REFERENCES

1. Wyszecki, G. Color Science. 2nd ed. New York: John Wiley \& Sons, 1982, pp. 117-119.
2. Hunt, R. W. G. Measuring Color. 2nd ed. Chichester: Ellis Horwood, 1991, pp. 68-75.
3. Kang, H. R. Color Technology for Electronic Imaging Devices. Washington: SPIE-The International Society for Optical Engineering, 1997, p. 5.
4. Kang, H. R. Color Technology for Electronic Imaging Devices. Washington: SPIE-The International Society for Optical Engineering, 1997, p. 7.
5. Kang, H. R. Color Technology for Electronic Imaging Devices. Washington: SPIE-The International Society for Optical Engineering, 1997, p. 3.
6. Hardeberg, J. Y. and Schmitt, F. Acquisition and reproduction of color images: colorimetric and multispectral approaches. Doctor's Thesis, Ecole Nationale Superieure des Telecommunications, 1999, pp. 96-99.
7. Hardeberg, J. Y. and Schmitt, F. Acquisition and reproduction of color images: colorimetric and multispectral approaches. Doctor's Thesis, Ecole Nationale Superieure des Telecommunications, 1999, pp. 20-22.
8. "A Standard Default Color Space for the Internet: sRGB" Michael Stokes, Matthew Anderson, Srinivasan Chandrasekar, and Ricardo Motta, http://www.w3.org/Graphics/Color/sRGB.html
9. Kang, H. R. Color Technology for Electronic Imaging Devices. Washington: SPIE-The International Society for Optical Engineering, 1997, pp. 55-63.
10. Kang, H. R. Color Technology for Electronic Imaging Devices. Washington: SPIE-The International Society for Optical Engineering, 1997, pp. 64-65.
11. Ishige, A., Kotera, H. and Hung-Shing, C. High Precision Color Masking in Sub-divided CIELAB Polar Coordinates Spaces. International Conference on Digital Printing Technologies, pp. 198-201. Virginia: The Society for imaging Science and Technology, 1998.
12. Groff, E., Koditschek, E. and Khargonekar, P. Representtation of Color Space Transformations for Effect Calibration and Control. International Conference on Digital Printing Technologies, pp. 255-260. Virginia: The Society for imaging Science and Technology, 1998.
13. Groff, E., Koditschek, E. and Khargonekar, P. Representtation of Color Space Transformations for Effect Calibration and Control. International Conference on Digital Printing Technologies, pp. 257-258. Virginia: The Society for imaging Science and Technology, 1998.

จุฬาลงกรณ์มหาวิทยาลัย
Chill ai nngknrn |Niversity

APPENDIX A

Program 01

The software use to simulate the Tetrahedral 12 and Whole space method.

```
%This is for Tetral2
```



```
S = input('give me LUT of SGB(scale255) to RGB(scale255) file wkl:\\','s')
IN= input('give me your Input file SGB(scale255) file wkl:\\','s')
%File for IUT %
        LoUp = wkIread(S);
        Row1 = length(LoUp);
    SGBindx = LoUp (:,1:3);
%%%%%%%%%% retrive file name to write TIFF later %%%%%%%%%%%%%
IN (:,end-3:end) = []
S (:, end-3: end) = []
%%%%%%%%%%%%% retrive file name to write TIFF later %%%%%%%%%%%%%%%%
```



```
n01=1;,n02=1;,n03=1;,n04=1;,n05=1;,n06=1;,n07=1;,n08=1;,n09=1;,n10=1;,n11=1;,n12=1;,n1
3=1; , n14=1;
LUT01= [] ; , LUT02 = [] ; , LUT03 = [] ; , LUT04=[]; LUT05=[] ; ,LUT06= [] ; , LUT07 = []; , . . 
LUT08=[];,LUT09=[];,LUT10=[];,LUT11=[];,LUT12=[]; LUT13=[];
% factor of Overlap
F = 25;,P = 15;
for i=1:length(SGBindx)
```



```
    if SGBindx(i,1)>SGBindx(i,2)-F & SGBindx(i,2) > SGBindx(i,3)-F & SGBindx
(i,1)+SGBindx(i,2)+SGBindx(i,3)>383-E
                            LUT01(n01,:) = LoUp(i,:);, n01=n01+1;
    end
    if SGBindx(i,1) > SGBindx(i,2)-F& SGBindx(i,2) > SGBindx(i,3)-F & SGBindx
(i,1)+SGBindx(i,2)+SGBindx(i,3)<384+F
    LUT02(n02,:) = LoUp(i,:);, n02=n02+1;
    end
```



```
    if SGBindx(i,l) > SGBindx(i,3)-F & SGBindx(i,3) > SGBindx(i,2)-F & SGBindx
(i,1)+SGBindx(i,2)+SGBindx(i,3) > 383-F
                            LUT03(n03,:) = LoUp(i,:); n03=n03+1;
    end
    if SGBindx(i,l) > SGBindx(i,3)-F & SGBindx(i,3) > SGBindx(i,2)-F & SGBindx
(i,1)+SGBindx(i,2)+SGBindx(i,3)<384+F
                            LUT04(n04,:) = LOUp(i,:);, n04=n04+1;
    end
```



```
    if SGBindx(i,3) > SGBindx(i,1)-F & SGBindx(i,1) > SGBindx(i,2)-F & SGBindx
(i,1)+SGBindx(i,2) +SGBindx(i,3) > 383-F
                        LUT05(n05,:) = LOUp(i,:);,n05=n05+1;
    end
```

```
    if SGBindx(i,3) > SGBindx(i,1)-F & SGBindx(i,1) > SGBindx(i,2)-F & SGBindx
(i,1)+SGBindx(i,2) +SGBindx(i,3) < 384+F
                LUT06(n06,:) = LOUp(i,:);, n06=n06+1;
    end
```



```
    if SGBindx(i,2) > SGBindx(i,1)-F & SGBindx(i,1) > SGBindx(i,3)-F & SGBindx
(i,1)+SGBindx(i,2) +SGBindx(i,3) > 383-F
                            LUT07(n07,:) = LOUp(i,:);, n07=n07+1;
    end
    if SGBindx(i,2) > SGBindx(i,1)-F& SGBindx(i,1) > SGBindx(i,3)-F & SGBindx
(i,1)+SGBindx(i,2) +SGBindx(i,3) < 384+F
            LUT08(n08,:) = LoUp(i,:);, n08=n08+1;
    end
    %%%%%%%%%%%%%%%%%%% part 05 %%%%%%%%%%%%%%%%%%%%
    if SGBindx(i,2) > SGBindx(i,3)-F & SGBindx(i,3) > SGBindx(i,1)-F & SGBindx
(i,1)+SGBindx(i,2)+SGBindx(i,3) > 383-F
        LUTO9(n09,:) = LOUp(i,:);, n09=n09+1;
    end
    if SGBindx(i,2) > SGBindx(i,3)-F & SGBindx(i,3)>SGBindx(i,1)-F & SGBindx
(i,1)+SGBindx(i,2)+SGBindx(i,3)< < < %4+F
        LUT10(n10,:) = LOUp(i,:); , n10=n10+1;
    end
```



```
    if SGBindx(i,3) > SGBindx(i,2)-F & SGBindx(i,2) > SGBindx(i,1)-F & SGBindx
(i,1)+SGBindx(i,2)+SGBindx(i,3) > 383-F
                LUT11(nI1,:) = LOUp(i,:);, n11=n11+1;
    end
    if SGBindx(i,3)>SGBindx(i,2)-F & SGBindx(i,2) > SGBindx(i,1)-F & SGBindx
(i,1)+SGBindx(i,2)+SGBindx(i,3)<<384+F
        LUT12(n12,:) = LOUp(i,:);, n12=n12+1;
    end
```



```
    if ((SGBindx(i,I) > SGBindx(i,2)-P) & (SGBindx(i,1) < SGBindx(i,2)+P)) &...
        ((SGBindx(i,2)>\operatorname{SGBindx}(i,3)-P)&(SGBindx(i,2)< SGBindx(i,3)+P)) &&...
        ((SGBindx(i,1) > SGBindx(i,3)-P) & (SGBindx(i,1) < SGBindx(i,3)+P))
        LUT13(n13,:) = LOUp(i,:);, n13=n13+1;
    end
end
```



```
\% Here, defind LUTcell array to keep all LUT data together
\% for 'for' loop purpose, and defind coefficient matrix to
\% store the coeeficient of 4 order of 14 LUT and 3 chanal
```



```
\((1,1,1\}=L U T 01\), end
\(\{1,1,2\}=\) LUT02, end
\(\{1,1,3\}=L U T 03\), end
\(\{1,1,4\}=L U T 04\), end if isempty (LUT05)
\(\{1,1,5\}=\operatorname{LUT} 05\), end if isempty(LUT06) \(\{1,1,6\}=\) LUT06, end if isempty(LUT07) \(\{1,1,7\}=L U T 07\), end if isempty (LUT08) \((1,1,8)=L U T 08\), end if isempty (LUT09) । \{1,1,9\}=LUT09, end if isempty(LUT10) | \(\{1,1,10\}=L U T 10\), end if isempty(LUT11) | \(\{1,1,11\}=\operatorname{LUT} 11\), end
```

```
if isempty(LUT01) | length(LUTOI(:,1))<3, LUTcel\{1,1,1) = LUT13;,else LUTcel
if isempty(LUT02) | length(LUT02 (:, 1)) \(<3\), LUTcel\{1,1,2\} \(=\) LUT14;,else LUTcel
if isempty(LUT03) | length(LUT03 \(\{:, 1))<3\), LUTcel \(\{1,1,3\}=\) LUT13; , else LuTcel
if isempty(LUT04) | length(LUTO4 \((:, 1))<3\), \(\operatorname{LUTcel}(1,1,4)=\operatorname{LUT} 4 ;\), else LUTcel
```

