REFERENCES

- Chance, R.R. and Boudreaux, D.S. <u>Quantum Chemisry of Polymers-Solid</u> State Aspects (1984): 221.
- Gabor, H. <u>Polymeric sensing films: new horizons in sensorics?</u> Sensors and Actuators A46-47 (1995): 85.
- Esther, J.W., and Jonathan, M.S. <u>Gas and Vapor Detection With Poly(pyrrole)</u> <u>Gas Sensors.</u> Anatyst 116 (1991): 1125.
- Qian, R., Salaneck, W.R., and Ranby, B. <u>Conjugated Polymers and Related</u> <u>Materials.</u> Oxford University Press, London, (1993) : 161.
- Lee, J.Y., Kim, D.Y., and Kim, C.Y. <u>Synthesis of Soluble Polypyrrole of The</u> <u>Doped State in Organic Solvents</u>. Synthetic Metals 74 (1995): 103.
- Street, G.B., Clarke, T.C., Krounbi, M., and Kanazawa, K.K. <u>Chemical</u> <u>Modification of Conducting Polypyrrole Films.</u> Mol. Cryst. Liq. Cryst. 83 (1982): 253.
- Miasik, J., Hooper, A., and Tofield, B. <u>Conducting gas sensors.</u> J. Chem. Soc., Faraday Trans. I 82 (1986): 1117.
- Yoshino, K., and Gu, H.B. Jpn. J. Appl. Phys. 25 (1986) : 1064.
- Chiang, C.K., Fincher C.R., et al. Phys. Rev. Lett. 39 (1977) : 1098.
- Gustafsson. G., Lundstrom I., et al. <u>The Interaction between Ammonia and</u> <u>Polv(pyrrole).</u> Synthetic Metals 31 (1989) : 163.
- Tetsuro, H., Hiroshi, Y. <u>Gas Sensitivities of Polypyrrole Films to Electron</u> <u>Acceptor Gases.</u> Bull. Chem. Soc. Jpn. 62 (1989) : 1710.
- Blackwood, D., and Josowicz, M. J. Phys Chem. 95 (1991): 493.
- Jonathan, M.S., and Esther, J. <u>Gas and Vapor Detection With Polypyrrole Gas</u> <u>Sensor.</u> Analyst 117 (1992): 1265.

- Parthasarathy, R.V., Menon, V.P., and Martin, C.R. Chemistry of Materials. 9 (1997): 560.
- Salmon, M., Kanazawa, K.K., and Diaz, A.F. <u>A chemical Route to Pyrrole</u> <u>Polymer Films.</u> J. Polym. Sci. Polym. Lett. Ed. 20 (1982) : 187.
- Yakushi, K., Lauchlan, L.J., Clarke, T.C., and Street, G.B. J. Chem. Phys. 79 (1983): 4774.
- Meixiang, W., and Youqing, S. <u>Soluble Conductive Polypyrrole Synthesized</u> <u>By In Situ Doping with b-Naphthalene Sulphonic Acid.</u> Journal of Polymer Science: Part A Polymer Chemistry 35 (1997): 3689.
- Berthet, G., Blanc, J.P., Germain, J.P., and Larbi, A. <u>Electroactive Polymers in</u> <u>Thin Lavers : A Potential Application as A Gas Sensor.</u> Synthetic Metals 18 (1987) : 715.
- Mott, N.F., and Davis, E. <u>Electronic Processes in Non-Crystalline Materials</u>. Clarendon Press, Oxford, (1979) : 6.
- Bredas, J.L., Themans, B., Fripiat, J.G., Andre, J.M. and Chance, R.R. Phys. Rev. B: Condens. Matter 25 (1982): 7652.

