CHAPTER III EXPERIMENTAL SECTION

3.1 Materials

Chitosan samples with a degree of deacetylation of 75.8 % and 85.9 % were provided from the Asian Institute of Technology, Bangkok, and Wako Chemicals, Japan, respectively. *N,N'*-carbonyldiimidazole was produced by TCI, Japan. Chloroform, methanol and hydrochloric acid were purchased from J.T. Baker, USA. Acetic acid, *N,N*-dimethylformamide, benzene, sodium hydroxide and di-potassium hydrogen orthophosphate were supplied from UNIVAR, Australia. Potassium dihydrogenphosphate, sodium iodide and sodium hydride were purchased from Fluka Chemika, Switzerland. All these chemicals were used without further purification. A commercial grade of 1-naphthyl methylcarbamate or carbaryl 85 % WP was supplied from AGGRO (THAILAND) Co., Ltd. and recrystallized in acetone before use.

3.2 Instruments and Equipment

3.2.1 Fourier Transform Infrared Spectrophotometer (FT-IR)

Qualitative and quantitative FT-IR spectra were obtained from a VECTOR 3.0 BRUKER Spectrometer with 16 scans at a resolution of 4 cm⁻¹. A frequency range of 4000-400 cm⁻¹ was observed using a deuterated triglycinesulfate detector (DTGS) with a specific detectivity, D⁺, of 1x10⁹ cm. Hz^{1/2}W⁻¹.

3.2.2 Elemental Analysis (EA)

The percent elements were obtained from PE 2400 Series II CHNS/O Analyzer with combustion temperature at 975 °C, reduction temperature at 500 °C and vial receptacle for 1000 runs. The sample was put in tin foil for 1-2 mg and analyzed under air (flowing rate 60 psi) with O₂ as a combustion gas (flowing rate 15 psi) using He gas as a carrier gas (flowing rate 20 psi).

3.2.3 Nuclear Magnetic Resonance Spectrometer (NMR)

Solid state ¹³C-NMR spectra were analyzed by a DPX-300 Avance 300 MHz Digital NMR Spectrometer of Bruker, Switzerland by courtesy of the National Metal and Materials Technology Center (MTEC), Bangkok, Thailand.

3.2.4 Thermal Gravimetric Analysis (TGA)

Perkin -Elmer Thermogravimetric analyzer was used for TGA study. Samples (approximately 5 mg) were loaded in a platinum pan and heated under a N_2 flowing rate of 20 ml/min. The heating rate was 10° C/min from room temperature to 700° C.

3.2.5 Ultraviolet-Visible Spectrophotometer (UV-VIS)

A Lamda-10 UV-VIS spectrophotometer from Perkin-Elmer was used for qualitative and quantitative analysis. The concentration of carbaryl in the buffer solution in the release study was determined at λ_{max} 279 and 220 nm.

3.2.6 X-ray Diffraction (XRD)

X-ray diffraction patterns were obtained from a RIGAKU RINT2000. Cu K α (λ =0.154 nm) was used as x-ray source and operated at 40 kV, 30mA with Ni filter. Sample (0.1-0.2 g) was ground with agate mortar and spread on a glass slide specimen holder to examine at 20 of 5-90°.

3.3 Experimental Procedure

3.3.1 Preparation of Chitosan Precursors

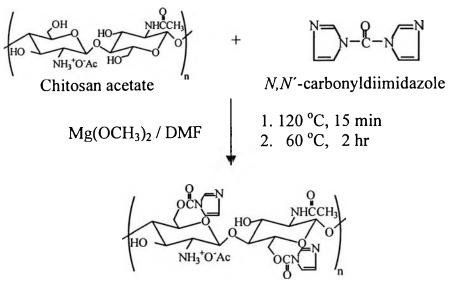
3.3.1.1 Preparation of Tosylchitosan

Tosylchitosan was prepared as reported by Tachaboonyakiat, et al. (1998) as shown in Scheme 3.1. The product was characterized by FT-IR, solid state ¹³C-NMR, EA, TGA and XRD.

