DEVELOPMENT OF POLYANILINE SENSOR FOR ETHANOL DETECTION

Ms. Lucksanaporn Tarachiwin

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 2000

ISBN 974-334-176-5

Thesis Title	÷	Development of Polyaniline Sensor for
		Ethanol Detection
Ву		Ms. Lucksanaporn Tarachiwin
Program	:	Polymer Science
Thesis Advisors	:	Prof. Johannes Schwank
		Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science

(Prof. Somchai Osuwan)

Thesis Committee:

(Prof. Johannes Schwank)

Anux & 25/4/2000 (Assoc. Prof. Anuvat Sirivat)

Rationa Rypronaunit

(Dr. Ratana Rujiravanit)

ABSTRACT

4172013063	: POLYMER SCIENCE PROGRAM
KEY WORDS	Conductive Polymer / Specific conductivity /
	Polyaniline / Solution Sensor / Ethanol detection
	Lucksanaporn Tarachiwin: Development of
	Polyaniline Sensor for Ethanol Detection. Thesis
	Advisors: Prof. Johannes Schwank and Assoc. Prof.
	Anuvat Sirivat, 102pp. ISBN 974-334-176-5

The nonconductive form of polyaniline, emeraldine base, was synthesized by the chemical oxidative polymerization of aniline using ammonium peroxydisulfate as an oxidant. Emeraldine base was converted to emeraldine salt (conductive form) by an acid doping process. Three different types of acid dopant; hydrochloric acid (HCl), acetic acid (CH₃COOH), and hexanoic acid ($C_5H_{11}COOH$) were used to study the effect of acid dopants and acid/polymer concentration ratio (N_a/N_p) on the specific conductivity of polyaniline films. The specific conductivity gradually increased with acid concentration. For HCl-doped polyaniline film, after $N_{\mu}/N_{p}=9.8E+01$ $(C_a/C_p=10:1)$ the specific conductivity decreased due to over-doping. Whereas the specific conductivities of the CH₃COOH and C₅H₁₁COOH-doped polyaniline films did not depend on acid concentration beyond the mole ratios of $N_{AcOH}/N_p=5.9E+03$ and $N_{Hexanoic}/N_p=3.1E+03$ ($C_a/C_p=1000:1$). Polyaniline films were exposed to water and ethanol to study the effect of water and ethanol on the specific conductivity. The change in specific conductivity when the polyaniline films were exposed to water was greater than that when exposed to 100% ethanol. Mechanisms for the change in specific conductivity to water and ethanol are proposed.

บทคัดย่อ

ถักษณาพร ธาราชีวิน : การพัฒนาสารพอถิอะนิถีนเพื่อใช้ในการตรวจวัดเอทานอล (Development of Polyaniline Sensor for Ethanol Detection) อ. ที่ปรึกษา : Prof. Johannes Schwank และ รศ. ดร. อนุวัฒน์ ศิริวัฒน์ 102 หน้า ISBN 974-334-176-5

้อเมอราลดีนเบส (Emeraldine base) ซึ่งเป็นสารที่ไม่นำไฟฟ้าสถานะหนึ่งของพอลิอลิ อะนิลีน (Polyaniline) ถูกสังเคราะท์ทางเคมีโดยใช้แอมโมเนียมเปอร์ออกซิไดซัลเฟต (Ammonium peroxydisulfate) เป็นสารออกซิแคนซ์ เอเมอราลดีนซอลท์ (Emeraldine salt) ซึ่งเป็น สถานะที่นำไฟฟ้าของพอลิอะนิลีนถูกเตรียมโดยกระบวนการโด๊ปด้วยกรดไฮโดรคลอริก (Hydrochloric acid), กรดอะซิติก (Acetic acid) และกรดเฮกซาโนอิก (Hexanoic acid) เพื่อศึกษา ผลของชนิดของสารโด๊ปและอัตราส่วนปริมาณของกรดต่อปริมาณพอลิอะนิลึนที่มีต่อค่าการนำไฟ ้ฟ้า จากการทุคลองพบว่าค่าการนำไฟฟ้าเพิ่มขึ้นเมื่อปริมาณกรดเพิ่มขึ้น ค่าการนำไฟฟ้าของฟิล์ม พอลิอะนิลีนที่ถูกโค๊ปด้วยกรดไฮโครคลอริกจะมีค่าลดลงเมื่ออัตราส่วนของกรดไฮโครคลอริกต่อ พอลิอะนิลีนมากกว่า 98 เนื่องจากสาร โค๊ปมีปริมาณมากเกินพอ ในขณะที่ค่าการนำไฟฟ้าของฟิล์ม พอลิอะนิลีนที่โด๊ปด้วยกรดอะซิติกและกรดเฮกซาโนอิกเพิ่มขึ้นเมื่อความเข้มข้นของกรดเพิ่มขึ้น และค่าการนำไฟฟ้าไม่ขึ้นกับความเข้มข้นของกรคเมื่ออัตราส่วนของกรคอะซิติกต่อพอลิอะนิลีน ้เท่ากับ 5900 และอัตราส่วนของกรดเฮกซาโนอิกต่อพอถิอะนิลีนเท่ากับ 3100 เมื่อทดสอบฟิล์มพอ ้ลิอะนิถีนในน้ำและเอทานอล พบว่าค่าการนำไฟฟ้าที่ทุดสอบในน้ำเกิดการเปลี่ยนแปลงมากกว่า ้เมื่อทดสอบในเอทานอลเนื่องจากโมเลกุลของน้ำมีขนาดเล็กกว่าเอทานอล กลไกการเปลี่ยนแปลง ้ค่าการนำไฟฟ้าของฟิล์มพอลิอะนิลีนที่ทำการทดสอบในน้ำและเอทานอลได้ถูกเสนอแนะในงาน วิจัยครั้งนี้