length(LUTOI(:,1))<3, LUTcel{1,1,1) = LUT13;,else LUTcel

```
length(LUTOI(:,1))<3, LUTcel{1,1,1) = LUT13;,else LUTcel
length(LUT02(:,1))<3, LUTcel{1,1,2} = LUT14;,else LUTcel
length(LUT02(:,1))<3, LUTcel{1,1,2} = LUT14;,else LUTcel
length(LUT03{:,1))<3, LUTcel{1,1,3} = LUT13;,else LUTcel
```

length(LUT03{:,1))<3, LUTcel{1,1,3} = LUT13;,else LUTcel

```


```

length(LUT06(:,1))<3, LUTcel(1,1,6} = LUT'14;,else LUTcel

```
length(LUT06(:,1))<3, LUTcel(1,1,6} = LUT'14;,else LUTcel
length(LUTO7(:,1))<3, LUTcel{1,1,7} = LUT13;,else LUTcel
length(LUTO7(:,1))<3, LUTcel{1,1,7} = LUT13;,else LUTcel
length(LUTO8(:,1))<3, LUTcel{1,1,8} = LUT14;,else LUTcel
length(LUTO8(:,1))<3, LUTcel{1,1,8} = LUT14;,else LUTcel
length(LUT09(:,1))<3, LuTcel{1,1,9} = LuT13;,else LuTcel
length(LUT09(:,1))<3, LuTcel{1,1,9} = LuT13;,else LuTcel
length(LUT10(:,1))<3, LUTcel(1,1,10} = LUT14;,else LUTcel
length(LUT10(:,1))<3, LUTcel(1,1,10} = LUT14;,else LUTcel
length(LUTl1(:,1))<3, LUTcel(1,1,11) = LUT13;,else LUTcel
```

length(LUTl1(:,1))<3, LUTcel(1,1,11) = LUT13;,else LUTcel

```
```

if isempty(LUT12) | length(LUT12(:,1))<3, LUTcel{1,1,12} = LUT14;,else LUTcel
{1,1,12}=LUT12, end
if ~isempty{LUT13), LUTcel{1,1,13} = LUT13;,else,LUTcel{1,1,13} = [], end
CoEff1=zeros(4,3,13);
CoEff2=zeros(11,3,13);
CoEff3=zeros(14,3,13);
CoEff4=zeros(20,3,13);

```

```

for i=1:13
temp = LUTcel{:,:,i};
if -isempty(temp)
LUTt = LUTcel{:,:,i}; %CAREFUL for cell array use (...)
SGBt = LUTE (:,1:3);
RGBE = LUTt(:,4:6);
RRGBt = RGBt (:,1); %RRGB
GRGBt = RGBt (:,2); %%GRGB
BRGBt = RGBt (:,3); %BRGB

```

```

% Here, Coefficient matrix
%

```

```

 aR1 = zeros(4,1);
 aG1 = zeros(4,1):
 aB1 = zeros(4,1);
 aR2 = zeros(11,1);
 aG2 = zeros(11,1);
 aB2 = zeros(11,1);
 aR3 = zeros(14,1);
 aG3 = zeros(14,1);
 aB3 = zeros(14,1);
 aR4 = zeros(20,1);
 aG4 = zeros(20,1);
 aB4 = zeros(20,1);
    ```

```

% first order 04

```

```

Xa = cat (2,ones((length(LUTt(:,1,1))),1),SGBE);\&\ดิย
aR1 = Xa\RRGBL
aG1 = Xa\GRGBt
aB1 = Xa\BRGBt

```

```

f second order }1

```

```

Xb0 = ones((length(LUTt (:, 1,1))),1);
Xb1 = SGBt(:,1);
Xb2 = SGBE (:,2);
Xb3 = SGBt (:,3);
Xb4 = [SGBt (:,1).*SGBt (:,2)];
Xb5 = [SGBE (:,2).*SGBE (:,3)];
Xb6 = [SGBt (:,1).*SGBt (:,3)];
Xb7 = SGBt (:,1).^2;
Xb8 = SGBt (:,2).^2;
Xb9 = SGBt (:, 3).^2;
Xb10= [SGBt (:,1).*SGBt (:,2).*SGBE (:,3)];
xb}=cat(2,Xb0, xb1, xb2, xb3, xb4, xb5, xb6, xb7, xb8, xb9, xb10);
aR2 = Xb\RRG3t:
aG2 = Xb\GRGBt;
aB2 = Xb\BRGBt;