APPENDICES

APENDIX A Properties and Toxicity Data of Sulfur Dioxide (SO_2)

Physical P	roperties
------------	-----------

Color	: Colorless
Boiling point	: -10 °C
Melting point	: -75.5 °C
Solubility	: 10 g / 100 mL in water at 20 $^{\rm o}{\rm C}$
Odor	: Pungent odor detectable at 0.3 to 5 ppm
Vapor Density	: 2.26 ($air = 1.0$)
Vapor Pressure	: 1779 mmHg at 21 ^o C
Flash Point	: Noncombustible
Toxicity Data [*]	
LC inhal (rat)	: 2520 ppm (6590 mg / m ³ , 1 hour)
LC inhal (human)	: 1000 ppm (2600 mg / m ³ , 10 minutes)
PEL (OSHA)	: 5 ppm (13 mg / m ³)
TLV-TWA (ACGIH)	: 2 ppm (5.2 mg / m ³)
STEL (ACGIH)	: 5 ppm (13 mg / m ³)

Major Hazards

- Intensity irritating to the skin, eyes and respiratory tract; moderate acute toxicity.
- Inhalation of high concentrations may cause death as a result of respiratory paralysis and pulmonary edema.
- Exposure to 400 to 500 ppm is immediately dangerous, and 1000 ppm for 10 minutes is reported to have caused death in humans.
- Exposure to concentrations of 10 to 50 ppm for 5 to 15 minutes causes irritation of the eyes, nose and throat, choking and coughing.

Flammability and	: Noncombustible
Explosibility	

Reactivity and : Contact to some powdered metals and Incompatibility with alkali metals such as sodium or potassium may cause fires and explosions. Liquid sulfur dioxide will attack some forms of plastics, rubber and coatings.

* <u>Note</u>

- 1. LC inhal : Limit concentration = the atmospheric concentration which results in 50 % death.
- **2.** PEL (OSHA) : Permissible Exposure Limits = the maximum allowable concentrations of US. Occupational Safety and Health Administration.

- 3. TLV-TWA (ACGIH) : Threshold limit value Time weight average = the allowable concentration that permitted to work within 8 h from The American Conference of Governmental Industrial Hygienists.
- **4. STEL (ACGIH) : Short Time Exposure limit** = the allowable concentration that permitted to work and break every 15 min from The American Conference of Governmental Industrial Hygienists.

Geometric correction factor (K) is a correction factor that takes into account of geometric effects. It depends on the configuration and probe tip spacing. K factor can be determined by comparing the specific resistivity of standard material detected from the constructed four-point probe detector with the specific resistivity from chemical handbook.

In this experiment, the standard materials that we used were copper sheets and aluminium sheets. Sheet resistivities of these materials were measured by using the four-point probe detector. The geometric correction factor was computed from Equation B-1 and shown in Table B-1 :

$$K = \frac{\rho_{ref}}{R_s \times t}$$
(B-1)

where

K = Geometric correction factor $\rho_{ref} = known resistivity from the chemical handbook (Ω.cm)$ $R_s = sheet resistivity (Ω)$ t = sheet thickness (cm)

Table B-1 Data of K factor determination

Material	$\rho_{real}(\Omega.cm)$	R _s (Ω)	t (cm)	$\mathbf{R}_{s} \times \mathbf{t} \ (\Omega.\mathbf{cm})$	K
Copper	1.678×10 ⁻⁰	0.06707	127×10-4	8.518×10 ⁻¹	1.97×10-3
Copper	1.678×10 ⁻⁶	0.07500	127×10-4	9.525×10-4	1.92×10-3
Aluminium	2.650×10-6	0.01545	0.09	1.395×10-	1.89×10 ⁻³
Aluminium	2.650×10-6	0.1460	0.01	1.460×10*	1.82×10-3
				K _{avg}	1.86×10-3

In our experiment, we found that we have to multiply the specific resistivity of polypyrrole films measured from the Four-Point Probe system by 1.86×10^{-3} to get the correct specific resistivity.

