REFERENCES

- Abdullilah, I., Ahmad, S., and Sulaiman, S. (1995). Blending of natural rubber with linear low-density polyethylene. <u>Appilied of Polymer</u> <u>Science</u>, 58, 1125-1133.
- Barnes, H. A., Hutton, J. F., and Walters, F. R. S. (1989). <u>An introduction to</u> <u>rheology</u>. Elsview.
- Brandrup J., and Immergut, E. H. (Eds.) (1989). <u>Polymer handbook</u>. Vol.2. (441-434). New York: John Wiley & Son.
- Chesters, A. K. (1991). The modeling of coalescence processes in fluidliquid dispersions: a review of current understanding. <u>Trans Chem E</u>, 69, 259-270.
- Choi, G. D., Won, H. J., and Kim, H. G. (1996). The effect of the viscosity ratio of dispersed phase to matrix on the rheological, morphological, and mechanical properties of polymer blends containing a LCP. <u>Applied Polymer Science</u>, 59, 443-452.
- Cook, W. D., Zhang, T., Moad, G., Deipan, G. V., Cser, F., Fox, B., and Shea,
 M. O. (1996). Morphology-property relationships in ABS/PET blends. I. Compositional effects. <u>Applied Polymer Science</u>, 62(10), 1699-1708.
- Dealy, J. M., and Wissbrum, K. F. (1990). <u>Melt rheology and its role in</u> <u>plastic processing</u>. London: Chapman & Hall.
- Doi, M., and Ohta, T. (1991). Dynamics and Rheology of complex interfaces. Chem. Phys., 95, 1242-1248.
- Favis, B. D., and Chalifoux, J. P. (1987). The viscosity ratio on the morphology of polypropylene/polycarbonate blends during processing. <u>Polymer Engineering and Science</u>, 27(20), 1591-1600.

- Foles, M. J., and Hope, P.S. (Eds.) (1993). <u>Polymer blends and alloy</u>. London: Chapman & Halls.
- Graebling, D., Muller, R. and Palierne, J. F. (1993). Linear viscoelastic behavior of some incompatible polymer blends in the melt: Interpretation of data with a model of emulsion of viscoelastic liquids. <u>Macromolecules</u>, 26, 320-329.
- Henri U. (1993). Introduction to industrial polymer. New York: Hanser.
- James, E. M. (Ed.) (1996). <u>Physical properties of polymer handbook</u>. New York: American Institute of Physics.
- Kim, R. J., Jamieson, A. M., Hudson, S. D., Zloczower, I.M., and Hatsuo Ishida (1998). Influence of exothermic interaction on the morphology and droplet coalescence of melt-mixed immiscible polymer blends contain a block copolymer. <u>Macromolecules</u>, 31, 5383-5390.
- Kumin, Y., and Han, C. D. (1996). Effect of shear flow and annealing on morphology of rapidly precipitated immiscible blends of PS/PI. <u>Polymer</u>, 36(26), 5795-5805.
- Levitt, L., and Macosko, C. W. (1996). Influence of Normal stress difference on polymer drop deformation. <u>Polymer Engineering and Science</u>, 36 (12), 1647-1655.
- Marh, J. E. (ed.) (1996). <u>Physical properties of polymer handbook</u>. New York: American Institute of Physics.
- Mark, H. F., Bikales, N. M., Overberger, C. G., and Menges, G. (Eds.) (1986). <u>Encyclopedia of polymer science and engineering</u> vol.8 (pp. 254-276). New York: Wiley-Interscience.
- Minale, M., Moldenaers, P., and Mawis, J. (1997). Effect of shear history on the morphology of immiscible polymer blends. <u>Macromolecules</u>, 30, 5470-5475.