```

\section*{ \\ o Third order 14 \\ }
```

Xc0 = ones((length(LUTt (:, 1,1))),1);
Xcl = SGBt (:,1);
Xc2 = SGBt (:,2);
XC3 = SGBt (:, 3);
XC4}=[\operatorname{SGBt}(:,1).*\operatorname{SGBL}(:,2)]
Xc5 = [SGBt (:,2).*SGBt (:,3)];
Xc6 = [SGBt (:,1).*SGBt (:, 3)];
XC7 = SGBt (:,1),^2;
XC8 = SGBt (:,2) ,^2;
XC9 = SGBt (:, 3) .^2;
Xc10= [SGBt (;,1).*SGBt (:, 2).*SGBE (:, 3)];
Xc11= SGBt (:, 1),^3;
Xc12= SGBt (:,2).^3
XC13= SGBt (:,3).^3
Xc = cat (2,Xc0,Xc1,Xc2,Xc3,Xc4,Xc5,Xc6,Xc7,Xc8,Xc9,Xc10,Xc11,Xc12,Xc13);
aR3 = Xc\RRGBt;
aG3 = Xc\GRGBt;
aB3 = Xc\BRGBt;

```

of Third order 20

xdo \(=\) ones \(((\) length \((\operatorname{LUTt}\{:, 1,1))), 1) ;\) EOD
Xd1 \(=\operatorname{SGBt}(:, 1)\);
Xd2 \(=\operatorname{SGBL}(:, 2)\);
Xd3 \(=\) SGBL \((:, 3)\);
Xd4 \(=\left[\operatorname{SGBt}(:, 1) .{ }^{*} \operatorname{SGBt}(:, 2)\right]\);
Xd5 \(=[\operatorname{SGBt}(:, 2) . * \operatorname{SGB}(:, 3)] ;\)
\(\mathrm{Xd6}=[\operatorname{SGBt}(:, 1) . * \operatorname{SGBt}(:, 3)]\);
Xd7 \(=\operatorname{SGBL}(:, 1) .{ }^{\wedge} 2\);
\(X d 8=\operatorname{SGBL}(:, 2),{ }^{\wedge} 2\);
Xd9 \(=\operatorname{SGBL}(:, 3),{ }^{\wedge} 2\);
Xd10 \(=[\operatorname{SGBt}(:, 1) . * \operatorname{SGB}(:, 2) . * \operatorname{SGBt}(:, 3)] ;\)
XC11 \(=\operatorname{SGBE}(:, 1) . n 3\);
Xd12 = \(\operatorname{SGBE}(:, 2) . \wedge 3\);
Xd13 = SGBt \((:, 3) . \wedge 3\);
xd14 \(=\left[\operatorname{SGBt}(:, 1) .{ }^{*}(\operatorname{SGB}(:, 2) \cdot \wedge 2)\right]\);
Xdi5 \(=\left[\operatorname{SGBt}(:, 2) .^{*}(\operatorname{SGBt}(:, 1) . \wedge 2)\right] ;\)
xd1 \(6=\left[\operatorname{SGBt}(:, 2) .{ }^{*}(\operatorname{SGB}(:, 3) \cdot \wedge 2)\right] ;\)
Xd17 \(=[\operatorname{SGBt}(:, 3) . *(\operatorname{SGB}(:, 2) . \wedge 2)] ;\)
Xd18 \(=[\operatorname{SGBt}(:, 3) \cdot *(\operatorname{SGBt}(:, 1) \cdot \wedge 2)] ;\)
Xd19 \(=[\operatorname{SGBt}(:, 1) \cdot *(\operatorname{SGBt}(:, 3) \cdot n 2)]:\)
\(\mathrm{xd}=\)
cat (2,Xd0, Xd1, Xd2, Xd3, Xd4, Xd5, Xd6, Xd7, Xd8, Xd9, Xd10, Xd11, Xd12,Xd13,Xd14, Xd15,Xd16, Xd17,
xd18, xd19) ;
\(a R 4=X d \backslash R R G B t ;\)
\(a G 4=X d \backslash G R G B E ;\)
\(a B 4=X d \backslash B R G B t ;\)

snow cat the coeffient of the i loop to coEfficient matrix

```

CoEfE1(:,1,i)=aR1;
CoEff1(:,2,i)=aG1;
CoEfE1(:, 3,i)=aB1;
CoEff2(:,1,i)=aR2;
CoEff2(:,2,i)=aG2;
CoEEf2(:,3,i)=aB2;
CoEff3(:, 1,i)=aR3;
CoEff3(:,2,i)=aG3;
CoEff3(:, 3,i)=aB3;

```
\(\operatorname{CoEff} 4(:, 1, i)=\operatorname{aR4} 4 ;\)
CoEff4(:, 2,i)=aG4;
\(\operatorname{CoEff} 4(:, 3, i)=a B 4 ;\)

\section*{ end \\ end \\ }








कFile for Test image o

INP \(=\) wklread(IN);

 for i=1: length (INP)



INPE \(=I N P(i,:) ;\)
\% \% \% \% \% \% 웅움 \(\% 8 \% \% \% \% \% \%\) part 01

if \((\operatorname{INP}(i, 1)>\operatorname{INP}(i, 2) \& \operatorname{INP}(i, 2)>\operatorname{INP}(i, 3)) \mid(\operatorname{INP}(i, 1)==\operatorname{INP}(i, 2) \&\) \(\operatorname{INP}(i, 2)>\operatorname{INP}(i, 3)) \geqslant \&(\operatorname{INP}(i, 1)+\operatorname{INP}(i, 2)+\operatorname{INP}(i, 3)>383)\) aRIt=CoEffl \((:, 1,1) ; \operatorname{aG1t=CoEff}(:, 2,1) ; \operatorname{aB1t=CoEff1}(:, 3,1) ;\) aR2t=CoEff2 \((:, 1,1) ;\) aG2t=CoEff \(2(:, 2,1) ;, \operatorname{CB2t=CoEff} 2(:, 3,1)\); \(\operatorname{aR} 3 t=\operatorname{CoEff} 3(:, 1,1) ;\) aG3t=CoEff3\((:, 2,1) ; \operatorname{ab3t=CoEff} 3(:, 3,1)\); aR4t=CoEff4(:,1,1); aG4t=CoEff4(:,2,1):, aB4t=CoEff4(:,3,1);
elseif ( \((\operatorname{INP}(i, 1)>\operatorname{INP}(i, 2) \& \operatorname{INP}(i, 2)>\operatorname{INP}(i, 3)) \quad(\operatorname{INP}(i, 1)==\operatorname{INP}(i, 2) \quad\) \& \(\operatorname{INP}(i, 2)>\operatorname{INP}(i, 3))(\&(\operatorname{INP}(i, 1)+\operatorname{INP}(i, 2)+\operatorname{INP}(i, 3)<384)\) aR1t=CoEff1 \((:, 1,2) ;\) aG1t=CoEff1 \((:, 2,2) ; \operatorname{aBlt}=\operatorname{CoEff1}(:, 3,2)\); aR2t=CoEff2 \((:, 1,2) ;\) aG2t=CoEff2 \((:, 2,2) ; \operatorname{aB2t=CoEff} 2(:, 3,2)\); aR3t=CoEff \(3(:, 1,2) ;, \operatorname{ag} 3 t=\operatorname{CoEff} 3(:, 2,2) ;\) ab3t=CoEff3 \((:, 3,2)\);

