CHAPTER 4

EXPERIMENT

4.1 Material

4.1.1 Paper

- plain laser paper 100 gsm
- Mitsubishi Paper for inkjet (gloss type)

120 gsm
4.1.2 Ink

- Process Toner for Canon Color Laser Copier 1120
- Process Inkjet inks for Canon Bubble jet BJC8500

4.2 Apparatus

4.2.1 Spectrophotometer

- Gretag Spectrolino Scan

4.2.2 Digital Color Printer

- Canon Color Laser Copier 1120
- Canon Bubble jet BJC8500
4.2.3 Personal Computer
- Pentium III series
4.2.4 Software
- MATLAB R12
- Adobe Photoshop version 6.0
- Microsoft Excel 97

4.3 Procedure

4.3.1 Equipment setup

Personal Computer is properly connected to spectrophotometer and digital color printer. The softwares and the drivers of all devices are installed.

4.3.2 LUT data creation

The LUT data is created by Matlab in $R G B$ device color space. There are two sets of LUT data: 1.) 343 -color patch, $7 \times 7 \times 7$ evenly uniform divided in $R G B$ device color space, 2.) 729 -color patch, $9 \times 9 \times 9$ evenly uniform divided in $R G B$ device color space.

4.3.3 Printer calibration and color chart printing

The printer is calibrated regarding the manufacture specification. Then the Input Signal $\left[X_{l u}\right]_{i}$ are sent to print by Adobe Photoshop with default program parameters and without any color matching function as shown in Figure 4-1. The results are color chart which is correspond to each set of Input Signal $\left[X_{l u t}\right]_{i}$.

Figure 4-1 The schematic diagram of the LUT data generating

4.3.4 Color chart measuring

The printout of color chart is measured by spectrophotometer to obtain the $C_{I E X Y Z}^{D 65}$ numerical values. Then they are converted to $s R G B$ numerical values, by following coefficient of transformation:

$$
\begin{align*}
& {\left[\begin{array}{c}
X_{D 65} \\
Y_{D 65} \\
Z_{D 65}
\end{array}\right]=\left[\begin{array}{lll}
0.4124 & 0.3576 & 0.1805 \\
0.2126 & 0.7152 & 0.0722 \\
0.0193 & 0.1192 & 0.9505
\end{array}\right]\left[\begin{array}{l}
R_{s R G B} \\
G_{s R G B} \\
B_{s R G B}
\end{array}\right]} \\
& {\left[\begin{array}{c}
R_{s R G B} \\
G_{s R G B} \\
B_{S R G B}
\end{array}\right]=\left[\begin{array}{ccc}
3.2410 & -1.5374 & -0.4986 \\
-0.9692 & 1.8760 & 0.0416 \\
0.0556 & -0.2040 & 1.0570
\end{array}\right]\left[\begin{array}{l}
X_{D 65} \\
Y_{D 65} \\
Z_{D 65}
\end{array}\right]} \tag{4-1}
\end{align*}
$$

The measured values are stored in the LUT. And, each LUT is converted to be Backward LUT data $\left(\varphi^{-1}\right)$.

4.3.5 Proposed method origination

The proposed method of this research is to apply the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ order linear regression to the Backward LUT data $\left(\varphi^{-1}\right)$ in sub-divided color space. The alternatives of partitioning color space are: tetrahedron divided by plane $\mathrm{R}+\mathrm{G}+\mathrm{B}=384$ and whole space as shown below.

4.3.5.1 Order of Regression Model

- First Order 4 terms (3×4 coefficient matrix)

$$
\begin{align*}
& R_{R G B}=a_{0}+a_{1} R_{1}+a_{2} R_{2}+a_{3} R_{3} \\
& G_{R G B}=b_{0}+b_{1} R_{l}+b_{2} R_{2}+b_{3} R_{3} \\
& B_{R G B}=c_{0}+c_{l} R_{1}+c_{2} R_{2}+c_{3} R_{3} \tag{4-2}
\end{align*}
$$