- Nakatani, A. I. (1996). <u>Shear mixing/demixing of polymer blends</u>. Ph.D. Thesis, University of Wisconsin, Madison, WI.
- Nazir, A. M. (1998). Rheological properties and interfacial in polycarbonate/impact modifier blends: Effect of modifier shell molecular weight. <u>Polymer Science</u>: Part B: Polymer Physics, 36, 1095-1105.
- Palierne, J. F. (1990). Linear rheology of viscoelastic emulsions with interfacial tension. <u>Rheology Acta</u>, 29, 204-214.
- Sandararaj, U., and Macosko, C. W. (1995). Drop breakup and coalescence in polymer blends: The effects of concentration and compatibilization. <u>Macromolecules</u>, 28, 264-2657.
- Schoolenberg, G. E., During, F., and Ingenbleck, G. (1998). Coalescence and interfacial tension measurements for polymer melts: experiment on a PS-PE model system. <u>Polymer</u>, 39(4), 765-772.
- Shenoy, A. V., and Saini, D. R. (Eds.) (1996). <u>Thermoplastic melt_rheology</u> and processing. New York: Marcel Dekker.
- Smoluchowski, M. V., Physik, Z. (1916). Z. Physik Chemistry, 17, 557-585.
- Stone, H. A., Bentley, B. J., and Leal, L. G. (1986). An experiment study of transient effects in the breakup of viscous drops. <u>Fluid Mechanics.</u>, 173, 131-158.
- Taylor, G. I. (1932). The viscosity of a fluid containing small drops of another fluid. <u>Proc. R. Soc. London</u>, A146, 41-49.
- Utracki, L. A. (Ed.) (1989) Polymer alloys and blends: Thermodynamics and rheology. New York: Hanser.
- Utracki, L. A. (Ed.) (1993). <u>Two-phase polymer systems</u>. New York: Hanser.
- Utracki, L. A., and Sammut, P. (1988). Rheological of polystyrene /polyethylene blends. <u>Polymer Engineering and Science</u>. 28(21), 1405-1415.

- Utracki, L.A., and Shi, Z. H. (1992). Development of polymer blend morphology during compounding in a twin-screw extruder: Part I: Droplet dispersion and coalescence-A Review. <u>Polymer Engineering</u> <u>and Science</u>, 32(24), 1824-1833.
- Vinckier I. (1998). <u>Microstructure analysis and rheology of immiscible</u> <u>polymer blends</u>. Ph.D. Thesis, Department of chemical engineering, de Croylann, Belgium.
- Vittorio, C., Blawzdziewicz, J., amd Loewenberg, M. (1998). Drop breakup in three-dimensional viscous flows. <u>Physics Fluids</u>, 10(8), 1781-1783.
- Wensheng, B., and Jiasong, H. (1996). The effect of mixing time on the morphology of immiscible polymer blends. <u>Applied Polymer Science</u>, 62, 1445-1456.
- Wu, S. (1987). Formation of dispersed phase in incompatible polymer blends: Interfacial and rheological effects. <u>Polymer Engineering and</u> <u>Science</u>, 27(5), 335-343.
- Zloczower, I. M., Tadmor, Z. (Eds.) (1994). <u>Mixing and compounding of</u> <u>polymer</u>. New York: Hanser.

APPENDIX A

MICROGRAPHS OF THE BLENDS

Figure A (1.1) The micrographs of the PS/PP blends of various shearing time at the shear strain rate of 1 s⁻¹, 200 °C. (Magnification: 400 times)

Initial micrograph from the brabender

Shearing time = 5 s

Shearing time = 50 s

Shearing time = $5 \min$

Shearing time = 10 min

Shearing time = 30 min

Figure A (1.2) The micrographs of the PS/PP blends of various shearing time at the shear strain rate of 10 s⁻¹, 200 °C. (Magnification: 400 times)

Shearing time = 3 s

Shearing time = 10 s

Shearing time = 20 s

Shearing time = $2 \min$

Shearing time = $1 \min$

Shearing time = $3 \min$

Figure A (1.3) The micrographs of the PS/PP blends of various shearing time at the shear strain rate of 100 s^{-1} , $200 \text{ }^{\circ}\text{C}$. (Magnification: 400 times)

Shearing time = 20 s

Shearing time $= 1 \min$

Figure A (1.4) The micrographs of the PS/PP blends of various shearing time at the shear strain rate of 800 s⁻¹, 200 °C. (Magnification: 400 times)

Shearing time = 15 s

Shearing time $= 1 \min$

Figure A (2) The micrographs of the PS/PP blends of various shear strain rate at 200 °C. (Magnification: 400 times)

Shear strain rate = 1 s^{-1}

Shear strain rate = 100 s^{-1}

Shear strain rate = 10 s^{-1}

Shear strain rate = 200 s^{-1}

Shear strain rate = 400 s^{-1}

Shear strain rate = 800 s^{-1}

Figure A (3) The micrographs of the PS/HDPE blends of various shear strain rate at 200 °C. (Magnification: 400 times)