8888888888888 part loz ALONGKORN UNIVERSITY

elseif \((\operatorname{INP}(i, 1)>\operatorname{INP}(i, 3) \& \operatorname{INP}(i, 3)>\operatorname{INP}(i, 2)) \mid(\operatorname{INP}(i, 2)==\operatorname{INP}(i, 3) \&\) \(\operatorname{INP}(i, 3)<\operatorname{INP}(i, 1)) \quad \&(\operatorname{INP}(i, 1)+\operatorname{INP}(i, 2)+\operatorname{INP}(i, 3)>383)\)
aR1t=CoEffl \((:, 1,3) ;, \operatorname{aGlt=CoEff1}(:, 2,3) ;, \operatorname{aB1t}=\operatorname{CoEff1}(:, 3,3)\); aR2t=CoEff2 \((:, 1,3) ; \operatorname{aG2t=CoEff} 2(:, 2,3) ; \operatorname{aB2t=CoEff2}(:, 3,3) ;\) ar3t=CoEff3(:,1,3); aG3t=CoEff3(:,2,3); aB3t=CoEff3(:,3,3); aR4t=CoEff4(:,1,3); aG4t=CoEff4(:,2,3); aB4t=CoEff4(:,3,3);
elseif \((\quad(\operatorname{INP}(i, 1)>\operatorname{INP}(i, 3) \& \operatorname{INP}(i, 3)>\operatorname{INP}(i, 2)) \mid(\operatorname{INP}(i, 2)==\operatorname{INP}(i, 3) \&\) \(\operatorname{INP}(i, 3)<\operatorname{INP}(i, 1)) \quad \&(\operatorname{INP}(i, 1)+\operatorname{INP}(i, 2)+\operatorname{INP}(i, 3)<384)\) aR1t=CoEff1 \((:, 1,4) ; \operatorname{aG1t=CoEff1}(:, 2,4) ; \operatorname{aB1t}=\operatorname{CoEff} 1(:, 3,4) ;\) \(\operatorname{aR2t=CoEff} 2(:, 1,4) ; \operatorname{aG2t=CoEff} 2(:, 2,4) ; \operatorname{aB2t}=\operatorname{CoEff} 2(:, 3,4) ;\) \(\operatorname{aR} 3 t=\operatorname{CoEff} 3(:, 1,4) ; \operatorname{ag} 3 t=\operatorname{CoEff} 3(:, 2,4) ; \operatorname{aB3t}=\operatorname{CoEff} 3(:, 3,4) ;\) \(\operatorname{ar4t}=\operatorname{CoEff} 4(:, 1,4) ; \operatorname{ag4t}=\operatorname{CoEff} 4(:, 2,4) ; \operatorname{aB4t}=\operatorname{CoEff} 4(: 3,4)\);


elseif \((\quad(\operatorname{INP}(i, 3)>\operatorname{INP}(i, 1) \& \operatorname{INP}(i, 1)>\operatorname{INP}(i, 2)) \mid(\operatorname{INP}(i, 1)==\operatorname{INP}(i, 3) \quad \delta\)
\(\operatorname{INP}(i, 3)>\operatorname{INP}(i, 2)) \quad \&(\operatorname{INP}(i, 1)+\operatorname{INP}(i, 2)+\operatorname{INP}(i, 3)>383)\)
\(\operatorname{aRIt}=\operatorname{CoEffl}(:, 1,5) ; \operatorname{aGlt}=\operatorname{CoEffl}(:, 2,5) ;, \operatorname{aB1t} \operatorname{CoEff1}(:, 3,5)\); aR2t=CoEff2 \((:, 1,5) ;\) aG2t=CoEff2 \((:, 2,5) ; \operatorname{aB2t=CoEff2(:,3,5);~}\) \(\operatorname{aR} 3 t=\operatorname{CoEff} 3(:, 1,5) ; \operatorname{aG3t}=\operatorname{CoEff} 3(:, 2,5) ; \operatorname{aB} 3 t=\operatorname{CoEff} 3(:, 3,5)\);
\(\operatorname{aR4t}=\operatorname{CoEff} 4(:, 1,5):, \operatorname{aG4t}=\operatorname{CoEff} 4(:, 2,5) ;, \operatorname{aB4t}=\operatorname{CoEff} 4(:, 3,5) ;\)
elseif \((\operatorname{INP}(i, 3)>\operatorname{INP}(i, 1) \& \operatorname{INP}(i, 1)>\operatorname{INP}(i, 2)) \mid(\operatorname{INP}(i, 1)==\operatorname{INP}(i, 3) \&\) \(\operatorname{INP}(i, 3)>\operatorname{INP}(i, 2)) \quad\) ) \& (INP(i,1)+INP(i,2)+INP(i,3)<384) aR1t=CoEffi \((:, 1,6) ;\) aG1t=CoEffl \((:, 2,6) ;, \operatorname{aBlt=CoEff1}(:, 3,6)\); \(\operatorname{ar2t}=\operatorname{CoEff} 2(:, 1,6) ; \operatorname{aG} 2 t=\operatorname{CoEff} 2(:, 2,6) ;, \operatorname{aB2t=CoEff} 2(:, 3,6) ;\) \(\operatorname{aR} 3 t=\operatorname{CoEff3}(:, 1,6) ; \operatorname{ag3t}=\operatorname{CoEff} 3(:, 2,6) ; \operatorname{aB3t}=\operatorname{CoEff} 3(:, 3,6)\); aR4t=CoEff4 \((:, 1,6) ;\) aG4t=CoEff \(4(:, 2,6) ;, \operatorname{aB4t}=\operatorname{CoEff} 4(:, 3,6)\);
\%\%\%\%\%\%\%\%\%\%\%\%

```

elseif ((INP(i,2) > $\operatorname{INP}(i, 1) \& \operatorname{INP}(i, 1)>\operatorname{INP}(i, 3)) \mid(\operatorname{INP}(i, 1)==\operatorname{INP}(i, 3) \&$ $\operatorname{INP}(i, 3)<\operatorname{INP}(i, 2)) \quad) \&(\operatorname{INP}(i, 1)+\operatorname{INP}(i, 2)+\operatorname{INP}(i, 3)>383)$ aR1t=CoEff1 $(:, 1,7) ;$ aG1t=CoEff1 $(:, 2,7) ;, a B 1 t=\operatorname{CoEff1}(:, 3,7)$; aR2t=CoEff2 (:,1,7); aG2t=CoEff2 (:,2,7);, aB2t=CoEff2 (:, 3,7); $\operatorname{aR} 3 t=\operatorname{CoEff3}(:, 1,7) ; \operatorname{ag} 3 t=\operatorname{CoEff} 3(:, 2,7) ;, \operatorname{aB3t}=\operatorname{CoEff3}(:, 3,7)$; aR4t=CoEff4(:,1,7); aG4t=CoEff4(:,2,7);, aB4t=CoEff4(:, 3,7);
elseif ($(\operatorname{INP}(i, 2)>\operatorname{INP}(i, 1) \& \operatorname{INP}(i, 1)>\operatorname{INP}(i, 3)) \mid\left(\operatorname{INP}(i, 1)==\operatorname{INP}(i, 3) \quad \delta_{c}\right.$ $\operatorname{INP}(i, 3)<\operatorname{INP}(i, 2)) \quad$) \& $(\operatorname{INP}(i, 1)+\operatorname{INP}(i, 2)+\operatorname{INP}(i, 3)<384)$ $\operatorname{aR1t}=\operatorname{CoEff1}(:, 1,8) ; \operatorname{aG1t}=\operatorname{CoEff1}(:, 2,8) ; \operatorname{ab1t}=\operatorname{CoEff} 1(:, 3,8)$; aR2t=CoEff2 $(:, 1,8) ;$ ag2t=CoEff2 $(:, 2,8) ;, \operatorname{aB2t=CoEff2(:,3,8);~}$ $\operatorname{aR3t}=\operatorname{CoEff3}(:, 1,8) ; \operatorname{aG3t}=\operatorname{CoEff} 3(: 2,8) ; \operatorname{aB3t}=\operatorname{CoEff3}(:, 3,8)$; aR4t=COEff4 $(:, 1,8) ; \operatorname{aG4t}=\operatorname{CoEff} 4(:, 2,8) ;, \operatorname{aB4t}=\operatorname{CoEff} 4(:, 3,8)$;

