}{dt} = L_{16}X_{16,C5} + F_{15}^{L}X_{15,C5}^{F} + F_{14}^{V}y_{14,C5}^{F} + V_{14}Y_{14,C5}$

$$-V_{15}Y_{15,C5} - L_{15}X_{15,C5} - S_{15}^{L}X_{15,C5} - S_{15}^{V}Y_{15,C5}$$
(7.4)

 $\frac{d(M_{15}X_{15,C6})}{dt} = L_{16}X_{16,C6} + F_{15}^{L}X_{15,C6}^{F} + F_{14}^{V}y_{14,C6}^{F} + V_{14}Y_{14,C6}$

$$- V_{15} Y_{15,C6} - L_{15} X_{15,C6} - S_{15}^{L} X_{15,C6} - S_{15}^{V} Y_{15,C6}$$
(7.5)

 $\frac{d(M_{15}X_{15,C7})}{dt} = L_{16}X_{16,C7} + F_{15}^{L}X_{15,C7}^{F} + F_{14}^{V}y_{14,C7}^{F} + V_{14}Y_{14,C7}$

$$- V_{15}Y_{15,C7} - L_{15}X_{15,C7} - S_{15}^{L}X_{15,C7} - S_{15}^{V}Y_{15,C7}$$
(7.6)

$$\frac{d(M_{15}X_{15,C8})}{dt} = L_{16}X_{16,C8} + F_{15}^{L}X_{15,C8}^{F} + F_{14}^{V}y_{14,C8}^{F} + V_{14}Y_{14,C8}$$

$$-V_{15}Y_{15,C8} - L_{15}X_{15,C8} - S_{15}^{L}X_{15,C8} - S_{15}^{V}Y_{15,C8}$$
(7.7)

.*

1

$$\begin{aligned} \underline{d(M_{15}X_{15,C9})} &= L_{16}X_{16,C9} + F_{15}^{L}X_{15,C9}^{F} + F_{14}^{V}y_{14,C9}^{F} + V_{14}Y_{14,C9} \\ dt \\ &- V_{15}Y_{15,C9} - L_{15}X_{15,C9} - S_{15}^{L}X_{15,C9} - S_{15}^{V}Y_{15,C9} \quad (7.8) \\ \underline{d(M_{15}X_{15,C10})} &= L_{16}X_{16,C10} + F_{15}^{L}X_{15,C10}^{F} + F_{14}^{V}y_{14,C10}^{F} + V_{14}Y_{14,C10} \\ \\ &- V_{15}Y_{15,C10} - L_{15}X_{15,C10} - S_{15}^{L}X_{15,C10} - S_{15}^{V}Y_{15,C10} (7.9) \\ \underline{d(M_{15}X_{15,C11})} &= L_{16}X_{16,C11} + F_{15}^{L}X_{15,C11}^{F} + F_{14}^{V}y_{14,C11}^{F} + V_{14}Y_{14,C11} \\ \\ &- V_{15}Y_{15,C11} - L_{15}X_{15,C11} - S_{15}^{L}X_{15,C11} - S_{15}^{V}Y_{15,C11} (7.10) \end{aligned}$$

Energy equation :

$$\frac{d(\mathbf{M}_{n}\mathbf{h}_{n})}{dt} = \mathbf{L}_{n+1}\mathbf{h}_{n+1} + \mathbf{F}_{n}^{\ L}\mathbf{h}_{n}^{\ F} + \mathbf{F}_{n-1}^{\ V}\mathbf{H}_{n-1}^{\ F} + \mathbf{V}_{n-1}\mathbf{H}_{n-1} - \mathbf{V}_{n}\mathbf{H}_{n}$$

- $\mathbf{L}_{n}\mathbf{h}_{n} - \mathbf{S}_{n}^{\ L}\mathbf{h}_{n} - \mathbf{S}_{n}^{\ V}\mathbf{H}_{n}$ (7.11)

$$\frac{d(M_{15}h_{15})}{dt} = L_{16}h_{16} + F_{15}{}^{L}h_{15}{}^{F} + F_{14}{}^{V}H_{14}{}^{F} + V_{14}H_{14} - V_{15}H_{15}$$

- $L_{15}h_{15} - S_{15}{}^{L}h_{15} - S_{15}{}^{V}H_{15}$ (7.12)

There are 15 equations to solve for the multicomponent nonideal distillation column per tray. The following are the results from solving equations using Mathead program.

e.

100

!

7.4 Solving Dynamic Simulation by Mathcad Program

The total continuity equations are written in terms of moles per unit time. The multi-component nonideal distillation column differential equations were solved by Runge-Kutta technique in the Mathcad program as shown in appendix A. The computational procedures are as follows.

- 1. Set the mass balance value of reflux, multiple feeds of both liquid and vapor, and sidestream drawoffs.
- 2. Set the equations for calculating bubble point temperature of each tray to find the exceptional Raoult's law K-values which give $\Sigma y_i = 1$ ($y_i = K_i Z_i$) and use these K-values to determine the vapor component on every tray.
- 3. Set the equations for dew point temperature of each tray to find the exceptional Raoult's law K-values which give $\Sigma x_i = 1$ ($x_i = Z_i/K_i$) and use these K-values to determine the enthalpy of vapor on every tray.
- 4. Compute the hydrocarbon mole fractions for every tray by set the equations in Mathcad program which consists of 3 main equations ; component continuity equations, energy equations, and total continuity equations.
- 5. Calculate mole fractions and enthalpies by looping in Mathcad respect to time for make the data more accuracy.
- 6. Repeat step 2 and 3 with a corrector step for the same time increment. In this case every time step (5 min.) found that there is no disturbance to a process of dew point and bubble point temperatures. Therefore, in this case assume the every step change there is a constant temperature on each tray.