- Second Order 11 terms (3×11 coefficient matrix)

$$
\begin{align*}
& R_{R G B}=a_{0}+a_{1} R_{l}+a_{2} R_{2}+a_{3} R_{3}+a_{4} R_{4}+a_{5} R_{5}+a_{6} R_{6}+a_{7} R_{7}+a_{8} R_{8}+a_{9} R_{9} \\
& G_{R G B}=b_{0}+b_{1} R_{1}+b_{2} R_{2}+b_{3} R_{3}+b_{4} R_{4}+b_{5} R_{5}+b_{6} R_{6}+b_{7} R_{7}+b_{8} R_{8}+b_{9} R_{9} \\
& B_{R G B}=c_{0}+c_{1} R_{1}+c_{2} R_{2}+c_{3} R_{3}+c_{4} R_{4}+c_{5} R_{5}+c_{6} R_{6}+c_{7} R_{7}+c_{8} R_{8}+c_{9} R_{9} \tag{4-3}
\end{align*}
$$

- Third Order 14 terms (3×14 coefficient matrix)

$$
\begin{align*}
R_{R G B}= & a_{0}+a_{1} R_{1}+a_{2} R_{2}+a_{3} R_{3}+a_{4} R_{4}+a_{5} R_{5}+a_{6} R_{6}+a_{7} R_{7}+a_{8} R_{8}+a_{9} R_{9}+a_{10} R_{10} \\
& +a_{12} R_{12}+a_{13} R_{13} \\
G_{R G B}= & b_{0}+b_{1} R_{1}+b_{2} R_{2}+b_{3} R_{3}+b_{4} R_{4}+b_{5} R_{5}+b_{6} R_{6}+b_{7} R_{7}+b_{8} R_{8}+b_{9} R_{9}+b_{10} R_{10} \\
& +b_{12} R_{12}+b_{13} R_{13} \\
B_{R G B}= & c_{0}+c_{1} R_{1}+c_{2} R_{2}+c_{3} R_{3}+c_{4} R_{4}+c_{5} R_{5}+c_{6} R_{6}+c_{7} R_{7}+c_{8} R_{8}+c_{9} R_{9}+c_{10} R_{10} \\
& +c_{12} R_{12}+c_{13} R_{13} \tag{4-4}
\end{align*}
$$

- Third Order 20 terms (3×20 coefficient matrix)

$$
\begin{align*}
R_{R G B}= & a_{0}+a_{1} R_{1}+a_{2} R_{2}+a_{3} R_{3}+a_{4} R_{4}+a_{5} R_{5}+a_{6} R_{6}+a_{7} R_{7}+a_{8} \dot{R}_{8}+a_{9} R_{9}+a_{10} R_{10} \\
& +a_{12} R_{12}+a_{13} R_{13}+a_{14} R_{14}+a_{15} R_{15}+a_{16} R_{16}+a_{17} R_{17}+a_{18} R_{18}+a_{19} R_{19} \\
G_{R G B}= & b_{0}+b_{1} R_{1}+b_{2} R_{2}+b_{3} R_{3}+b_{4} R_{4}+b_{5} R_{5}+b_{6} R_{6}+b_{7} R_{7}+b_{8} R_{8}+b_{9} R_{9}+b_{10} R_{10} \\
& +b_{12} R_{12}+b_{13} R_{13}+b_{14} R_{14}+b_{15} R_{15}+b_{16} R_{16}+b_{17} R_{17}+b_{18} R_{18}+b_{19} R_{19} \\
B_{R G B}= & c_{0}+c_{1} R_{1}+c_{2} R_{2}+c_{3} R_{3}+c_{4} R_{4}+c_{5} R_{5}+c_{6} R_{6}+c_{7} R_{7}+c_{8} R_{8}+c_{9} R_{9}+c_{10} R_{10} \\
& +c_{12} R_{12}+c_{13} R_{13}+c_{14} R_{14}+c_{15} R_{15}+c_{16} R_{16}+c_{17} R_{17}+c_{18} R_{18}+c_{19} R_{19} \tag{4-5}
\end{align*}
$$

where; $\quad R_{i} \quad$ is a function of $\left[Y_{l u t, s R G B}\right]_{i}$ that a combination of three parameters as follow:

