PREPARATION AND CHARACTERIZATION OF POLYPYRROLE -FILMS FOR GAS SENSOR APPLICATION

Ms. Walaiporn Prissanaroon

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 1998 ISBN 974-638-517-8

Thesis Title	: Preparation and Characterization of Polypyrrole Films	
	for Gas Sensor Applications	
Ву	: Ms. Walaiporn Prissanaroon	
Program	: Polymer Science	
Thesis Advisors	: Assoc. Prof. Anuvat Sirivat	
	Prof. Johannes Schwank	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in patial fulfillment of the requirements for the Degree of Master of Science.

X. Director of the College

(Prof. Somchai Osuwan)

Thesis Committee

Anuat Sound

(Assoc. Prof. Anuvat Sirivat)

bl Sil (......

(Prof. Johannes Schwank)

R. Hyprexision

(Dr. Rathanawan Magaraphan)

ABSTRACT

962016 : POLYMER SCIENCE PROGRAM

KEY WORDS : Conductive Polymer / Specific conductivity / Polypyrrole / Gas Sensor

Walaiporn Prissanaroon: Preparation and Characterization of Polypyrrole Films for Gas Sensor Application. Thesis Advisors: Prof. Johannes Schwank and Assoc. Prof. Anuvat Sirivat, 85 pp. ISBN 974-638-517-8

Polypyrole (PPy), a conductive polymer, was synthesized chemically by using dodecylbenzene sulfonic acid (DBSA) as the dopant and ammoniumpersulfate (APS) as the oxidant. PPy films were prepared by casting the solution of PPy dissolved in m-cresol on a glass slide. The doping level of doped PPy was controlled by the DBSA concentration used and determined by elemental analysis. The spectra of FT-IR and UV-VIS light absorption of the soluble PPy indicated that both the sulfate anion and the bipolaron absorptions respectively increased with the doping level. The morphology of DBSA-doped PPy at low doping levels had a granular appearance but changed into a fibrillar type at higher doping levels. The conductivity was found to increase with temperature in N₂ atmosphere in agreement with the variable hopping process theory. However, at low temperatures and doping levels, the opposite behavior occurred due to the free volume expansion which tended to retard the electron hopping process. The specific conductivity of DBSA-doped PPy films increased with SO_2 concentration in the range of 500 - 2500 ppm. In SO_2 atmosphere, we found that the conductivity increased with temperature at low temperatures, indicating semiconductor behavior. But at high temperatures, the conductivity decreased with temperature possibly due to desorption of SO₂ molecules from polypyrrole chains.

บทคัดย่อ

วลัยพร ปฤษณารุณ : การเตรียมและทคสอบคุณสมบัติของฟิล์มพอลิไพรอลเพื่อใช้ ในการตรวจวัดก๊าซ (Preparation and Characterization of Polypyrrole Films for Gas Sensor Application) อ.ที่ปรึกษา : Prof. Johannes Schwank และ รศ. คร. อนุวัฒน์ ศิริวัฒน์ 85 หน้า ISBN 974-638-517-8

พอลิไพรอล (Polypyrrolc) ซึ่งเป็นพอลิเมอร์นำไฟฟ้าชนิคหนึ่งถูกสังเคราะห์ทาง เคมีโดยใช้ โดเดซิลเบนซีนซัลโฟนิค แอซิค (Dodecylbenzene sulfonic acid) เป็นสารโด้ป และ แอมโมเนียมปอร์ซัลเฟต (Ammoniumpersulfate) เป็นสารออกซิแคนซ์ ฟิล์มพอลิไพรอลถูกเตรียม โดยการเทสารสะลายพอลิไพรอลซึ่งมีเอ็ม-ครีซอล (m-cresol) เป็นตัวทำละลายลงบนแผ่นกระจก สไลด์ ระดับการโด๊ปของฟิล์มพอลิไพรอลซึ่งวิเคราะห์โดยเครื่องวิเคราะห์ธาต (Elemental Analyzer) สามารถถูกควบคุมโดยความเข้มข้นของโดเดซิลเบนซีนซัลโฟนิคแอซิด อินฟาเรคและยู ้วี-วิสิเบิ ถสเปกตรัมชี้ให้เห็นว่าการดูดกลื่นแสงของซัลเฟตแอนไอออนและไบโพลารอน (Bipolaron) เพิ่มขึ้นตามระดับการโด๊ป นอกจากนั้นพอลิไพรอลที่มีระดับการโด๊ปต่ำจะมีสัญจาน วิทยาเป็นแบบแม็คกลม และจะเปลี่ยนเป็นชนิคเส้นใยเมื่อระคับการโค๊ปเพิ่มขึ้น ค่าการนำไฟฟ้าของ พอลิไพรอลเพิ่มขึ้นตามอุณหภูมิซึ่งเป็นไปตามทฤษฎี Variable Hopping Process Theory อย่างไรกี ตามสำหรับที่ระดับการโด๊ปต่ำและอุณหภูมิต่ำ จะเกิดพฤติกรรมตรงกันข้ามเนื่องจากการขยายตัว ของปริมาณว่าง (Free volume) เมื่อทคสอบในบรรยากาศของก๊าซซัลเฟอร์ไคออกไซค์ พบว่าค่าการ นำไฟฟ้าจะเพิ่มขึ้นตามความเข้มข้นของก๊าซซัลเฟอร์ไดออกไซด์ และในบรรยากาศของก๊าซ ซัลเฟอร์ไดออกไซด์ พบว่าค่าการนำไฟฟ้าจะเพิ่มขึ้นตามอุณหภูมิช่วงค่ำซึ่งแสดงถึงพฤติกรรมของ สารกึ่งตัวนำ ในขณะที่อุณหภูมิช่วงสูง ค่าการนำไฟฟ้าจะลดลงตามอุณหภูมิที่เพิ่มขึ้น ทั้งนี้อาจเนื่อง ้มาจากการที่โมเลกุลของก๊าซซัลเฟอร์ไดออกไซด์บางส่วนหลดออกจากสายโซ่โพลิไพรอล