```


elseif \((\operatorname{INP}(i, 2)>\operatorname{INP}(i, 3) \& \operatorname{INP}(i, 3)>\operatorname{INP}(i, 1)) \mid(\operatorname{INP}(i, 2)==\operatorname{INP}(i, 3) \&\) \(\operatorname{INP}(i, 3)>\operatorname{INP}(i, 1)) \quad \&(\operatorname{INP}(i, 1)+\operatorname{INP}(i, 2)+\operatorname{INP}(i, 3)>383)\) aR1t=CoEff1 \((:, 1,9) ; \operatorname{aG1t}=\operatorname{CoEff} 1(:, 2,9) ;\) aB1t=CoEff1 \((:, 3,9) ;\) \(\operatorname{aR2t}=\operatorname{CoEff2}(:, 1,9) ;\), aG2t=CoEff2 \((:, 2,9) ;\) aB2t=CoEff2 \((:, 3,9)\); \(\operatorname{aR3t}=\operatorname{CoEff3}(:, 1,9) ; \quad \operatorname{ag} 3 t=\operatorname{CoEff} 3(:, 2,9) ;, \operatorname{ab3t}=\operatorname{CoEff} 3(:, 3,9)\); \(\operatorname{aR4t}=\operatorname{CoEff} 4(:, 1,9)\) i, ag4t=CoEff4(:2,9); aB4t=CoEff4(:,3,9);
elseif \((\operatorname{INP}(i, 2)>\operatorname{INP}(i, 3) \& \operatorname{INP}(i, 3)>\operatorname{INP}(i, 1)) \mid(\operatorname{INP}(i, 2)==\operatorname{INP}(i, 3) \&\) \(\operatorname{INP}(i, 3)>\operatorname{INP}(i, 1)) \quad\) ) \& \((\operatorname{INP}(i, 1)+\operatorname{INP}(i, 2)+\operatorname{INP}(i, 3)<384)\) aR1t=CoEff1 \((:, 1,10) ;\) aG1t=COEff1 \((:, 2,10) ;\) aB1t \(=\operatorname{CoEff1}(:, 3,10)\); aR2t=CoEff2 \((:, 1,10) ; \operatorname{aG2t=CoEff2}(:, 2,10) ;\) aB2t=CoEff2 \((:, 3,10)\); \(\operatorname{aR} 3 t=\operatorname{CoEff3}(:, 1,101 ;, \operatorname{aG3t}=\operatorname{CoEff3}(:, 2,10) ; \operatorname{aB3t}=\operatorname{CoEff} 3(:, 3,10)\); \(\operatorname{aR4t}=\operatorname{CoEff} 4(:, 1,10) ; \operatorname{aG4t}=\operatorname{CoEff} 4(:, 2,10) ; \operatorname{aB4t}=\operatorname{CoEff4}(:, 3,10)\);


elseif ( \((\operatorname{INP}(i, 3)>\operatorname{INP}(i, 2) \& \operatorname{INP}(i, 2)>\operatorname{INP}(i, 1)) \mid(\operatorname{INP}(i, 1)==\operatorname{INP}(i, 2) \&\) \(\operatorname{INP}(i, 2)<\operatorname{INP}(i, 3)) \quad \&(\operatorname{INP}(i, 1)+\operatorname{INP}(i, 2)+\operatorname{INP}(i, 3)>383)\) aR1t=CoEff1 \((:, 1,11) ;, \operatorname{ag1t=CoEff1}(:, 2,11) ;\) ab1t=CoEff1(: \(, 3,11) ;\) aR2t=CoEff2 (:,1,11); aG2t=CoEff2(:,2,11); aB2t=CoEff2(:,3,11); \(\operatorname{aR3t}=\operatorname{CoEff3}(:, 1,11) ;, \operatorname{ag} 3 t=\operatorname{CoEff3}(:, 2,11) ;, \operatorname{aB3t=CoEff3}(:, 3,11) ;\) aR4t=CoEff4(:,1,11); ag4t=CoEff4(:, 2,11); aB4t=CoEff4(:,3,11);
elseif \((\operatorname{INP}(i, 3)>\operatorname{INP}(i, 2) \& \operatorname{INP}(i, 2)>\operatorname{INP}(i, 1)) \mid(\operatorname{INP}(i, 1)==\operatorname{INP}(i, 2) \&\) \(\operatorname{INP}(i, 2)<\operatorname{INP}(i, 3))) \&(\operatorname{INP}(i, 1)+\operatorname{INP}(i, 2)+\operatorname{INP}(i, 3)<384)\) aR1t=CoEffl \((:, 1,12) ; \operatorname{aG1t}=\operatorname{CoEff1}(:, 2,12) ; \operatorname{aB1t=CoEff1}(:, 3,12)\); aR2t=CoEff2 (:,1,12);, aG2t=CoEff2(:,2,12); aB2t=CoEff2(:,3,12); \(\operatorname{aR3t}=\operatorname{CoEff} 3(:, 1,12) ; \operatorname{ag} 3 t=\operatorname{CoEff} 3(:, 2,12) ;, \operatorname{aB3t}=\operatorname{CoEff} 3(:, 3,12)\); \(\operatorname{aR4t}=\operatorname{CoEff} 4(:, 1,12) ;, \operatorname{aG4t}=\operatorname{CoEff} 4(:, 2,12) ;, \operatorname{aB4t}=\operatorname{CoEff} 4(:, 3,12) ;\)


\(2 \% \% \% \% \% \% \% \% \% \% \% \%\) part 07

\begin{tabular}{|c|c|}
\hline f & \(\operatorname{INP}(i, 1)==\operatorname{INP}(\mathrm{i}, 2) \& \operatorname{INP}(\mathrm{i}, 2)==\operatorname{INP}(\mathrm{i}, 3)\) \\
\hline &  \\
\hline &  \\
\hline & \(\operatorname{aR3t}=\operatorname{CoEff3}(:, 1,13) ;, \operatorname{ag} 3 \mathrm{t}=\operatorname{CoEff3}(:, 2,13) ;, \operatorname{ab3t=CoEff3}(:, 3,13)\) \\
\hline & aR4t=CoEff \(4(:, 1,13)\); \(\operatorname{aG4t=CoEff4(:,2,13);,~} \mathrm{CB4t}=\operatorname{CoEff} 4(:, 3,13)\) \\
\hline
\end{tabular}




end

告 first order 04 calculate \(\%\)

```

INPa = cat (2,ones(1,1),INPt);

```

```

RoutI = INPa*aRIt;
Gout1 = INPa*aG1t;
Bout1 = INPa*aB1t;