$$
\begin{aligned}
& R_{1}=R_{s R G B} \\
& R_{2}=G_{s R G B} \\
& R_{3}=B_{s R G B}
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=R_{s R G B} \cdot G_{s R G B} \\
& R_{5}=G_{s R G B} \cdot B_{s R G B} \\
& R_{6}=B_{s R G B} \cdot R_{s R G B} \\
& R_{7}=\left(R_{s R G B}\right)^{2} \\
& R_{8}=\left(G_{s R G B}\right)^{2} \\
& R_{9}=\left(B_{s R G B}\right)^{2} \\
& R_{10}=R_{s R G B} \cdot G_{s R G B} \cdot B_{s R G B} \\
& R_{11}=\left(R_{s R G B}\right)^{3} \\
& R_{12}=\left(G_{s R G B}\right)^{3} \\
& R_{13}=\left(B_{s R G B}\right)^{3} \\
& R_{14}=\left(R_{s R G B}\right)^{2} \cdot G_{s R G B} \\
& R_{15}=\left(G_{s R G B}\right)^{2} \cdot B_{s R G B} \\
& R_{16}=\left(B_{s R G B}\right)^{2} \cdot R_{s R G B} \\
& R_{17}=R_{s R G B} \cdot\left(G_{s R G B}\right)^{2} \\
& R_{18}=G_{s R G B} \cdot\left(B_{s R G B}\right)^{2} \\
& R_{19}=B_{s R G B} \cdot\left(R_{s R G B}\right)^{2}
\end{aligned}
$$

4.3.5.2 Partition Method

- Whole space

This method uses all of the $L U T$ data to calculate the coefficient. The Coefficient Partition and Target Partition are the same boundary. The Overlapping Pratition is not exist.

- Tetrahedral method divided by plan of $R+G+B=383$

The $s R G B$ color space is divided into tetrahedral sub-space and divided again by the plane of equation $R+G+B=383$.

Coefficient Partition is follows the condition below.

Section 1

$$
R_{s R G B}>\left(G_{s R G B}-25\right), G_{s R G B}>\left(B_{s R G B}-25\right) \text { and } R+G+B>383
$$

Section 2

$$
R_{s R G B}>\left(G_{s R G B}-25\right), \overline{G_{s R G B}>}>\left(B_{s R G B}-25\right) \text { and } R+G+B<384
$$

Section 3

$$
R_{s R G B}>\left(B_{s R G B}-25\right), B_{s R G B}>\left(G_{s R G B}-25\right) \text { and } R+G+B>383
$$

Section 4

$$
R_{s R G B}>\left(B_{s R G B}-25\right), B_{s R G B}>\left(G_{s R G B}-25\right) \text { and } R+G+B<384
$$

Section 5

$$
G_{s R G B}>\left(R_{s R G B}-25\right), R_{s R G B}>\left(B_{s R G B}-25\right) \text { and } R+G+B>383
$$

Section 6

$$
G_{s R G B}>\left(R_{s R G B}-25\right), R_{s R G B}>\left(B_{s R G B}-25\right) \text { and } R+G+B<384
$$

Section 7

$$
G_{s R G B}>\left(B_{s R G B}-25\right), B_{s R G B}>\left(R_{s R G B}-25\right) \text { and } R+G+B>383
$$

Section 8

$$
G_{s R G B}>\left(B_{s R G B}-25\right), B_{s R G B}>\left(R_{s R G B}-25\right) \text { and } R+G+B<384
$$

Section 9.

$$
B_{s R G B}>\left(R_{s R G B}-25\right), R_{s R G B}>\left(G_{s R G B}-25\right) \text { and } R+G+B>383
$$

Section 10

$$
B_{s R G B}>\left(R_{s R G B}-25\right), R_{s R G B}>\left(G_{s R G B}-25\right) \text { and } R+G+B<384
$$

Section 11

$$
B_{s R G B}>\left(G_{s R G B}-25\right), G_{s R G B}>\left(R_{s R G B}-25\right) \text { and } R+G+B>383
$$

Section 12

$$
B_{s R G B}>\left(G_{s R G B}-25\right), G_{s R G B}>\left(R_{s R G B}-25\right) \text { and } R+G+B<384
$$

And, Target Partition is follow the condition below.