Shear strain rate = 1 s^{-1}

Shear strain rate = 100 s^{-1}

Shear strain rate = 400 s^{-1}

Shear strain rate = 10 s^{-1}

Shear strain rate = 200 s^{-1}

Shear strain rate = 800 s^{-1}

Figure A (4) The micrographs of the PMMA/HDPE blends of various shear strain rate at 200 °C. (Magnification: 500 times)

Shear strain rate = 1 s^{-1}

Shear strain rate = 10 s^{-1}

Shear strain rate = 100 s^{-1}

Shear strain rate = 200 s^{-1}

Shear strain rate = 400 s^{-1}

Shear strain rate = 800 s^{-1}

APPENDIX B

DROPLET SIZE DISTRIBUTION FUNCTIONS

Table B (1) Droplet size distribution functions for the PS/PP blends at the shear strain rate of 1 s⁻¹, 200 °C.

shearing	time = 5 s	shearing t	ime = 10 s	shearing t	ime = 30 s	shearing t	ime = 50 s	shearing ti	me =1 min
d	f(d)	d	f(d)	d	f(d)	d	f(d)	d	f(d)
1.8750	0.0000	1.8750	0.0000	2.1250	0.0000	1.8750	0.0000	2.1250	0.0000
2.1250	0.0084	2.1250	0.0042	2.3750	0.0435	2.1250	0.0085	2.3750	0.0521
2.5000	0.0837	2.3750	0.0336	3.1250	0.1498	2.3750	0.0213	3.1250	0.1146
3.1250	0.1632	3.1250	0.1555	3.8750	0.2609	2.6250	0.0128	3.8750	0.2049
3.8750	0.2301	4.0000	0.2566	4.3750	0.2271	3.1250	0.1319	4.3750	0.1597
4.3750	0.2218	4.3750	0.2227	5.1250	0.1739	3.8750	0.2043	5.1250	0.1944
5.1250	0.1339	5.1250	0.1807	5.6250	0.0918	4.3750	0.2213	5.6250	0.1354
5.6250	0.0837	5.6250	0.0925	6.3750	0.0193	5.1250	0.1660	6.3750	0.0556
6.3750	0.0418	6.3750	0.0294	6.8750	0.0145	5.6250	0.1064	6.8750	0.0347
6.8750	0.0209	6.8750	0.0084	8.1250	0.0097	6.3750	0.0766	7.6250	0.0243
7.6250	0.0042	7.6250	0.0042	8.3750	0.0000	7.6250	0.0170	8.1250	0.0069
8.1250	0.0042	8.1250	0.0042			8.1250	0.0085	8.8750	0.0069
8.3750	0.0000	8.3750	0.0000			8.8750	0.0043	9.1250	0.0000

shearing t	ime=5 min	shearing ti	me=10 min	shearing ti	me=20 min	shearing ti	me=30 min
d	f(d)	d	f(d)	d	f(d)	d	f(d)
2.1250	0.0000	2.8750	0.0000	2.8750	0.0000	3.6750	0.0000
2.3750	0.0079	3.1250	0.0042	3.8750	0.0042	3.8750	0.0045
3.1250	0.0276	3.8750	0.0211	4.3750	0.0167	4.3750	0.0179
3.8750	0.0827	4.3750	0.0675	5.1250	0.0753	5.1250	0.0759
4.3750	0.2126	5.1250	0.1350	5.6250	0.1046	5.6250	0.1116
5.1250	0.2283	5.6250	0.2068	6.3750	0.1423	6.3750	0.1518
5.6250	0.1575	6.3750	0.2110	6.8750	0.2134	7.0000	0.1759
6.3750	0.1181	6.8750	0.1435	7.6250	0.1506	7.6250	0.1518
6.8750	0.0591	7.6250	0.0928	8.1250	0.0921	8.2500	0.0893
7.6250	0.0354	8.1250	0.0549	8.8750	0.0711	8.8750	0.0759
8.1250	0.0197	8.8750	0.0169	9.3750	0.0460	9.3750	0.0492
8.8750	0.0079	9.3750	0.0084	10.6250	0.0293	10.6250	0.0268
9.8750	0.0039	9.8750	0.0042	11.1250	0.0126	11.1250	0.0134
10.1250	0.0000	10.1250	0.0042	11.3750	0.0126	11.3750	0.0134
		10.3750	0.0000	11.6250	0.0000		