APPENDIX C Calculation of Atom Mole Ratios from Elemental Analyzer of DBSA-doped Polypyrrole

The weigh percents of C, H, N, and S in the DBSA-doped polypyrrole prepared by using various DBSA concentration were determined by element analyzer. Raw data and the resulting doping levels were calculated by using Equation 2.1 and are shown in Table C-1

[DBSA] (M)		doping level (%)			
	C	Н	N	S	
0.12	61.95	7.60	8.70	4.74	23.79
0.15	63.48	7.89	8.55	5.09	26.00
0.20	65.37	8.27	8.35	5.45	28.50
0.25	68.24	8.59	8.47	5.81	29.95
0.30	64.64	8.31	7.23	5.91	35.70
0.35	64.10	8.24	7.04	5.93	36.78
0.40	63.36	8.22	6.49	6.09	40.98
0.45	65.84	8.63	5.99	6.72	48.99

Table C-1 Raw data from element analyzer and the resulting doping level

The atom mole ratios of C, H, N, S and O in DBSA-doped polypyrrole can be used to roughly indicate the chemical structure. The C, H. N, S and O mole ratios of 0.12 M DBSA-doped polypyrrole, for example, were calculated as followed :

1. The oxygen content was determined by difference with weight of C, H. N and S obtained from the elemental analysis.

$$O = 100 - 61.95 - 7.60 - 8.70 - 4.74 = 17.01 \%$$

2. Mole ratio of each element was computed by dividing the weigh ratio by each molecular weight.

С	= 61.95 / 12	= 5.163 mole
Н	= 7.60 / 1.008	= 7.540 mole
Ν	= 8.70 / 14	= 0.621 mole
S	= 8.70 / 32.06	= 0.148 mole
0	= 17.01 / 32.06	= 1.063 mole

3. Because each pyrrole ring contains one N atom, the mole ratio of each element was normalized with one N atom. This means that mole ratio of each element was divided by mole ratio of N.

С	= 5.163 / 0.621	= 8.307
Н	= 7.540 / 0.621	= 12.133
Ν	= 0.621 / 0.621	= 1.000
S	= 0.148 / 0.621	= 0.238
0	= 1.063 / 0.621	= 1.711

4. Because the dopant that used in this work was DBSA $(C_{18}H_{29}O_3S)$ and the %doping level of 0.12 M DBSA-doped polypyrrole is 23.79 %. so $(C_{18}H_{29}O_3S)_{0.238}$ should be presented. The atom mole ratios of C, H, O and S in DBSA anions that compensated the polypyrrole chains were calculated as followed :

С	= 8.307 - (mole of C contained in pyrrole ring)
	= 8.307 - 4 = 4.037
Н	= doping level × 29
	$= 0.238 \times 29 = 6.900$
S	= doping level $=$ 0.238
0	= doping level × 3

5. Finally, the mole ratios of C, H and N in a pyrrole ring were

$$C = 4$$

H = 12.133 - (mole of H contained in DBSA)
= 12.133 - 6.900 = 5.233
N = 1

The atom mole ratio of other doping level DBSA-doped polypyrrole was calculated as described above and the results are shown in Table 3.1.

APPENDIX D Electrical Property Data

D-1 Effect of Aging Time

Sample : 0.15 M - 0.40 M DBSA-doped polypyrrole films

Testing conditions : Applied current = $2.7 \mu A$

Testing temperature = $18 \, {}^{\circ}\text{C}$

Atmosphere = $1 \text{ atm } N_2$

Table D-1Effect of aging time on the specific conductivity for the DBSA-
doped polypyrrole with various DBSA concentrations (Figure
3.8)