Section 1

$$
R_{S R G B}>G_{S R G B}>B_{s R G B} \text { and } R+G+B>383
$$

Section 2

$$
R_{s R G B}>G_{s R G B}>B_{s R G B} \text { and } R+G+B<384
$$

Section 3

$$
R_{s R G B}>B_{s R G B}>G_{s R G B} \text { and } R+G+B>383
$$

Section 4

$$
R_{s R G B}>B_{s R G B}>G_{s R G B} \text { and } R+G+B<384
$$

Section 5

$$
G_{s R G B}>R_{s R G B}>B_{s R G B} \text { and } R+G+B>383
$$

Section 6

$$
G_{s R G B}>R_{s R G B}>B_{s R G B} \text { and } R+G+B<384
$$

Section 7

$$
G_{s R G B}>B_{s R G B}>R_{s R G B} \text { and } R+G+B>383
$$

Section 8

$$
G_{s R G B}>B_{s R G B}>R_{s R G B} \text { and } R+G+B<384
$$

Section 9.

$$
B_{s R G B}>R_{s R G B}>G_{s R G B} \text { and } R+G+B>383
$$

Section 10

$$
B_{s R G B}>R_{s R G B}>G_{s R G B} \text { and } R+G+B<384
$$

Section 11

$$
B_{s R G B}>G_{s R G B}>R_{s R G B} \text { and } R+G+B>383
$$

Section 12

$$
B_{s R G B}>G_{s R G B}>R_{s R G B} \text { and } R+G+B<384
$$

The Overlapping Partition, in this case, is 25 unit for each section. Then, the overlapping boundary of each pair of partition is 50 unit. Matlab Program 01 is used to simulates those methods to retrieve each coefficient.

4.3.6 Proposed analysis method

The Testing data uses to test the performance of each algorithm, is applied to each algorithm which is also done by Matlab Program 01. Figure 4-2 shows the schematic diagram of the evaluation process.

The printout of those Testing data are measured by spectrophotometer to obtain the CIELAB numerical values.

Figure 4-2 The methodology of analysis

4.3.6.1 Proposed method analysis

The Testing data in $s R G B$ color space are converted to CIELAB color space to compare with the measured CIELAB.

The result is performed by the equation in XXX .

4.3.6.2 Testing data

$T_{u n u}$ are $14 \times 14 \times 14$ data which is evenly sampling of whole $s R G B$ color space. Then, they are croped by color gamut of printer, denoted as:

$$
\begin{equation*}
\left[T_{s R G B-u n i}\right]_{i}=\left[T_{R-u n i}, T_{G-u n i}, T_{B-u n i}\right]_{i} \tag{4-6}
\end{equation*}
$$

$T_{\text {lut }}$ are domain of signal in backward LUT data, denoted as:

$$
\begin{equation*}
\left[T_{s R G B-\text { lut }}\right]_{i}=\left[T_{R-\text { lut }}, T_{G-l u t}, T_{B-\text { lut }}\right]_{i} \tag{4-7}
\end{equation*}
$$

$T_{g l o}$ are global signal testing data, denoted as:

$$
\begin{equation*}
\left[T_{s R G B-g l o}\right]_{i}=\left[T_{R-g l o}, T_{G-g l o}, T_{B-g l o}\right]_{i} \tag{4-8}
\end{equation*}
$$

The response of testing data by Ω^{-1}, denoted as:

$$
\begin{align*}
& {\left[T_{\text {Lab-uni, } \varphi-1}\right]_{i}=\left[L_{u n i, \varphi-1}, a_{\text {uni, } \varphi-1}, b_{\text {uni, },-1}\right]_{i}} \\
& {\left[T_{\text {Lab-lut, } \varphi-1}\right]_{i}=\left[L_{\text {lut }, \varphi-1}, a_{\text {lut, } \varphi-1}, b_{\text {lut }, \varphi-1}\right]_{i}} \tag{4-9}\\
& {\left[T_{\text {Lab-glo, } \varphi-1}\right]_{i}=\left[L_{g l o, \varphi-1}, a_{g l o, \varphi-1}, b_{g l o, \varphi-1}\right]_{i}}
\end{align*}
$$

The approximated value of testing data by θ, denoted as:

$$
\begin{align*}
& {\left[T_{\text {Lab-uni, } \theta}\right]_{i}=\left[L_{u n i, \theta}, a_{u n i, \theta}, b_{u n i, \theta}\right]_{i}} \\
& {\left[T_{\text {Lab-lut, }}\right]_{i}=\left[L_{\text {lut, },}, a_{\text {lut, },}, b_{\text {lut, } \theta}\right]_{i}} \tag{4-10}\\
& {\left[T_{\text {Lab-glo, } \theta}\right]_{i}=\left[L_{g l o, \theta}, a_{g l o, \theta}, b_{g l o, \theta}\right]_{i}}
\end{align*}
$$