shearing	time = 3 s	shearing	time = 5 s	shearing	time = 8 s	shearing t	ime = 10 s	shearing t	ime = 20 s
d	f(d)	d	f(d)	d	f(d)	d	f(d)	d	f(d)
2.1250	0.0000	2.1250	0.0000	2.1250	0.0000	2.1250	0.0000	2.1250	0.0000
2.3750	0.0754	2.3750	0.0298	2.3750	0.0375	2.3750	0.0090	2.5200	0.0601
3.1250	0.1548	3.1250	0.1523	3.1250	0.1667	3.1250	0.0679	3.1250	0.1138
3.8750	0.2143	3.8750	0.2483	3.8750	0.2292	3.8750	0.2172	3.8750	0.1793
4.3750	0.2421	4.3750	0.2517	4.3750	0.2333	4.3750	0.2172	4.3750	0.1379
5.1250	0.1508	5.3600	0.1430	5.1250	0.1375	5.1250	0.1493	5.1250	0.1655
5.6250	0.0833	5.6250	0.0861	5.6250	0.1250	5.6250	0.1448	5.6250	0.1414
6.3750	0.0437	6.3750	0.0550	6.3750	0.0417	6.3750	0.0633	6.3750	0.0655
6.8750	0.0159	6.8750	0.0220	6.8750	0.0083	6.8750	0.0814	6.8750	0.0552
7.6250	0.0119	7.6250	0.0066	7.6250	0.0125	7.6250	0.0317	7.6250	0.0345
8.1250	0.0079	7.8750	0.0030	8.6250	0.0000	8.1250	0.0181	8.1250	0.0207
8.3750	0.0000	8.1250	0.0000			8.3750	0.0000	8.8750	0.0172
								9.3750	0.0035
								11.1250	0.0034
								12.0000	0.0000

Table B (2) Droplet size distribution functions for the PS/PP blends at the shear strain rate of 10 s⁻¹, 200 $^{\circ}$ C.

shearing t	ime = 30 s	shearing ti	me = 1 min	shearing ti	me = 2 min	shearing ti	me = 3 min	shearing ti	me = 5 min
d	f(d)	d	f(d)	d	f(d)	d	f(d)	d	f(d)
2.1250	0.0000	2.8750	0.0000	2.8750	0.0000	2.8750	0.0000	2.8750	0.0000
2.3750	0.0039	3.1250	0.0184	3.1250	0.0043	3.1250	0.0049	3.1200	0.0079
3.1250	0.0311	3.8750	0.0553	3.8750	0.0736	3.8750	0.0300	3.8750	0.0748
3.8750	0.1178	4.3750	0.1751	4.3750	0.1255	4.3750	0.0800	4.3750	0.1181
4.4500	0.2050	5.1250	0.2304	5.1250	0.2078	5.1250	0.1471	5.1250	0.1457
5.1250	0.2230	5.6250	0.1935	5.6250	0.1861	5.6250	0.2401	5.6250	0.1575
5.6250	0.1607	6.3750	0.1290	6.3750	0.1299	6.3750	0.1910	6.3750	0.1496
6.3750	0.1206	6.8750	0.0783	6.8750	0.0866	6.8750	0.1420	6.8750	0.1260
7.0000	0.0640	7.6250	0.0599	7.6250	0.0563	8.1250	0.0600	7.6250	0.0945
7.6250	0.0389	8.1250	0.0323	8.1250	0.0390	8.8750	0.0200	8.1250	0.0591
8.5000	0.0156	8.8750	0.0138	8.8750	0.0216	10.1250	0.0150	8.8750	0.0315
9.3750	0.0078	9.3750	0.0138	9.3750	0.0043	10.6250	0.0050	9.6000	0.0157
10.1250	0.0039	10.1250	0.0046	9.6250	0.0043	10.8750	0.0000	10.1250	0.0118
10.3750	0.000	10.3750	0.0000	10.6250	0.0043			10.6250	0.0039
				10.8750	0.0000			10.8750	0.0000