The results of dynamic distillation are shown below.

Time	Mole fraction of component on tray 15								
(min.)	C ₅	C ₆	C ₇	C ₈	C ₉	C ₁₀	C ₁₁		
0	0.0175	0.3290	0.5977	0.0534	0.0000	0.0000	0.0000		
10	0.0192	0.3076	0.5960	0.0655	0.0039	0.0039	0.0039		
20	0.0203	0.2900	0.5950	0.0767	0.0060	0.0060	0.0060		
30	0.0212	0.2741	0.5915	0.0882	0.0084	0.0083	0.0084		
40	0.0151	0.2622	0.5902	0.1004	0.0107	0.0107	0.0107		
60	0.0180	0.2384	0.5749	0.1216	0.0157	0.0157	0.0157		
90	0.0233	0.2103	0.5483	0.1510	0.0226	0.0219	0.0226		
120	0.0283	0.1881	0.5212	0.1782	0.0283	0.0276	0.0283		

Table 7.8 Results for multicomponent nonideal dynamic-distillation

Figure 7.3 Plot of hydrocarbon mole fraction on tray 15.

Time	Mole fraction of component on tray 10								
(min.)	C ₅	C ₆	C ₇	C ₈	C ₉	C ₁₀	C ₁₁		
0	0.0004	0.0202	0.2544	0.7250	0.0000	0.0000	0.0000		
10	0.0004	0.0205	0.2603	0.7186	0.0000	0.0000	0.0000		
20	0.0004	0.0205	0.2662	0.7127	0.0001	0.0001	0.0001		
30	0.0004	0.0205	0.2720	0.7068	0.0001	0.0001	0.0001		
40	0.0004	0.0205	0.2778	0.7009	0.0001	0.0001	0.0001		
60	0.0006	0.0199	0.2901	0.6874	0.0006	0.0006	0.0006		
90	0.0035	0.0192	0.3077	0.6603	0.0033	0.0024	0.0036		
120	0.0109	0.0218	0.3211	0.6204	0.0086	0.0073	0.0100		

Table 7.9 Results for multicomponent nonideal dynamic-distillation

Time	Mole fraction of component on tray 5								
(min.)	C ₅	C ₆	C ₇	C ₈	C ₉	C ₁₀	C ₁₁		
0	0.0054	0.1897	0.5967	0.1065	0.0513	0.0375	0.0129		
10	0.0065	0.0227	0.7116	0.1261	0.0648	0.0507	0.0177		
20	0.0064	0.0448	0.6845	0.1214	0.0654	0.0570	0.0205		
30	0.0064	0.0587	0.6627	0.1174	0.0652	0.0652	0.0242		
40	0.0056	0.0712	0.6429	0.1128	0.0647	0.0749	0.0277		
60	0.0055	0.0959	0.6033	0.1018	0.0623	0.0959	0.0353		
90	0.0061	0.1332	0.5513	0.0850	0.0574	0.1217	0.0452		
120	0.0067	0.1606	0.5184	0.0711	0.0535	0.1384	0.0512		

.

Table 7.10 Results for multicomponent nonideal dynamic-distillation

.4

Time	Mole fraction of component on bottom								
(min.)	C ₅	C ₆	C ₇	C ₈	C ₉	C ₁₀	C ₁₁		
0	0.00000	0.00030	0.00710	0.02140	0.15800	0.60520	0.20790		
10	0.00000	0.00030	0.00690	0.02140	0.15840	0.60520	0.20800		
20	0.00000	0.00030	0.00690	0.02142	0.15821	0.60521	0.20796		
30	0.00000	0.00300	0.00690	0.02140	0.15780	0.60360	0.20740		
40	0.00000	0.00300	0.00690	0.02140	0.15750	0.60390	0.20730		
60	0.00000	0.00300	0.00670	0.02150	0.15760	0.60380	0.20730		
90	0.00000	0.00280	0.06260	0.02030	0.14860	0.57010	0.19560		
120	0.00000	0.00280	0.06270	0.02020	0.14850	0.57020	0.19560		

Table 7.11 Results for multicomponent nonideal dynamic-distillation

Figure 7.4 Plot of C₅ mole fraction at several times

Figure 7.5 Plot of C_6 mole fraction at several times

Figure 7.6 Plot of C7 mole fraction at several times

Figure 7.7 Plot of C8 mole fraction at several times

Figure 7.8 Plot of C9 mole fraction at several times

Figure 7.9 Plot of C_{10} mole fraction at several times

Figure 7.10 Plot of C_{11} mole fraction at several times

Table 7.12 In comparison of distillate (Rubber Solvent) @ 120 min.

Fraction	C ₅	C ₆	C ₇	C ₈	C ₉	C ₁₀	C ₁₁
Model	0.0283	0.1881	0.5212	0.1782	0.0283	0.0276	0.0283
GC	0.0181	0.3290	0.5977	0.0534	0.0000	0.0000	0.0000

Table 7.13 Enthalpy values from dynamic simulation

Tray	Time (min.)								
	0	10	30	60	120				
0	0	1.10*1015	4.98*1015	2.01*1010	2.05*1017				
5	5.40*1010	7.72*1011	6.76*10 ¹³	3.68*10 ¹⁵	9.46*1017				
10	3.18*109	2.38*1013	8.95*10 ¹³	2.36*10 ¹⁴	2.09*10 ¹⁵				
15	1.39*10**	1.72*1014	5.04*1014	1.01*1015	2.37*1015				