ACKNOWLEDGEMENTS

The author would like to gratefully acknowledge all professors who have taught her at the Petroleum and Petrochemical College, Chulalongkorn University, especially those in the Polymer Science Program.

She greatly appreciates the efforts of her research advisors; Professor Johannes Schwank, Department of chemical Engineering, University of Michigan and Associate Professor Anuvat Sirivat of the Petroleum and Petrochemical College, Chulalongkorn University for their suggestions and proof-reading of this thesis book. She would like to thanks Dr. Ratana Rujiravanit for being a thesis committee.

She would like to give a special thank to C.P.O. Poon Arjpru, the elecrical technician, at the Petroleum and Petrochemical College who helped in fabrication of the four-point probe meter.

She also thank all of her friends and all of the staffs at the Petroleum and Petrochemical College who encouraged her in carrying out the experiment and this thesis writing. Finally, She is indebted to her family for their love, understanding and encouragement.

TABLE OF CONTENTS

PA	GE
----	----

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xii

CHAPTER

I	INTF	INTRODUCTION			
	1.1	Electr	Electrically Conductive Polymers		
		1.1.1	Basic Concepts	1	
		1.1.2	Concept of Doping	2	
		1.1.3	Charge Carriers and an Electrical		
			Conductivity in Conductive Polymers	6	
	1.2	Polyaniline		8	
		1.2.1	Electronic Structure of Polyaniline		
			Emeraldine Base Form	9	
		1.2.2	Doping of Polyaniline	11	
11	LITE	RATUR	E SURVEY		
	2.1	Polyar	niline as Solution Biosensor	13	
	2.2	Applic	ations of other Polymers for		
		Solutio	on Biosensor	16	

CHAPTER

PAGE

III	EXP	ERIME	NTAL				
	3.1	Mater	ials	21			
	3.2	Metho	odology	21			
		3.2.1	Synthesis of Polyaniline	21			
		3.2.2	Preparation of Doped Polyaniline				
			Emeraldine Salt (acid dopants)	23			
	3.3	Chara	cterization and Sample Preparation	24			
		3.3.1	UV-Visible spectrometry	24			
		3.3.2	FT-IR spectroscopy	24			
		3.3.3	Scanning Electron Microscope	25			
		3.3.4	Thermal Gravimetric Analysis	25			
		3.3.5	X-Ray Diffractometry	26			
	3.4	Electr	ical Properties	26			
		3.4.1	Probe for Characterization of				
			Sheet Resistance (R _s)	26			
IV	RES	RESULTS AND DISCUSSION					
	4.1	Charac	cterization	29			
		4.1.1	UV-Visible spectroscopy	29			
		4.1.2	FT-IR Spectroscopy	33			
		4.1.3	Thermal Gravimetric Analysis	38			
		4.1.4	X-Ray Diffractometry	42			
		4.1.5	Scanning Electron Microscope	47			
	4.2	Electri	cal Conductivity	50			
		4.2.1	Effect of Aging Time on the				
			Specific Conductivity	50			