shearing	time = 3 s	shearing	time = 5 s	shearing t	ime = 10 s	shearing t	ıme = 20 s	shearing t	ime = 60 s
d	f(d)	d	f(d)	d	f(d)	d	f(d)	d	f(d)
2.1250	0.0000	2.1250	0.0000	2.1250	0.0000	2.1250	0.0000	2.1250	0.0000
2.3750	0.0383	2.3750	0.0446	2.3750	0.0183	2.3750	0.0466	2.3750	0.0118
3.1250	0.1770	3.1250	0.1875	3.1250	0.1507	3.1250	0.1992	3.1250	0.1417
3.8750	0.2775	3.8250	0.2679	3.8250	0.3014	3.8750	0.2669	3.8750	0.3268
4.3250	0.2775	4.3750	0.2768	4.3750	0.2740	4.3750	0.2288	4.3750	0.3031
5.1250	0.1388	5.1250	0.1384	5.1250	0.1689	5.1250	0.1356	5.1250	0.1299
5.6250	0.0478	5.6250	0.0357	6.0000	0.0593	5.6250	0.0678	5.6250	0.0512
6.3750	0.0335	6.3750	0.0268	6.8750	0.0183	6.3750	0.0381	6.3750	0.0197
6.8750	0.0048	6.8750	0.0089	7.6250	0.0046	6.8750	0.0082	6.8750	0.0079
8.1250	0.0048	7.6250	0.0045	8.1250	0.0000	7.6250	0.0076	7.6250	0.0039
8.3750	0.0000	7.8250	0.0000			7.8750	0.0000	8.1250	0.0039
								8.3750	0.0000

Table B (3) Droplet size distribution functions for the PS/PP blends at the shear strain rates of 100 s^{-1} , $200 \text{ }^{\circ}\text{C}$.

Table B (4) Droplet size distribution functions for the PS/PP blends at the shear strain rates of 800 s⁻¹, 200 $^{\circ}$ C.

shearing	time = 4 s	shearing t	ime = 15 s	shearing t	ime = 60 s
d	f(d)	d	f(d)	d	f(d)
2.1250	0.0000	2.1250	0.0000	2.1250	0.0000
2.3750	0.0669	2.3750	0.0660	2.3750	0.0647
3.1250	0.1632	3.1250	0.1269	3.1250	0.1511
3.8750	0.2427	3.8250	0.1929	3.8750	0.2122
4.3250	0.1841	4.3750	0.2284	4.3750	0.1978
5.1250	0.1172	5.1250	0.1726	5.1250	0.1403
5.6250	0.0879	5.6250	0.0761	5.6250	0.1007
6.3750	0.0711	6.3750	0.0558	6.3750	0.0647
7.6250	0.0293	6.8750	0.0355	6.8750	0.0324
8.1250	0.0042	7.6250	0.0254	7.6250	0.0144
8.3750	0.0000	8.1250	0.0152	8.1250	0.0107
		8.8750	0.0081	8.3750	0.0107
		9.1250	0.0000	8.6250	0.0000

 Table B (5) Droplet size distribution functions for the PS/PP blends at various

shear strain rates, 200 °C.

Initial d	rop size	γ=	= 1	γ =	10	γ̈́ =	100	γ́ =	200	γ =	400	γ=	800
d	f(d)	d	f(d)	d	f(d)	d	t(d)	d	f(d)	d	f(d)	d	f(d)
2.375	0.060	3.875	0.004	3.125	0.005	2.375	0.012	2.375	0.140	2.375	0.102	2.375	0.065
3.125	0.269	4.375	0.017	3.875	0.029	3.125	0.142	3.125	0.274	3.125	0.223	3.125	0.151
3.875	0.293	5.125	0.075	4.375	0.083	3.875	0.327	3.875	0.344	3.875	0.234	3.875	0.212
4.375	0.234	5.625	0.104	5.125	0.146	4.375	0.303	4.375	0.149	4.375	0.193	4.375	0.198
5.125	0.072	6.375	0.133	5.625	0.239	5.125	0.130	5.125	0.047	5.125	0.127	5.125	0.140
5.625	0.036	7.000	0.213	6.375	0.190	5.625	0.051	5.625	0.023	5.625	0.076	5.625	0.101
6.875	0.012	7.750	0.158	6.875	0.141	6.375	0.020	6.375	0.013	6.375	0.036	6.375	0.065
7.625	0.000	8.250	0.092	7.625	0.063	6.875	0.008	6.875	0.004	6.875	0.005	6.875	0.032
8.125	0.000	8.875	0.071	8.125	0.059	7.625	0.004	7.625	0.000	7.000	0.000	7.625	0.014
		9.250	0.046	9.000	0.024	8.125	0.004	7.875	0.000			8.125	0.011
		10.625	0.029	10.125	0.015	8.375	0.000					8.875	0.011
		11.125	0.013	10.625	0.005	8.625	0.000					9.125	0.000
		11.375	0.013	10.875	0.000								

 Table B (6) Droplet size distribution functions for the PS/HDPE blends at

various shear strain rates, 200 °C.