no. of days	σ _{dc} (S/cm)						
stored	0.15 M DBSA	0.20 M DBSA	0.25 M DBSA	0.30 M DBSA	0.35 M DBSA	0.40 M DBSA	
1	0.2549	0.3027	0.6266	0.9797	1.4381	1.4707	
2	0.2891	0.2734	0.3097	0.9690	1.6774	1.6933	
3	0.2967	0.2536	0.5833	1.2401	1.5406	1.4922	
5	0.2461	0.5067	0.6836	1.1399	1.4519	1.3299	
8	0.2258	0.6009	0.5396	1.3396	1.6212	1.1480	
10	0.2870	0.6655	0.8858	1.3262	1.8432	1.5720	
15	0.3050	0.7038	0.8769	1.4468	1.7793	1.6570	
20	0.3579	0.8391	1.0976	1.6719	1.5557	1.4643	
25	().4748	0.8931	1.3536	1.7362	1.9194	1.8032	
30	0.5437	0.9377	1.4809	1.8350	1.9991	1.9267	
35	0.6721	0.9467	1.5716	1.9494	1.9817	2.0987	

no of days	σ _{dc} (S/cm)							
stored	0.15 M DBSA	0.20 M DBSA	0.25 M DBSA	0.30 M DBSA	0.35 M DBSA	0.40 M DBSA		
40	0.6752	0.9558	1.6075	1.9291	1.9782	1.9947		
50	().6826	1.0820	1.6105	1.9798	2.0387	2.0292		
60	0.6938	1.0927	1.6273	2.0209	2.1335	2.1222		
70	0.7047	1.1007	1.6327	2.0457	2.1243	2.2020		

D-2 Statistical Test

Sample : 0.30 M DBSA-doped polypyrrole films Batch 1 and Batch 2 Testing conditions : Applied current = 2.7 μ A Testing temperature = 18 °C Atmosphere = 1 atm N₂

Table D-2X-bar charts of the specific conductivity for 0.30 M DBSA-doped polypyrrole at 18 °C (Figure 3.9)

	σ_{dc} (S/cm)			
Sample No.	Batch 1	Batch 2		
1	2.0795	1.9372		
2	2.0880	1.9472		
3	2.0694	1.9759		
4	2.0941	1.9890		
5	1.9698	2.0639		
6	2.0631	2.0553		
7	1.9925	1.9627		
8	1.9617	2.0618		
9	2.0796	1.9445		
10	2.0815	2.0117		
Mean	2.0479	1.9949		
SD.	0.0518	0.0502		
Control limit (Mean ± SD.)	1.9961 - 2.0997	1.9447 - 2.0451		
Specification (Mean ± 3 SD.)	1.8925 - 2.2033	1.8443 - 2.1455		
%CV (SD. × 100 / Mean)	2.53	2.52		

D-3 Effect of Applied Current

Sample : 0.15 M - 0.30 M DBSA-doped polypyrrole films Testing conditions : Applied current = $0.5 - 2.7 \mu A$ Testing temperature = $18 \ ^{o}C$ Atmosphere = $1 \ atm \ N_2$

Table D-3Effect of the applied current on the specific conductivity of theDBSA-doped polypyrrole films at 18 °C (Figure 3.10)

Applied current (µm)	σ_{dc} (S/cm)					
	0.15 M	0.30 M DBSA				0.40 M
	DBSA	1 st	2nd	Mean	SD.	DBSA
0.5	0.6368	1.8668	1.9001	1.8834	0.0235	1.8668
1.0	0.6483	1.9007	1.8997	1.9002	0.0007	1.9007
1.5	0.6608	1.9290	1.9005	1.9249	0.0345	1.9290
2.0	0.6701	1.9493	1.9213	1.9353	0.0197	1.9493
2.5	0.6734	1.9258	1.9165	1.9211	0.0066	1.8917
2.7	0.6778	1.9867	1.9542	1.9758	0.0188	1.9867

D-4 Effect of Dopant Concentration

Sample : 0.15 M - 0.40 M DBSA-doped polypyrrole films Testing conditions : Applied current = 2.7 μ A Testing temperature = 18 °C

Atmosphere = $1 \text{ atm } N_2$

Table D-4Effect of DBSA concentration on the specific conductivity ofthe DBSA-doped polypyrrole films at 18 °C (Figure 3.11)