Scheme 3.1 Preparation of tosylchitosan

3.3.1.2 Preparation of Iodochitosan

One gram of tosylchitosan was dispersed in 28 mL of *N,N*-dimethylformamide and stirred in nitrogen atmosphere for 15 minutes. A solution of 3.3 g (10 mole equivalent to pyranose rings) of sodium iodide in 50 mL of DMF was added, and the mixture was stirred under nitrogen at 85 °C for 24 hours (Scheme 3.2). The precipitate was collected and washed with acetone and ether. The obtained product was dried *in vacuo* to give a tan powder. The obtained product was characterized by FT-IR, EA, TGA and XRD.


Scheme 3.2 Preparation of iodochitosan

3.3.1.3 Preparation of Chitosan acetate

Chitosan with a degree of deacetylation 75.8% was used as a starting material. The chitosan acetate was prepared by the same procedure as reported by Chunharotrit *et al.* (1998). The product was characterized by FT-IR, EA, TGA and XRD.

3.3.1.4 Preparation of Chitosan acetate-Carbonyl imidazolide (CA-CDI)

Chitosan acetate (1 g) was dispersed in *N,N*-dimethyl formamide (100 mL) under vacuum conditions and heated to 120 °C. A catalytic amount of magnesium methoxide was added to the solution. After 15 minutes, *N,N'*-carbonyldiimidazole (3.0 g, 4 mole equivalent to pyranose rings) was added and reacted at 120 °C for 15 minutes. The temperature was then reduced to 60 °C and stirring was continued for 2 hours (Scheme 3.3). After the reaction, the precipitate was washed thoroughly with methanol and chloroform and dried *in vacuo* to give a pale yellow powder. The obtained product was characterized by FT-IR, ¹³C-NMR, EA, TGA and XRD.

Chitosan acetate-carbonyl imidazolide (CA-CDI)

Scheme 3.3 Preparation of CA-CDI

3.3.2 Preparation of Chitosan Conjugated Drug

3.3.2.1 Synthesis of Chitosan Conjugated Drug Type 1: Chitosan-Carbaryl (CHI-CBR)

A solution of carbaryl 0.7 g (3 mole equivalent to pyranose rings) in absolute benzene 50 mL was cooled in an ice bath and stirred under vacuum for 15 minutes. Sodium hydride, 0.15 g (5 moles equivalent to pyranose rings), was added in the system and the reaction was proceeded under nitrogen atmosphere for 15 minutes. Iodochitosan 0.5 g was added and the ice bath was replaced by an oil bath. The mixture was reacted at 75 °C and refluxed under nitrogen atmosphere for 12 hours (Scheme 3.4). A brown precipitate was collected and washed thoroughly with ethanol and acetone. The product was characterized by FT-IR, TGA and XRD.

Scheme 3.4 Preparation of CHI-CBR (Type1)

3.3.2.2 Synthesis of Chitosan Conjugated Drug Type2: Chitosan acetate-Carbonyl imidazolide-Carbaryl (CA-CDI-CBR)

A solution of carbaryl 0.6 g (3 mole equivalent to pyranose rings) in absolute benzene 25 mL was cooled in an ice bath and stirred under vacuum for 15 minutes. Sodium hydride, 0.12 g (5 moles equivalent to pyranose rings), was added and the reaction proceeded under nitrogen atmosphere for 15 minutes. CA-CDI 0.3 g was added after 15 minutes and the ice bath was replaced by an oil bath. The mixture was reacted at 75°C and refluxed under nitrogen atmosphere for 12 hours (Scheme 3.5). A brown precipitate was collected and washed thoroughly with ethanol and acetone. The product was characterized by FT-IR, TGA and XRD.

Scheme 3.5 Preparation of CA-CDI-CBR (Type 2)

3.3.3 Stability Study of Chitosan-Carbaryl (CHI-CBR) (Type 1)

Chitosan-carbaryl (0.005 g) was immersed in aq. NaOH 0.01 N (10 mL) for 2 hours at 60 °C. The solution was examined for trace degraded carbaryl by UV spectrophotometer, using carbaryl as a control.

3.3.4 Release Study of Chitosan acetate-Carbonyl-imidazolide-Carbaryl (CA-CDI-CBR) (Type 2)

Chitosan acetate-carbonyl imidazolide-carbaryl (0.005~g) was immersed in aq. NaOH 0.01~N (10~mL) for 0.5~hour at $60~^{\circ}C$. The release of the chitosan-conjugated drug was qualitatively analyzed by the UV-VIS spectrophotometer.