Initial d	lrop size	γ=	=]	γ =	10	γ =	100	γ =	200	γ =	400	γ =	800
d	f(d)	d	f(d)	d	ť(d)	d	f(d)	d	f(d)	d	f(d)	d	f(d)
3.125	0.045	3.875	0.004	3.125	0.000	3.125	0.041	2.375	0.009	2.375	0.009	2.375	0.006
3.875	0.169	4.375	0.056	3.875	0.062	3.875	0.104	3.125	0.069	3.125	0.037	3.125	0.033
4.375	0.236	5.125	0.092	4.375	0.095	4.375	0.195	3.875	0.193	3.875	0.128	3.875	0.103
5.125	0.194	5.790	0.134	5.125	0.176	5.125	0.208	4.375	0.259	4.375	0.177	4.375	0.131
5.625	0.145	6.375	0.151	5.625	0.212	5.625	0.195	5.125	0.196	5.125	0.220	5.125	0.198
6.375	0.074	6.875	0.176	6.375	0.157	6.375	0.113	5.625	0.109	5.625	0.155	5.625	0.152
6.875	0.045	7.625	0.113	6.875	0.127	6.875	0.069	6.375	0.078	6.375	0.104	6.375	0.119
7.625	0.041	8.125	0.092	7.625	0.065	7.625	0.047	6.875	0.056	6.875	0.064	6.875	0.091
8.125	0.021	8.875	0.077	8.125	0.039	8.125	0.013	7.625	0.016	7.625	0.043	8.125	0.055
8.875	0.012	9.375	0.070	8.875	0.029	8.875	0.006	8.125	0.013	8.125	0.030	8.875	0.039
9.125	0.000	10.625	0.011	9.375	0.016	9.375	0.003	8.375	0.003	8.875	0.012	9.375	0.018
		11.125	0.004	11.125	0.003	9.625	0.000	8.625	0.000	10.125	0.006	10.375	0.009
		11.375	0.004	11.375	0.003					10.375	0.000	10.500	0.000

Table B (7) Droplet size distribution functions for the PMMA/HDPE blendsat various shear strain rates, 200 °C.

Initial d	rop size	γ=	: 1	γ =	10	γ=	100	γ =	200	γ =	400	Y =	800
d	f(d)	d	f(d)	d	f(d)	d	f(d)	d	f(d)	d	f(d)	d	f(d)
1.875	0.000	1.875	0.000	2.125	0.034	1.875	0.000	1.875	0.000	1.875	0.000	1.875	0.000
2.125	0.250	2.125	0.016	2.375	0.194	2.125	0.115	2.125	0.364	2.125	0.004	2.125	0.021
2.375	0.355	2.375	0.189	3.125	0.396	2.500	0.430	2.375	0.422	2.375	0.159	2.375	0.159
3.125	0.293	3.125	0.381	3.625	0.257	3.125	0.340	3.125	0.184	3.125	0.339	3.125	0.288
3.625	0.066	3.625	0.266	4.125	0.086	3.625	0.094	3.625	0.019	3.625	0.335	3.625	0.270
4.125	0.016	4.125	0.131	4.625	0.019	4.125	0.013	4.125	0.005	4.125	0.133	4.125	0.167
4.625	0.008	4.625	0.008	4.875	0.004	4.625	0.009	4.375	0.000	4.625	0.030	4.625	0.060
4.875	0.000	5.125	0.004	5.125	0.004	4.875	0.000			4.875	0.000	5.125	0.021
		5.375	0.000	5.625	0.004							5.375	0.000

Figure B (1) Distribution function of droplet size for the PS/PP blends as a function of shearing time at shear strain rate of 1 s^{-1} .