(DRSA) (M)	σ_{dc} (S/cm)						
	lst	2nd	Mean	S.D.			
0.15	0.6701	0.6766	0.6734	0.0046			
0.20	1.0165	0.8489	0.9327	0.1185			
0.25	1.6244	1.4157	1.5201	0.1475			
0.30	1.9337	1.7632	1.8485	0.1205			
0.35	1.9806	1.9006	1.9406	0.0565			
0.40	2.0696	1.9580	2.0138	0.0789			

D-5 Effect of Testing Temperature

Sample : 0.14 M - 0.40 M DBSA-doped polypyrrole films

Testing conditions : Applied current = $2.7 \ \mu A$

Testing temperature = $18 \text{ }^{\circ}\text{C}$ - $70 \text{ }^{\circ}\text{C}$

Atmosphere = 1 atm N_2

Table D-5	Plot of σ_{dc} versus T	for the DBSA-doped	polypyrrole with				
	various DBSA concentrations (Figure 3.12)						

Temp	$\sigma_{de}(S/cm)$						
(°C)	0.14 M	0.15 M	0.20 M	0.25 M	0.30 M	0.35 M	0.40 M
	DBSA	DBSA	DBSA	DBSA	DBSA	DBSA	DBSA
18	0.6325	0.6124	0.8492	1.4145	1.6683	1.9029	2.0043
19	0.6528	0.6226	0.8492	1.4125	1.7011	1.9137	1.9615
20	0.6389	0.6230	0.8626	1.4189	1.6565	1.9131	1.9100
20	0.6752	0.6614	0.7802	1.3733	1.7272	1.8556	1.9808
Mean	0.6570	0.6422	0.8214	1.3961	1.6918	1.8843	1.9454
S.D.	0.0256	0.0271	0.0583	0.0322	0.0500	0.0406	0.0501
21	0.6423	0.6594	0.8688	1.4233	1.6603	1.9363	1.9484
22	0.6408	0.6652	0.8688	1.4277	1.6775	1.9325	1.9533
23	0.6349	0.6528	0.8752	1.4321	1.7033	1.9674	1.9597
24	0.6295	0.6491	0.8821	1.4409	1.7247	2.0121	1.9726
25	0.6054	0.6331	0.8893	1.4454	1.7478	2.0068	1.9842
25	0.6517	0.5991					
Mean	0.6285	0.6161					
S.D.	0.0327	0.0240					
26	0.6370	0.6288	0.8854	1.4518	1.7324	1.9873	1.9921
27	0.6328	0.6134	0.9009	1.4583	1.7704	2.0671	2.0017
28	0.6248	0.6075	0.9051	1.4648	1.7778	2.0296	2.0348
29	0.6265	0.5932	0.9175	1.4739	1.8156	2.0121	2.0365