ต้นฉบับ หน้าขาดหาย

ต้นฉบับ หน้าขาดหาย

4.6	The FT-IR spectrum of polyaniline	
	Emeraldine base films	33
4.7	FT-IR spectra of HCl-doped polyaniline films	
	at various acid/polymer concentration ratios	36
4.8	FT-IR spectra of H ₃ PO ₄ -doped polyaniline films	
	at various acid/polymer concentration ratios	36
4.9	FT-IR spectra of CH ₃ COOH-doped polyaniline films	
	at various acid/polymer concentration ratios	37
4.10	FT-IR spectra of C ₅ H ₁₁ COOH-doped polyaniline	
	films dopoed with at various acid/polymer	
	concentration ratios	37
4.11	The TGA thermogram of polyaniline emeraldine	
	base films	38
4.12	The TGA thermogram of HCl-doped polyaniline	
	at various acid/polymer concentration ratios	40
4.13	The TGA thermogram of H ₃ PO ₄ -doped polyaniline	
	at various acid/polymer concentration ratios	40
4.14	The TGA thermogram of CH ₃ COOH-doped	
	polyaniline at various acid/polymer concentration ratios	41
4.15	The TGA thermogram of C ₅ H ₁₁ COOH-doped	
	polyaniline at various acid/polymer concentration	
	ratios	41
4.16	The XRD pattern of emeraldine base film	42
4.17	The XRD pattern of HCl-doped polyaniline films	43
4.18	The XRD pattern of H ₃ PO ₄ -doped polyaniline films	45
4.19	The XRD pattern of CH ₃ COOH-doped polyaniline films	46

LIST OF TABLES

TABLE

4.1 The acid dissociation constant (pK_a) of various acid in water at 25°C 29 4.2 The assignment for UV-Visible absorption peaks of polyaniline emeraldine base and doped polyaniline 32 4.3 The assignment for IR absorption bands for polyaniline emeraldine base 34 4.4 The assignment for IR absorption band for doped polyaniline 35 4.5 The assignment of XRD pattern of HCl-doped Polyaniline films at $C_a/C_p = 10:1$ 44 4.6 The absorption bands of FT-IR spectra of HCl-doped polyaniline films at $C_a/C_p = 10^{-1}$ before and after exposure to water and ethanol 74 The molecular weight of polyaniline emeraldine base A. 1 at 0.6% wt in NMP 81 B. 1 Data of the geometric correction factor (K) determination 83 C. 1 Effect of the applied current on the specific conductivity of HCl-doped polyaniline film at 25°C 84 C. 2 Effect of the applied current on the specific conductivity of H₃PO₄-doped polyaniline film at 25°C 85

PAGE

TABLE

C. 3	Effect of the applied current on the specific	
	conductivity of CH ₃ COOH-doped polyaniline film	
	at 25°C	86
C. 4	Effect of the applied current on the specific	
	conductivity of $C_5H_{11}COOH$ -doped polyaniline film	
	at 25°C	87
D. 1	Effect of aging time on the specific conductivity of	
	HCl-doped polyaniline film with various C_a/C_p	88
D. 2	Effect of aging time on the specific conductivity of	
	H_3PO_4 -doped polyaniline film with $C_a/C_p = 1:1$	90
D. 3	Effect of aging time on the specific conductivity of	
	CH ₃ COOH-doped polyaniline film with various C_a/C_p	91
D. 4	Effect of aging time on the specific conductivity of	
	$C_5H_{11}COOH$ -doped polyaniline film with various C_a/C_p	92
D. 5	Effect of C_a/C_p on the specific conductivity of polyanline	
	films doped with HCl, CH ₃ COOH and C ₅ H ₁₁ COOH	
	measure in air at 25°C	93
D. 6	Effect of N_a/N_p on the specific conductivity of polyanline	
	films doped with HCl, CH ₃ COOH and C ₅ H ₁₁ COOH	
	measured in air at 25°C	94
D. 7	The specific conductivity of HCl-doped polyaniline film	
	when exposed to water at 25°C	95
D. 8	The specific conductivity of H ₃ PO ₄ -doped polyaniline	
	film when exposed to water at 25°C	96
D. 9	The specific conductivity of CH ₃ COOH-doped	
	polyaniline film when exposed to water at 25°C	97