Figure B (2) Distribution function of droplet size of the PS/PP blends as a function of shearing time at the shear strain rate of 10 s^{-1} .

Figure B (4) Distribution function of droplet size of the PS/PP blends as a function of shearing time at the shear strain rate of 800 s^{-1} .

Figure B (5) Distribution function of droplet size of the PS/PP blends as a function of shear strain rate at 200 $^{\circ}$ C.

Figure B (6) Distribution function of droplet size of the PS/HDPE(2) blends as a function of shear strain rate at 200° C.

APPENDIX C

THE HYSTERESIS DATA

Table C (1) The equilibrium droplet size of the PS/PP blends, blending with rotor speed of 10 rpm at 200 $^{\circ}$ C, at various shear strain rates and at 200 $^{\circ}$ C.

Ensemble	Initial		Shear strain rate (1/s)									
average	size	1	10	25	100	200	400	800				
Average (µm)	4.99	10.72	8.23	5.78	4.77	3.78	4.59	4.93				
STD	1.28	2.69	2.60	1.60	1.24	1.08	1.19	1.24				
maximum	11.38	18.39	18.39	14.57	10.14	8.19	10.73	9.42				
minimum	2.49	5.70	3.05	2.49	2.49	2.49	2.49	2.49				

Table C (2) The equilibrium droplet size of the PS/PP blends, blending with rotor speed of 50 rpm at 200 $^{\circ}$ C, at various shear strain rates and at 200 $^{\circ}$ C.

Ensemble	Initial	Shear strain rate (1/s)									
average	size	1	10	25	100	200	400	800			
Average (µm)	3.87	7.19	6.15	5.76	4.23	3.66	4.03	4.51			
STD	0.87	1.29	1.59	1.53	0.86	0.85	1.03	1.32			
maximum	6.93	11.38	10.73	11.58	8.19	6.93	6.93	8.86			
minimum	2.49	3.80	2.49	2.49	2.49	2.49	2.49	2.49			

γ	D (μm)	Ca			η _α	η"	n	N _d	N _m	N./N	N'_d at τ	N'./N
(1/sec)		experiment	Taylor	Wu	(P)	(P)	'Ir	(dyn/cm ²)	(dyn/cm ²)	1 ° d' 1 ° m	(dyn/cm ²)	i d'i m
25	5.78 ± 1.59	6.01 ± 1.66	0.89	7.66	9.00E+03	4.15E+03	2.17	6.00E+05	2.00E+05	3.00	5.00E+05	2.50
100	4.23 ± 0.86	6.15 ± 1.26	0.89	7.78	3.20E+03	1.45E+03	2.21	1.50E+06	4.80E+05	3.13	1.40E+06	2.92
200	3.57 ± 0.85	7.51 ± 1.89	0.89	7.73	2.30E+03	1.05E+03	2.19	2.50E+06	7.00E+05	3.57	2.40E+06	3.43
400	4.05 ± 1.03	10.06 ± 2.56	0.88	8.64	1.55E+03	6.20E+02	2.50	4.80E+06	1.00E+06	4.80	4.00E+06	4.00
800	4.43 ± 1.32	13.49 ± 4.04	0.88	9.02	1.00E+03	3.80E+02	2.63	7.00E+06	1.30E+06	5.38	5.89E+06	4.53

Table D (1) The dimensionless parameters for the PS/PP blends at 200°C.

Table D (2) The dimensionless parameters for the PS/HDPE(2) blends at 200°C.

γ	D (μm)	Са			η _α	η"	'n	N _d	N _m	N./N	N'_d at τ	N'./N
(1/sec)		experment	Taylor	Wu	(P)	(P)	'lr	(dyn/cm ²)	(dyn/cm ²)	1 d/ 1 m	(dyn/cm ²)	n d' n m
100	5.31 ± 1.19	7.92 ± 1.77	0.89	7.69	3.20E+03	1.47E+03	2.18	1.50E+06	3.00E+05	5.00	1.20E+06	4.00
200	4.84 ± 1.15	9.49 ± 2.12	0.88	8.28	2.30E+03	9.67E+02	2.38	2.50E+06	4.50E+05	5.56	2.00E+06	4.44
400	5.35 ± 1.37	14.11 ± 3.62	0.88	8.30	1.55E+03	6.50E+02	2.38	4.80E+06	6.80E+05	7.06	3.30E+06	4.85
800	5.73 ± 1.58	18.60 ± 5.15	0.88	8.64	1.00E+03	4.00E+02	2.50	7.00E+06	9.00E+05	7.78	5.00E+06	5.56

Table D (3) The dimensionless parameters for the PMMA/HDPE(1) blends at 200°C.