Tem	$\sigma_{de}(S/cm)$						
1 emp. (°C)	0.14 M	0.15 M	0.20 M	0.25 M	0.30 M	0.35 M	0.40 M
	DBSA	DBSA	DBSA	DBSA	DBSA	DBSA	DBSA
30	0.6368	0.5697	0.9356	1.5046	1.7895	1.9960	2.0312
30	0.6108	0.5278	1.0122	1.4474	1.9037	2.1015	1.9354
Mean	0.6238	0.5487	1.0189	1.4760	1.8466	2.0487	1.9833
S.D.	0.0184	0.0296	0.1178	0.0404	0.0807	0.0746	0.0677
31	0.6116	0.5548	0.9366	1.4988	1.8219	2.0224	2.0212
32	0.6134	0.5385	0.9377	1.5067	1.8640	2.0171	2.0305
33	0.6053	0.5356	0.9618	1.5199	1.8589	2.0516	2.0394
34	0.6098	0.5375	0.9790	1.5222	1.8940	2.0607	2.0406
35	0.6325	0.5338	0.9896	1.5247	1.9000	2.0210	2.0755
35	0.6156	0.5705					
Mean	0.6240	0.5521					
S.D.	0.0119	0.0259					
36	0.6277	0.5676	1.0171	1.5445	1.9177	2.0866	2.1136
37	0.6391	0.5725	1.0285	1.5532	1.9347	2.0665	2.1222
38	0.6313	0.5855	1.0344	1.5688	1.9457	2.1349	2.1222
39	0.6362	0.6037	1.0344	1.5732	1.9677	2.1429	2.1066
40	0.6349	0.5637	1.0462	1.6137	1.9454	2.1091	1.9848
40	0.6569	0.6146	1.1614	1.5246	2.1253	2.2031	2.1513
Mean	0.6459	0.5891	1.1038	1.5691	2.0353	2.1561	2.0680
S.D.	0.0156	0.0360	0.0815	0.0630	0.1272	0.0665	0.1177
41	0.6408	0.6208	1.0583	1.6128	1.9020	2.0792	2.1645
42	0.6479	0.6362	1.0583	1.6369	2.0045	2.1757	2.1807
43	0.6566	0.6453	1.0891	1.6409	2.0143	2.1757	2.1615
44	0.6611	0.6513	1.0958	1.6574	2.0255	2.1837	2.1671
45	0.6679	0.6561	1.0953	1.6638	2.0599	2.1645	2.2233
46	0.6791	0.6697	1.1164	1.6870	2.0645	2.1462	2.2486
47	0.6778	0.6688	1.1164	1.6713	2.0762	2.1669	2.2647
48	0.6713	0.6939	1.1164	1.6824	2.0853	2.2059	2.2612

	$\sigma_{dc}(S/cm)$						
Temp. (°C)	0.14 M	0.15 M	0.20 M	0.25 M	0.30 M	0.35 M	0.40 M
(-)	DBSA	DBSA	DBSA	DBSA	DBSA	DBSA	DBSA
49	0.6645	0.6875	1.1330	1.7023	2.1089	2.2457	2.3107
50	0.6538	0.6395	1.1164	1.6758	2.0787	2.2736	2.2072
50	0.6938	0.6997	1.2343	1.7577	2.2468	2.3847	2.3107
Mean	0.6738	0.6696	1.1753	1.7167	2.1627	2.3291	2.2589
S.D.	0.0283	0.0426	0.0834	0.0579	0.1189	0.0786	0.0517
51	0.6756	0.7072	1.1257	1.7520	2.2179	2.2781	2.3446
52	0.6835	0.7023	1.1359	1.7777	2.1702	2.2848	2.3807
53	0.6801	0.7032	1.1482	1.8061	2.2352	2.2848	2.4317
54	0.6926	0.7164	1.1482	1.7885	2.1970	2.3102	2.3628
55	0.7003	0.7219	1.1751	1.7761	2.2343	2.3494	2.3769
56	0.7062	0.7168	1.1777	1.7862	2.2776	2.3698	2.3961
57	0.7199	0.7165	1.1942	1.8091	2.2695	2.3511	2.3721
58	0.7010	0.7123	1.1937	1.8297	2.2763	2.3928	2.3970
59	0.7003	0.7138	1.2318	1.8369	2.3076	2.4294	2.3686
60	0.6977	0.7608	1.2120	1.8403	2.2128	2.4389	2.2430
60	0.7319	0.7205	1.4044	1.7040	2.6199	2.5141	2.3966
Mean	0.7148	0.7406	1.3082	1.7721	2.4163	2.4765	2.3198
S.D.	0.0242	0.0285	0.1360	0.0964	0.2879	0.0532	0.1086
61	0.7203	0.7211	1.2758	1.8566	2.3487		2.4502
62	0.7218	0.7331	1.2318	1.8565	2.3641		2.4563
63	0.7218	0.7350	1.2758	1.8674	2.3842		2.3961
64	0.7245	0.7368	1.3024	1.8259	2.3877		2.4133
65	0.7273	0.7387	1.3396	1.8316	2.3850		2.4647
66	0.7186	0.7289	1.4034	1.8642	2.4222		2.4876
67	0.7214	0.7351	1.4353	1.8854	2.4520		2.4920
68	0.7242	0.7236			2.5033		2.4839
69	0.7153	0.7174					2.5089
70	0.7153	0.7174					2.3180