ACKNOWLEDGMENTS

The author would like to gratefully acknowledges all professors who have taught her at the Petroleum and Petrochemical College, Chulalogkorn University, especially those in the Polymer Science Program.

She greatly appreciates the efforts of her research advisors, Professor Johannes Schwank, Department of Chemical Engineering, University of Michigan and Associate Professor Anuvat Sirivat of the Petroleum and Petrochemical College, Chulalongkorn University for their constructive criticisms, suggestions and proof-reading of this manuscript. She would like to give thanks to Dr. Ratthanawan Magaraphan for being a thesis committee member.

She would like to give a special thank for C.P.O. Poon Arjpru, the electrical technician, at the Petroleum and Petrochemical College who helped in the design and fabrication of the four-point probe detector with gas chamber.

The author also thanks all of her friends and the staff at the PPC who encouraged her in carrying out the experiment and this thesis writing. Finally, she is deeply indebted to her presents for their love, understanding, encouragements, and for being a constant source of her inspiration.

TABLE OF CONTENTS

PAGE

13

Title Page	i
Abstract	iii
Acknowledgments	V
List of Tables	ix
List of Figures	xi

CHAPTER

I	INT	RODUCTION	
	1.1	Electrically Conductive Polymers	1
		1.1.1 Basic Concept	1
		1.1.2 Charge Carriers and Conductivity in	
		Electrically Conductive Polymers	3
	1.2	Conductive Polymer Films in Gas Sensor	
		Applications	7
	1.3	Polypyrrole	8
	1.4	General Objectives	9
	1.5	Literature Survey	9
11	EX	PERIMENTAL SECTION	
	2.1	Materials	13
	2.2	Methodology	13

2.2.1 Synthesis of DBSA-doped polypyrrole

2.2.2 Preparation of DBSA-doped polypyrrole films	15

2.3	Characterization / Sample Preparation	16
	2.3.1 FTIR Spectrometer	16
	2.3.2 Elemental Analyzer	16
	2.3.3 SEM	17
	2.3.4 UV-VIS Spectrometer	18
2.4	Electrical Properties	19
	2.4.1 The Four-Points Probe for Characterizing Sheet	
	Resistivity	19
	2.4.2 Conductivity Detector with Gas Chamber	21

III RESULTS AND DISCUSSION

3.1	Characterization	27
	3.1.1 FTIR Spectrometry	27
	3.1.2 Elemental Analysis	30
	3.1.3 UV-VIS Spectrometer	33
	3.1.4 SEM	35
3.2	Preliminary Test	39
	3.2.1 Effect of Aging Time on Conductivity	
	Response	39
	3.2.2 Statistical Test	42
	3.2.3 Effect of Applied Current on Conductivity	
	Response	44
3.3	Electrical Conductivity	45
	3.3.1 Effect of Dopant Concentration	45
	3.3.2 Effect of Testing Temperature	46

viii

	3.3.3 Effect of Exposure Time to SO ₂	53
	3.3.4 Effect of SO ₂ Concentration	55
	3.3.5 Effect of Testing Temperature in SO ₂	
	atmosphere	58
CO	CLUSIONS	60
RE	FERENCES	62
AP	PENDICES	64
Α	Properties and Toxicity Data of SO ₂	64
B	Determination of Geometric Correction Factor	67
С	Calculation of atom mole ratios from elemental	
	analyzer of DBSA-doped polypyrrole	69
D	Electrical Property Data	72
CU	RRICULUM VITAE	85