```


\% second order calculate

    INPb0 \(=\operatorname{ones}(1,1)\);
    INPb1 = INPt(:,1);
    INPb2 \(=\operatorname{INPL}(:, 2)\);
    INPb3 \(=\) INPE \((:, 3)\);
    \(\operatorname{INPb} 4=[\operatorname{INPt}(:, 1) . * \operatorname{INPt}(:, 2)]\) i
    INPb5 \(=[\operatorname{INPt}(:, 2) . * \operatorname{INP}(:(: 3)]\);
    INPb6 \(=[\) INPt \((:, 1)\) * \(\operatorname{INPt}(:, 3)]\);
    \(\operatorname{INPb} 7=\operatorname{INPt}(:, 1) \cdot \wedge 2\)
    INPb8 \(=\operatorname{INPL}(:, 2), \wedge^{2} ;\)
    \(\operatorname{INPb} 9=\operatorname{INPt}(:, 3) / \sim 2\);
    \(\operatorname{INPb} 10=[\operatorname{INPt}(:, 1) \cdot * \operatorname{INPt}(:, 2) . * \operatorname{INPt}(:, 3)] ;\)
INPb \(=\)
cat (2,INPb0,INPb1,INPb2,INPb3,INPb4,INPb5,INPb6,INPb7,INPb8,INPb9,INPb10);

    Rout2 \(=\) INPb*aR2t;
    Gout2 = INPb*aG2t;
    Bout2 \(=\) INPb*aB2t;


\% Third order14 calculate \%

    \(\operatorname{INPCO}=\operatorname{Ones}(1,1) ;\)
    \(\operatorname{INPC} 1=\operatorname{INPt}(:, 1) ;\)
\(\operatorname{INPC} 2=\operatorname{INPt}(:, 2) ;\)
    INPC3 \(=\operatorname{INPt}(: 3)\) :
    \(\operatorname{INPC} 4=\{\operatorname{INPt}(:, 1) . * \operatorname{INPt}(:, 2)\}:\)
    \(\operatorname{INPC5}=\{\operatorname{INPt}(:, 2) . * \operatorname{INPt}(:, 3)\} ;\)
    \(\operatorname{INPC} 6=[\operatorname{INPL}(:, 1) . * \operatorname{INPt}(:, 3)]\);
    INPC7 \(=\operatorname{INPL}(:, 1) . \wedge 2 ;\)
    \(\operatorname{INPCB}=\operatorname{INPt}(:, 2) .{ }^{\wedge} 2 ;\)
    INPC9 \(=\operatorname{INPt}(:, 3) .{ }^{n} 2\);
    \(\operatorname{INPc} 10=\left[\operatorname{INPt}(:, 1) . * \operatorname{INPt}(:, 2) .{ }^{*} \operatorname{INPt}(:, 3)\right]\)
    INPC11= \(\operatorname{INPt}(:, 1),{ }^{n} 3\);
    INPC12= \(\operatorname{INPt}(:, 2)\).^3;
    INPC13 = \(\operatorname{INPt}(:, 3) . \wedge 3\);
    INPC =
cat (2,INPC0, INPC1, INPC2,INPC3, INPC4, INPC5, INPC6, INPC7, INPC 8, INPC9, INPC10, INPC11, INPc12
, INPC13);

    Rout \(3=\) INPC*aR3t;
    Gout3 \(=\) INPC*aG3t:
    Bout3 \(=\) INPC*aB3t;


        \% Third order20 calculate \%

```

INPdO = ones(1,1);
INPd1 = INPt(:,1);
INPd2 = INPt (:,2)
INPd3 = INPt(:,3);
INPd4 = [INPt(:,1).*INPt (:,2)];
INPd5 = [INPt (:,2).*INPt (:,3)];
INPd6 = [INPt(:,1).*INPE(:,3)];
INPd7 = INPt (:,1).^2;
INPd8 = INPt (:,2).^2;
INPd9 = INPE (:,3).^2;
INPd10= [INPt (:,1).*INPt(:,2).*INPt (:,3)];
INPd11= INPE (:,1).^3;
INPd12= INPt (:, 2).^3;
INPd13= INPt(:,3).^3;
INPd14= [INPt(:,1).*(INPt (:,2).^2);];
INPd15= [INPt(:,2).*(INPt (:,1).^2);];
INPd16=[INPt (:,2).*(INPt (;,3).^2);];
INPd17= [INPt (:,3).*(INPt (:, 2).^2);];
INPd18= [INPt (:,3).*(INPt (:,1).^2);];
INPd19=[INPt(:,1).*(INPt (:,3).^2);];
INPd =
cat (2,INPd0,INPd1,INPd2,INPd3,INPd4,INPd5,INPd6,INPPd7,INPd8,INPd9,INPd10,INPd11,INPd12
,INPd13,INPd14, INPd15,INPd16,INPd17, INPd18, INPd19);
%ᄋ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Rout4 = INPd*aR4t;
Gout4 = INPd*aG4t;
Bout4 = INPd*aB4t;

```

\section*{}
\% Get result in to matrices output are P1 P2 P3 P4

P1 (i,:) = cat (2,Rout1,Gout1,Bout1);
P2 (i,:) \(=\operatorname{cat}(2\), Rout 2, Gout 2 , Bout 2\()\); P3(i,:) \(=\) cat \((2\), Rout 3 , Gout 3, Bout 3); P4(i,:) \(=\operatorname{cat}(2\), Rout4, Gout 4, Bout 4\()\);



```

%This is for Whole space
S = input('give me LUT of SGB(scale255) to RGB(scale255) file wk1:
','s')
IN= input('give me your Input file SGB(scale255) file wkl:
','s')
% File for LUT %
LoUp = wklread(S);
Rowl = length(LoUp):
SGB = LoUp(:,1:3);
RRGB = LoUp (:,4); %RRGB
GRGB = LoUp (:,5); %GRGB
BRGB = LoUp (:,6); %BRGB
% File for Test image 各
INF = wklread(IN);
Row2 = length(INP);
%壴名名名呂名名 retrive file name to write TIFF late= %%%%%%%%%%%%%%
IN(:, end-3:end) = []
S}(:, end-3: end)=[
言言多名名产名呂 retrive file name to write TIFFF later %%%%%%%%%%%%%% .

```

```

% Here, Coefficient matrix


```
aR1 = zeros(4,1);
aG1 = zeros(4,1);
aB1 = zeros(4,1);
aR2 = zeros(11,1);
aC2 = zeros(11,1);
aB2 = zeros(11,1);
aR3 = zeros(14,1);
aG3 = zeros(14,1);
aB3 = zeros(14,1);
aR4 = zeros(20,1);
aG4 = zeros(20,1);
aB4 = zeros(20,1);
```



```
Xa}=\operatorname{cat}(2,\mathrm{ ones(Row1,1),SGB);
aR1 = Xa\RRGB
aG1 = Xa\GRGB
aB1 = Xa\BRGB
% Eirst order 04 calculate %
```



```
INPa = cat (2,ones (Row 2,1),INP);
```



```
    Rout1 = INPa*aRI;
    Gout1 = INPa*aG1;
    Bout1 = INPa*aB1;
```

```
    P = cat(2,Rout1,Gout1,Bout1);
    Pz1= length(P);
    q = Pz1+1;
for i=q:750
    P(i,:)= [255 255 255];
end
    s = 2* ceil((25-(Pz1-(25*(fix(Pz1/25)))))/2)
for i=q:2:(q+s-1)
end
x=P(:,1,1);
y=P(:,2,1);
z=P(:,3,1);
% make each RGB column to each matrix x,y,z
x = (reshape (x,25,30))/255;
y = (reshape(y,25,30))/255;
z = (reshape(z,25,30))/255;
W= zeros(25,30,3);
% Reshape each matrix to 25 by }3
% divide to be 0-1 value
% (because of matlab needed)
% now set W matrix that 25 by 30 by }3\mathrm{ , bobd
% to fill with R,G,B value
for i=1:25
            for j=1:30
            W(i,j,l)=x(i,j,1);
        end
end
for i=1:25
            for j=1:30
            W(i,j,2)=Y(i,j,1);
        end
end
for i=1:25
            l:25
            for j=1:30}\mp@code{W(i,j,3)=z{i,j,1);
        end
end
```