D-6 Effect of Exposure Time to SO₂

Sample : 0.15 M - 0.35 M DBSA-doped polypyrrole films

Testing conditions : Applied current = $2.7 \mu A$

Testing temperature = $18 \, {}^{\circ}\text{C}$

Atmosphere = 2500 ppm SO₂

Table D-6 Effect of exposure time to 2500 ppm SO₂ at 18 °C for DBSAdoped polypyrrole films with various DBSA concentrations (Figure 3.17)

			$\sigma_{dc}(S/cm)$		
(min)	0.15 M DBSA	0.20 M DBSA	0.25 M DBSA	0.30 M DBSA	0.35 M DBSA
-3	0.6617	0.8492	1.6293	1.9337	1.9653
-2	0.6650	0.8492	1.6305	1.9157	1.9674
- 1	0.6650	0.8489	1.6318	1.9114	1.9759
0	0.6659	0.8489	1.6338	1.9198	1.9759
0.5	0.7684	1.0149	2.1978	2.2787	2.5892
1	0.8030	1.1053	2.2224	2.3240	2.7810
2	0.8699	1.1456	2.3457	2.4484	2.8444
3	0.8913	1.2042	2.3913	2.4917	2.9445
4	0.9120	1.2202	2.4426	2.6286	3.0707
5	0.9201	1.2525	2.4965	2.6869	3.2717
6	0.9354	1.3083	2.5528	2.7341	3.3182
7	().9550	1.3396	2.5828	2.7806	3.4324
8	0.9757	1.4052	2.6278	2.8258	3.4993
9	0.9812	1.4554	2.7750	2.9161	3.7239
10	0.9967	1.5086	2.8531	2.9388	3.9809

Time	σ _{dc} (S/cm)						
(min)	0.15 M	0.20 M	0.25 M	0.30 M	0.35 M		
	DBSA	DBSA	DBSA	DBSA	DBSA		
11	1.0230	1.5739	2.8871	2.9840	3.9836		
12	1.0506	1.5629	2.8785	3.0759	4.0042		
13	1.0605	1.6030	2.8731	3.1215	4.0437		
14	1.0628	1.6494	2.8871	3.1442	4.0053		
15	1.0926	1.6796	2.9132	3.1670	3.9889		
16	1.1117	1.7110	2.9108	3.2126	4.0063		
17	1.1363	1.7272	2.9432	3.2749	4.0242		
18	1.1747	1.7604	2.9755	3.2974	3.9371		
19	1.1916	1.7775	3.0079	3.3086	3.9618		
20	1.2141	1.7949	3.0483	3.3198	3.9923		
21	1.2191	1.7862	3.0833	3.3165	3.9367		
22	1.2233	1.7949	3.0726	3.3165	4.0569		
23	1.2641	1.8042	3.0726	3.3833	4.0091		
24	1.3034	1.8226	3.0887	3.4056	4.0091		
25	1.3261	1.8414	3.0984	3.4017	3.9957		
26	1.3616	1.8332	3.1049	3.4237	3.9683		
27	1.3864	1.8444	3.1049	3.4458	3.9421		
28	1.4252	1.8478	3.0920	3.4679	3.9437		
29	1.4312	1.9060	3.1049	3.4679	3.9312		
30	1.4323	1.9218	3.1049	3.4900	3.9190		
35	1.4453	1.9310	3.1114	3.5121	3.9453		
40	1.4574	1.9438	3.1178	3.5342	3.9994		