LIST OF TABLES

TABLE

PAGE

3.1	Atom mole ratios from elemental analyzer of DBSA-	
	doped polypyrrole with various DBSA concentration	31
3.2	The conductivity change of DBSA-doped polypyrrole	
	films as a function of DBSA concentration	40
3.3	The statistical data of 0.30 M DBSA-doped polypyrrole	
	films	42
3.4	The activation energy for various DBSA concentration in	
	the temperature range : 18 °C to 70 °C	48
B-1	Data of K factor determination	67
C-1	Raw data from element analyzer and the resulting doping	
	level	69
D-1	Effect of aging time on the specific conductivity for the	
	DBSA-doped polypyrrole with various DBSA	
	concentrations	72
D-2	X-bar charts of the specific conductivity for 0.30 M	
	DBSA-doped polypyrrole at 18 ^O C	74
D-3	Effect of the applied current on the specific conductivity	
	of the DBSA-doped polypyrrole films at 18 ^O C	75
D-4	Effect of DBSA concentration on the specific conductivity	
	of the DBSA-doped polypyrrole films at 18 ^O C	76
D-5	Plot of σ_{dc} versus T for the DBSA-doped polypyrrole	
	with various DBSA concentrations	77

D-6	Effect of exposure time to 2500 ppm SO ₂ at 18 ^o C for	
	DBSA-doped polypyrrole films with various DBSA	
	concentrations	80
D- 7	Effect of SO ₂ concentration at 18 ^o C for DBSA-doped	
	polypyrrole films with various DBSA concentrations	82
D-8	Effect of temperature in SO ₂ atmosphere at 18 - 70 $^{\rm O}$ C	
	for DBSA-doped polypyrrole films with various DBSA	
	concentrations	84

х

LIST OF FIGURES

FIGURE

PAGE

1.1	Repeat unit of several electrically conductive polymers	1
1.2	Schematic representation of band structure of metal,	
	semiconductor/conductive polymer and insulator	4
1.3	Generation of polaron and bipolaron defects in	
	conjugated organic polymer	5
1.4	Band structure of conjugated polymer as function of	
	doping level	6
2.1	Flow chart of synthesis of soluble polypyrrole	14
2.2	Λ scheme of the apparatus for synthesis DBSA-doped	
	polypyrrole	15
2.3	Scheme of the four-point probe	19
2.4	A schematic representation of conductivity detector with	
	gas chamber	23
3.1	The FTIR spectra of DBSA-doped polypyrrole and	
	neutral polypyrrole	28
3.2	The FTIR spectra of DBSA-doped polypyrrole prepared	
	by using various DBSA concentrations	29
3.3	Plot of the doping level as a function of DBSA	
	concentration	30
3.4	The proposed chemical structures of polypyrrole	32
3.5	UV-VIS spectra of m-cresol solution of polypyrrole	
	doped by various DBSA concentrations	33

3.6	SEM image in the edge view of 0.30 M DBSA-doped	35
	polypyrrole film	
3.7	SEM micrographs of the synthesized DBSA-doped	38
	polypyrrole with various DBSA concentrations	
3.8	Effect of aging time on the specific conductivity for the	
	DBSA-doped polypyrrole with various DBSA	
	concentrations	41
3.9	X-bar charts of the specific conductivity for 0.30 M	
	DBSA-doped polypyrrole at 18 °C	43
3.10	Effect of the applied current on the specific conductivity	
	of the DBSA-doped polypyrrole films at 18 °C	44
3.11	Effect of DBSA concentration on the specific conductivity	
	of the DBSA-doped polypyrrole films at 18 °C	45
3.12	Plot of σ_{dc} versus T for the DBSA-doped polypyrrole	
	with various DBSA concentrations	47
3.13	Plot of $\ln\sigma_{dc}$ versus $1/T$ for the DBSA-doped	
	polypyrrole with various DBSA concentrations	48
3.14	A possible model for low-doped polypyrrole chains when	
	temperature increases	50
3.15	Plots of ln σ_{dc} versus $1/T^*$ and $1/T^*$ for the DBSA-doped	
	polypyrrole with various DBSA concentrations	51
3.16	Aromatic (ground state) and quinoid-like geometric	
	structures for polypyrrole, polythiophene and	
	poly(p-phenelene)	52

FIGURE

PAGE

3.17	Effect of exposure time to 2500 ppm SO_2 at 18 °C for	
	DBSA-doped polypyrrole films with various DBSA	
	concentrations	54
3.18	Effect of SO ₂ concentration at 18 °C for DBSA-doped	
	polypyrrole films with various DBSA concentrations	56
3.19	Plot of the specific conductivity change versus SO ₂	
	concentration at 18 °C for DBSA-doped polypyrrole	
	films with various DBSA concentrations	57
3.20	Plot of the specific conductivity versus temperatures in	
	1000 ppm SO_2 atmosphere of the DBSA-doped	
	polypyrrole films with various DBSA concentrations	59