```
%Here you get each pixel per patch
U=zeros(625,750,3);
% Let interpolate T to be N
% Output is 625\times750 pixel.
% RGB image, each patch is 25x25 pixel
for i=1:25
    for j=1:30
    U((((25*i)-24):1:(25*i)),(((25*j)-24):1:(25*j)),1)=W(i,j,1);
                U((((25*i)-24):1:(25*i)),(((25*j)-24):1:(25*j)),2) = W(i,j,2);
        U((()25*i)-24):1:(25*i)),(((25*j)-24):1:(25*j)),3)=W(i,j,3);
        end
end
% put time stamp file name %
0 = datestr(now,0);
O(1,15) = 'h
O(1,18)='m
H = ['w_cal3x04_',IN,' by ',S,' at ',0,'.tif'];
```

```
imwrite (U,H,'tif','resolution',100)
```



```
Xb0 = ones(Row1,1);
Xb1 = SGB(:,1);
Xb2 = SGB(:,2);
Xb3 = SGB(:,3);
Xb4 = [SGB (:,1).*SGB (:,2)];
Xb5 = [SGB (:,2),*SGB (:,3)];
Xb6 = {SGB (:,1).* *GB (:,3) |;
Xb7 = SGB(:,1).^2;
Xb8 = SGB (:,2),^2;
Xb9 = SGB(:,3).^2;
Xb10= [SGB(:,1).*SGB(:,2).*SGB (:,3)];
Xb = cat (2,Xb0, Xb1,Xb2,Xb3,Xb4,Xb5,Xb6, Xb7,Xb8,Xb9,Xb10);
aR2 = Xb\RRGB;
aG2 = Xb\GRGB;
aB2 = Xb\BRGB;
% second order 11 calculate %
```



```
INPb0 = ones(Row2,1);
INPb1 = INP(:,1);
INPb2 = INP(:,2);
INPb3 = INP(:,3)
INPb4 = [INP(:,1).*INP (:,2)];
INPb5 = [INP(:,2).*INP (:,3)];
INPb6 = [INP(:,1).*INP(:,3)];
INPb7 = INP(:,1).^2;
INPb8 = INP(:, 2).^2;
INPb9 = INP{:,3).^2;
INPb10= [INP(:,1).*INP(:,2).*INP(:, 3)];
INPb = cat(2,INPb0,INPb1,INPb2,INPb3,INPb4,INPb5,INPb6,INPb7;INPb8,INPb9,INPb10);
```



```
Rout2 = INPb*aR2;
Gout2 = INPb*aG2.
Bout2 = INPb*aB2
```



```
%Make result matrix to Image%
% first order 04 calculate %
```



```
    P = cat (2,Rout2,Gout2,Bout2);
            Pz1= length(P);
            q = Pzl+1;
for i=q:750
        P(i,:)= [255 255 255];
end
                                    s = 2*ceil((25-(Pzl-(25*(fix(Pzl/25)))))/2)
for i=q:2:(q+s-1)
        P(i,:) = [llll}0000
end
x=P(:,1,1);
y=P(:,2,1);
z=P(:,3,1);
% make each RGB column to each matrix x,y,z
x = (reshape (x, 25,30))/255;
y = (reshape (y, 25,30))/255;
```

```
z = (reshape(z, 25,30))/255;
W = zeros (25,30,3);
% Reshape each matrix to 25 by }3
% divide to be 0-1 value
% (because of matlab needed)
% now set W matrix that 25 by }30\mathrm{ by }
% to fill with R,G,B value
for i=1:25
        for j=1:30
        W(i,j,1)=x(i,j,1);
        end
end
for i=1:25
        for j=1:30
        W(i,j,2)=Y(i,j,1);
        end
end
for i=1:25
        for j=1:30
        W(i,j,3)=z(i,j,1);
        end
end
%Here you get each pixel per patch
U=zeros(625,750,3);
% Let interpolate T to be N
% Output is 625\times750 pixel,
% RGB image, each patch is 25\times25 pixel
for i=1:25
    for j=1:30
        U((((25*i)-24):1:(25*i)),(((25*j)-24):1:(25*j)),1) = W(i,j,1);
            U((((25*i)-24):1:(25*i)),(((25*j)-24):1:(25*j)),2)=W(i,j,2);
            U((((25*i)-24):1:(25*i)),(((25*j)-24):1:(25* j) ), 3) =W(i,j,3);
            end
enả
% put time stamp file name %
O = datestr(now,0);
O(1,15) = 'h'
O(1,18) = 'm'
H= ['w_cal3xll_',IN,' by ',S,' at ',O,'.tif'];
imwrite (U,H,'tif','resolution',100)
```



```
Xc0 = ones(Rowl,I);
XC1 = SGB(:,1);
XC2 = SGB (:,2);
Xc3 = SGB(:,3);
XC4 = [SGB (:,1).*SGB (:,2)];
XC5 = [SGB (:,2).*SGB (:,3)];
XC6 = [SGB(:,1).*SGB(:,3)];
XC7 = SGB (:,1).^2;
Xc8 = SGB(:,2).^2;
XC9 = SGB (:, 3),^2;
XC10= [SGB(:,1).*SGB(:,2).*SGB(:,3)];
Xc11= SGB(:,1).^3;
Xc12= SGB (:, 2),^3;
XC13= SGB(:,3).^3;
```

```
Xc = cat (2,Xc0,Xc1,Xc2,Xc3,Xc4,Xc5,Xc6,Xc7,Xc8,Xc9,Xc10,Xc11,Xc12,Xc13);
aR3 = Xc\RRGB;
aG3 = Xc\GRGB;
aB3 = Xc\BRGB;
% Third order 14 calculate %
```



```
INPCO = ones (ROW2,1);
INPC1 = INP(:,1);
INPC2 = INP(:,2)
INPC3 = INP(:,3)
INPC4 = [INP(:,1).*INP(:,2)];
INPC5 = [INP(:,2),*INP(:,3)];
INPC6 = [INP(:,1).*INP (:,3)];
INPC7 = INP(:,1).^2;
INPC8 = INP (:, 2),^2
INPC9 = INP(:,3).^2;
INPC10= [INP(:,1).*INP(:,2).*INP(:, 3)];
INPC11= INP(:,1).^3;
INPC12= INP(:,2).^3
INPC13= INP(:,3).^3
INPC =
cat (2, INPC0, INPC1,INPC2,INPC3,INPC4,INPC5,INPC6,INPC7,INPC8,INPC9,INPC10,INPC11,INPC12
,INPC13);
```