D-7 Effect of SO₂ Concentration

Sample : 0.15 M - 0.35 M DBSA-doped polypyrrole films

Testing conditions : Applied current = $2.7 \mu A$

Testing temperature = $18 \text{ }^{\circ}\text{C}$

Atmosphere = $500 - 2500 \text{ ppm } \text{SO}_2$

Table D-7 Effect of SO2 concentration at 18 °C for DBSA-dopedpolypyrrole films with various DBSA concentrations (Figure3.18)

[\$0,]			$\sigma_{dc}(S/cm)$		
(ppm)	0.15 M	0.20 M	0.25 M	0.30 M	0.35 M
	DBSA	DBSA	DBSA	DBSA	DBSA
0	0.6607	0.8659	1.6218	1.8894	1.9396
0	0.6735	0.8589	1.6338	1.8920	1.9577
Mean	0.6671	0.8624	1.6278	1.8907	1.943
S.D.	0.956	0.622	0.4886	0.6577	0.7579
500	1.2222	1.4101	2.4262	2.5216	2.4193
500			2.2030		2.5193
Mean			2.3146		2.4693
S.D.			0.1578		0.0707
700	1.2829	1.4885	2.4278	2.6634	2.5329
1000	1.3780	1.5792	2.7536	2.7788	2.7307
1000	1.3206	1.6576	2.5268	2.9385	2.9809
Mean	1.3493	1.6184	2.6402	2.8586	2.007
S.D.	0.0406	0.533	0.582	0.6997	0.7673
1500	1.3971	1.6745	2.8462	2.8477	3.1911
1500				3.1196	
Mean				2.6536	
S.D.				0.1922	

[\$0,]			σ _{dc} (S/cm)		
(ppm)	0.15 M	0.20 M	0.25 M	0.30 M	0.35 M
	DBSA	DBSA	DBSA	DBSA	DBSA
2000	1.5466	1.7862	2.8831	3.2611	3.4735
2000	1.6918	1.9182	3.0887	3.4826	3.2577
Mean	1.6192	1.8522	2.9859	1.9433	2.0809
S.D.	0.642	0.5177	0.6868	0.7855	0.8724
2500	1.7338	1.9218	3.1049	3.4900	3.9190
2500			3.2274		3.6559
Mean			3.1661		3.7874
S.D.			0.0866		0.1860

D-7 Effect of Temperature in SO₂ Atmosphere

Sample : 0.15 M, 0.25 M and 0.35 M of DBSA-doped polypyrrole films Testing conditions : Applied current = $2.7 \mu A$

Testing temperature = $18 - 70 \text{ }^{\circ}\text{C}$

Atmosphere = $1000 \text{ ppm } \text{SO}_2$

Table D-8Effect of temperature in SO2 atmosphere at 18 - 70°C forDBSA-doped polypyrrole films with various DBSA
concentrations (Figure 3.18)

т	$\sigma_{dc}(S/cm)$					
("C)	0.15 M DBSA	0.25 M DBSA	0.35 M DBSA			
18	1.3480	2.5353	2.8307			
20	1.4198	2.6536	2.8928			
25	1.4715	2.7567	2.9862			
30	1.4904	2.8585	3.0996			
35	1.6041	2.9656	3.2561			
40	1.7098	3.0030	3.3009			
45	1.8381	3.1086	3.3743			
50	1.9273	3.1803	3.4267			
55	2.0070	3.1242	3.3223			
60	2.0134	3.0094	3.2506			
65	1.9300	2.9162	3.2303			
70	1.8919	2.8386	3.1975			

CURRICULUM VITAE

Name : Miss Walaiporn Prissanaroon

Birth Date : February 10, 1974

Nationality : Thai

University Education :

1992-1995 Bachelor's Degree of Science in Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's Institute of Technology North Bangkok