TABLE

PAGE

D. 10	The specific conductivity of $C_5H_{11}COOH$ -doped	
	polyaniline film when exposed to water at 25°C	98
D. 11	The specific conductivity of HCl-doped polyaniline	
	film when exposed to water and 100% ethanol	
	at 25°C	99
D. 12	The specific conductivity of CH ₃ COOH-doped	
	polyaniline film when exposed to water and	
	100% ethanol at 25°C	100
D. 13	The specific conductivity of HCl-doped polyaniline	
	films when exposed to ethanol solution	101
D. 14	The specific conductivity of CH ₃ COOH-doped	
	polyaniline films when exposed to ethanol solution	101

LIST OF FIGURES

FIGURE		PAGE
1.1	Schematic view of the carbon backbone of	
	trans-polyacetylene chain	I
1.2	Repeat units of several electrically conductive	
	polymers	2
1.3	The polaron and bipolaron dedects in	
	poly (p-phenylene)	8
1.4	The schematic repersentation of emeraldine	
	hydrochloride formation	11
1.5	The sketch of the geometric structures evolution	
	of emeraldine base as a function of protonation	12
3.1	Flow chart of synthesis of polyaniline	
	emraldine base	22
3.2	The schematic of doping emeraldine base with	
	acid dopants	23
4.1	UV-VIS spectrum of undoped polyaniline	
	(emeraldine base)	28
4.2	UV-VIS spectra of HCl-doped polyaniline at	
	various acid/polymer concentration ratios	30
4.3	UV-VIS spectra of H ₃ PO ₄ -doped polyaniline at	
	various acid/polymer concentration ratios	30
4.4	UV-VIS spectra of CH ₃ COOH–doped polyaniline	
	at various acid/polymer concentration ratios	31
4.5	UV-VIS spectra of $C_5H_{11}COOH$ -polyaniline at	
	various acid/polymer concentration ratios	31

22
55
36
ns
36
e films
37
ne
37
ne
38
ne
40
iline
40
ion ratios 41
ion
41
41 42
41 42 ms 43
41 42 ms 43 films 45
is in in ili ili ili an ati ati

FIGURE

4.20	The XRD pattern of Doped-polyaniline films	46
4.21	The SEM micrographs of HCl-doped polyaniline films	48
4.22	The SEM micrographs of H ₃ PO ₄ -doped polyaniline films	48
4.23	The SEM micrographs of CH ₃ COOH-doped	
	polyaniline film	49
4.24	The SEM micrographs of C ₅ H ₁₁ COOH-polyaniline	
	films	49
4.25	The specific conductivity of HCl-doped polyaniline	
	films versus number of days stored	51
4.26	The specific conductivity of H ₃ PO ₄ -doped polyaniline	
	films versus number of days stored	52
4.27	The specific conductivity of CH ₃ COOH-doped	
	polyaniline films versus number of days stored	53
4.28	The specific conductivity of $C_5H_{11}COOH$ -doped	
	polyaniline films versus number of days stored	54
4.29	Effect of C_a/C_p on the specific conductivity of doped	
	polyaniline films with various acid dopants	56
4.30	Effect of N_a/N_p on the specific conductivity of doped	
	polyaniline films with various acid dopants	57
4.31	The chemical structures of polyaniline doped	
	with an excess amount of HCl at $C_a/C_p > 10:1$	58
4.32	The proposed model of polyaniline doped with	
	an excess amount of HCl concentration	58
4.33	The specific conductivity of HCl-doped polyaniline	
	films measured in air and water at various N_a/N_p	60
4.34	The proposed mechanism of interchain H-transfer	
	when polymer films were exposed to water	61

TABLE

4.35	The specific conductivity of H ₃ PO ₄ -doped polyaniline	
	films measured in air and water at various N_a/N_p	62
4.36	The specific conductivity of CH ₃ COOH-doped	
	polyaniline films measured in air and water at	
	various N _a /N _p	63
4.37	The specific conductivity of $C_5H_{11}COOH$ -doped	
	polyanine films measured in air and water at	
	various N _a /N _p	64
4.38	The specific conductivity of HCl-doped polyaniline film	
	when exposed to water and 100% ethanol	66
4.39	The specific conductivity of CH ₃ COOH-doped	
	polyanililne film when exposed to water and	
	100% ethanol	67
4.40	The proposed mechanism of interchain H -transfer	
	when polymer film was exposed to 100% ethanol	68
4.41	The specific conductivity of HCl-doped polyaniline films	
	when exposed to ethanol solution	70
4.42	The specific conductivity of CH ₃ COOH-doped polyaniline	
	Films when exposed to ethanol solution	71
4.43	The FT-IR spectra of HCl-doped polyaniline films	
	after exposure to water and ethanol	73