```
Rout3 = INPc*aR3
Gout3 = INPc*aG3
Bout3 = INPC*aB3;
```



```
&Make result matrix to Image%
% First order 04 calculate %
```



```
                    P = cat (2, Rout3,Gout 3,Bout 3);
                    Pzl= length(P);
                    q = Pz1+1;
for i=q:750
                                    P(i,:)}=[\begin{array}{llll}{255}&{255}&{255}\end{array}]
end
                                    s = 2* ceil((25-(Pz1-(25*(fix(Pz1/25)))))/2)
Eor i=q:2:(q+s-1)
    P(i,:) = [l0}000]
end
X=P(:,1,1);
Y=P(:,2,1);
z=P(:, 3,1);
% make each RGB column to each matrix x,y,z
x = (reshape (x,25,30))/255;
y = (reshape(y,25,30))/255;
z = (reshape (z,25,30))/255;
W = zeros (25,30,3);
% Reshape each matrix to 25 by 30
% divide to be 0-1 value
% (because of matlab needed)
% now set W matrix that 25 by }30\mathrm{ by }
of to fill with R,G,B value
for i=1:25
        for j=1:30
        W(i,j, l)=x(i,j,1);
    end
```

```
end
for i=1:25
            for j=1:30
            W(i,j,2)=y(i,j,1);
    end
end
for i=1:25
            for j=1:30
            w(i,j,3)=z(i,j,1)
        end
end
%Here you get each pixel per patch
U=zeros(625,750,3);
% Let interpolate T to be N
% Output is 625x750 pixel,
% RGB image, each patch is 25\times25 pixel
for i=1:25
    for j=1:30
        U((((25*i)-24):1:(25*i)),(((25* ) - 24):1:(25*j)),1) = W(i,j,1);
            U((((25*i)-24):1:(25*i)),((125*j)-24):1:(25*j)),2)=W(i,j,2);
            U((((25*i)-24):1:(25*i)).(()(25*j)-24):1:(25*j)),3) = W(i,j,3);
            end
end
% put time stamp file name
= datestr(now,0);
O(1,15) = 'h
O(1,18)= 'm'
H = ['w_cal3x14_',IN,' by ',S,'/at ',O,.'tif'];
imwrite (U,H,'tif','resolution',100)
```



```
Xco = ones (Row1,1);
XC1 = SGB(:,1);
Xd2 = SGB (:,2);
Xd3 = SGB (:,3);
Xd4 = [SGB (:,1).*SGB (:,2)];
Xd5 = [SGB (:,2).*SGB (:,3)];
Xd6 = [SGB(:, 1).*SGB(:,3)];
Xd7 = SGB (:, 1).^2;
Xd8 = SGB (:, 2).^2;
Xd9 = SGB (:, 3).^^2;
Xd10= [SGB(:,1).*SGB(:,2).*SGB (:,3)];
Xd11= SGB(:,1).^3;
Xd12= SGB (:,2).^3;
Xd13= SGB (:, 3).^3;
Xd14= [SGB (:, 1).* (SGB (:,2).^2)]:
Xd15= (SGB(:,2).* (SGB (:,1).^2));
Xd16= [SGB(:, 2).* (SGB (:,3).^2)];
Xd17= {SGB (:,3).* (SGB (:,2).^2)};
Xa18= [SGB(:,3).* (SGB (:,1).^2)];
XC19 = [SGB(:,1).* (SGB (:,3).^2)];
xd =
cat (2,xd0, xd1, xd2, xd3, xd4, xd5, xd6, xd7, xd8, xd9, xd10, xd11, xd12,xd13, Xd14, xd15, xd16, Xd17,
xd18,Xd19);
aR4 = Xd\RRGB;
aG4 = Xd\GRGB;
aB4 = Xd\BRGB.
```

```
% Third order 14 calculate %
```



```
INPd0 = ones(Row2,1);
INPd1 = INP(:,1);
INPd2 = INP{:,2);
INPd3 = INP(:,3);
INPd4 = [INP(:,1).*INP(:,2)];
INPd5 = [INP(:, 2).*INP(:,3)];
INPd6 = [INP(:,1).*INP(:,3)];
INPd7 = INP(:,1).^2;
INPd8 = INP(:,2).^2;
INPd9 = INP(:,3).^2;
INPd10= [INP(:, 1).*INP(:, 2).*INP(:, 3)];
INPd11= INP(:,1).^3;
INPd12= INP(:,2).n3;
INPd13= INP(:,3).^3;
INPd14= [INP(:,1).*(INP(:,2).^2);];
INPd15= [INP(:,2).*(INP(:,1).^2);];
INPd16= [INP(:,2),*(INP (:,3).^2);];
INPd17= [INP(:,3).*(INP(:,2).^2);];
INPd18= [INP(:,3).*(INP(:,1).^2);};
INPd19= [INP(:,1).*(INP (:,3).^2);];
INPd =
cat (2,INPd0, INPD11,INPd2,INPd3,INPD4,INPd5,INPA6,INPd7,INPd8,INPd9,INPd10,INPd11,INPd12
,INPd13,INPd14,INPd15,INPd16,INPd17,INPd18,INPd19);
```



```
Rout4 = INPd*aR4;
Gout4 = INPd*aG4;
Bout4 = INPd*aB4;
```



```
%Make result matrix to Image%
% first order 04 calculate %
```



```
                    P = cat (2,Rout4,Gout4, Bout4);
                    Pz1= length(P);
                    q = Pzl+1;
for i=q:750
        P(i,:)}=[\begin{array}{llll}{255}&{255}&{255}\end{array}]
enc
                    S = 2*}\operatorname{ceil}((25-(Pz1-(25*(\operatorname{Eix}(\textrm{Pz}1/25)))))/2
for i=q:2:(q+s-1)
    P(i,:) = [0 0 0}]\mp@code{0
end
X=P(:,1,1);
y=P(:, 2,1);
z=P(:,3,1);
% make each RGB column to each matrix x,y,z
x = (reshape (x,25,30))/255;
y=(reshape (y,25,30))/255;
z = (reshape (z,25,30))/255;
W = zeros(25,30,3);
o Reshape each matrix to 25 by }3
% divide to be 0-1 value
% (because of matlab needed)
% now set W matrix that 25 by }30\mathrm{ by }
% to Eill with R,G,B value
for i=1:25
    for j=1:30
    W(i,j, 1)=x(i,j, 1);
```

```
    end
end
for i=1:25
            for j=1:30
            W(i,j,2)=y(i,j,1);
        end
end
for i=1:25
            for j=1:30
            W(i,j,3)=2(i,j,1);
        end
end
%Here you get each pixel per patch
U=zeros(625,750.3);
% Let interpolate T to be N
% Output is 625\times750 pixel،
% RGB image, each patch is 25\times25 pixel
for i=1:25
    for f=1:30
        U((((25*i)-24):1:(25*i)),(((25*j)-24):1:(25*j)),1) = W(i,j,1);
            U((()(25*i)-24):1:(25*i)),(((25*j)-24):1:(25*j)),2)=W(i,j,2);
            U((((25*i)-24):1:(25*i)),(((25*j)-24):1:(25*JH),3)=W(i,j,3);
            end
end
% put time stamp file name ?
O = datestr(now,0);
O(1,15) = 'h'
O(1,18) = 'm'
H=['w_cal3x20_',IN,' by ',S,' at, ,O,',tif'];
imwrite (U,H,'tif','resolution',100)
```


VITA

Mr. Prasir Cunthasaksiri was born on January 3, 1972 in Bangkok, Thailand. He received his B.Eng. degree in Mechanical Engineer from the Faculty of Engineer, Kasetsart University in 1996, and he has been a graduate student in the Imaging Technology Program, Graduate school, Chulalongkorn University since 1998.