γ	D (μm)	Ca			η,	η"	55	N _d	N _m	N./N	N' _d at τ	N'./N
(1/sec)		experiment	Taylor	Wu	(P)	(P)	'lr	(dyn/cm ²)	(dyn/cm ²)	1 d/ 1 m	(dyn/cm ²)	1 d' 1 m
100	2.79 ± 0.49	5.10 ± 0.91	0.91	4.82	4.00E+03	3.20E+03	1.25	1.40E+06	8.00E+05	1.75	1.40E+06	1.75
200	3.46 ± 0.43	7.90 ± 1.01	0.90	5.31	2.80E+03	2.00E+03	1.40	2.60E+06	1.10E+06	2.36	2.60E+06	2.36
400	3.34 ± 0.54	6.86 ± 1.12	0.89	6.82	1.70E+03	9.00E+02	1.89	4.00E+06	1.20E+06	3.33	4.00E+06	3.33
800	3.41 ± 0.67	7.47 ± 1.51	0.89	6.91	9.20E+02	4.80E+02	1.92	5.00E+06	1.40E+06	3.57	4.80E+06	3.43

THE CAPILLARY NUMBER, VISCOSITY RATIO, AND NORMAL STRESS RATIO DATA APPENDIX D

APPENDIX E

THE FIRST NORMAL STRESS DIFFERENCES OF PS AND PMMA AS A FUNCTION OF SHEAR STRESS OF THE MATRIX PHASES

Figure E (1) The first normal stress difference N_1 of PS as a function of shear stress of PP and HDPE(2) at 200 °C.

Figure E (2) The first normal stress difference N_1 of PMMA as a function of shear stress of HDPE(1) at 200 °C.

APPENDIX F

THE RHEOLOGY CHARACTERIZATIONS

		Molecular weights (g/mol) x 10^3								
Polymers	$T(^{\circ}C)$	N	1 _w	N	1 _n	Mz				
		1	2	1	2	1	2			
PP	185	145	133	121	895	539	339			
HDPE(1)	160	146	118	100	202	925	825			
HDPE(2)	160	53.1	52.7	9.85	23.4	276	206			
PS	160	131	118	55.1	56.7	1930	1330			
PMMA	220	730	857	10.2	12.4	351	311			

Table F (1) The molecular weight characterization data.

.

-

Table F (2) The zero shear rate viscosity of homopolymers at 200 °C.

Dolumore	The zero shear rate viscosity (dyn/cm ²)								
Polymers	1	2	3	4	5	AVG.			
DD	2.16	2.05	2.01	2.03	2.10	$2.09\pm0.05 \times 10^4$			
	$x 10^4$	$x 10^4$	$x 10^4$	$x 10^4$	$x 10^4$				
	2.30	2.01	2.80	1.83	2.50	$2.30\pm0.40 \times 10^5$			
	$x 10^5$	$x 10^5$	$x 10^{5}$	$x 10^5$	$x 10^{5}$				
	8.50	8.00	7.00	9.12	8.13	$8.43\pm0.50 \times 10^3$			
HDFE(2)	$x 10^3$	$x 10^3$	$x10^3$	$x10^3$	$x10^3$				
DC	9.00	6.00	7.61	7.82	5.01	$7.09\pm1.58 \times 10^4$			
F5	$x 10^4$	$x 10^4$	$x 10^4$	$x 10^4$	$x 10^4$				
	1.50	1.38	7.01	7.84		$1.09\pm0.41 \times 10^{3}$			
FININA	$x 10^4$	$x 10^4$	$x 10^3$	$x 10^{3}$	-				

CURRICULUM VITAE

Name :	Ms. Thanaporn Insuan
Birth Date :	March 10, 1973
Nationality :	Thai
University Education :	
1991-1995	Bacherlor's Degree of Chemistry
	King Mongkut's University of Technology
	Thonburi, Bangkok
Working Experience :	
1995-1997	Chemist
	Research and Development Department
	Thai Tin Plate Company