REFERENCES

- Ashok, M., and Shengtian, P. (1999). Ferrocene-Conjugated m-Phenyleneamine Conducting Polymer-Incorporated Peroxide Biosensors. <u>Analytical</u> <u>Biochemistry</u>, 267, 141-147.
- Baeriswyl, D., Campbell, D. K., and Mazumdar, S. (1992). <u>Conjugated</u> Conducting Polymers. Berlin: Springer-Verlag.
- Barisci, J. N., Hughes, D., Minett, A., and Wallace, G. G. (1998). Characteri sation and analytical use of a polypyrrole electrode containing antihuman serum albumin. <u>Analytica Chimica Acta</u>, 371, 39-48.
- Chan, H. S. O., Ng, S. C., and Ho, P. K. H. (1994). Polyaniline Doped with Phosphonic Acids: Their Preparation and Characterization. <u>Macromolecules</u>, 27, 2159-2164.
- Chance, R. R, and Boudreaux, D. S. (1984). <u>Quantum Chemistry of Polymer-Solid State Aspects</u>, 22.
- Chen, S. A., and Lin, L. C. (1995). Polyaniline Doped by the New Class of Dopant, Ionic Salt: Structure and Properties. <u>Macromolecules</u>, 28, 1239-1245.
- Chi, Q. J., and Dong, S. J. (1995). Amperometric Biosensors based on the immobilization of oxidases in a prussian blue film by electrochemical codeposition. <u>Analytica Chimica Acta</u>, 310(3), 429-436.
- Cho, W. J., and Huang, H. J. (1998). An amperometric urea biosensor based on a polyaniline-perfluorosulfonated ionomer composite electrode.
 <u>Analytical Chemistry</u>, 70(18), 3946-3951.
- Contractor, A. Q., Sureshkum, T. N., Narayanan, R., Sukeerthi, S., Lal, R., and Srinivasa, R. S. (1994). <u>Electrochimica Acta</u>, 39(8-9), 1321-1324.

- Cooper, J. C., and Hall, E. A. H. (1993). Catalytic Reduction of Benzoquinone at polayaniline and polyaniline enzyme films. <u>Electroanalysis</u>, 5(5-6), 385-397.
- Darder, M., Takada, K., Parente, F., Lorenzo, E., and Abruna, H. D. (1999).
 Dithiobissuccinimidyl propionate as an anchor for assembling peroxidases of electrode surfaces and its application in a H₂O₂ biosensor.
 <u>Analytical Chemistry</u>, 71(24), 5530-5537.
- Genies, E. M., Syed, A. A., and Tsintavis, C. (1985). Electrochemical Study of Polyaniline in aqueous and organic medium. Redox and Kinetic properties. <u>Molecular Crystal Liquid Crystal</u>, 121, 181-186.
- Hidaka, M., and Aizawa, M. (1995). Electrochemically Synthesized polyaniline/ enzyme membrane for a choline biosensor. <u>Denki Kagaku</u>, 63(12), 1113-1120.
- Huang, W.-S., Humphrey, B. D., and MacDiarmid, A. G. (1986). Polyaniline: a Novel Conducting Polymer. Journal of Chemical Society Faradays Trans 1., 82, 2385-2400.
- James, E. M. (1980). <u>Physical Properties of Polymers Handbook.</u> New York: American Institute of Physics.
- John, A. D. (1987). <u>Lange's Handbook of Chemistry</u>. 13th ed. New York: McGraw-Hill Book Company.
- Kang, E. T., Neoh, K. G., and Tan, K. L. (1998). Polyaniline: A polymer with many interesting intrinsic redox states. <u>Progress in Polymer Science</u>, 23, 277-324.
- Karayakina, E. E., Neftyalova, L. V., and Karyakin, A. A. (1994). A Novel
 Potentiometric Glucose Biosensor based on Polyaniline Semiconductor Films. <u>Analytical Letters</u>, 27(15), 2871-2882.

- Li, W., and Wan, M. (1999). Stability of Polyaniline Synthesized by a Doping-Dedoping-Redoping Method. Journal of Applied Polymer Science, 71 (4), 615-621.
- Losada, J., and Armada, M. P. G. (1997). A Glucose amperometric sensor based on covalent immobilization of glucose oxidase in poly-2-aminoaniline film via cholranil on platinized platinum electrode. <u>Eletroanalysis</u>, 9(18), 1416-1421.
- Lukachova, L. V., Karyakin, A. A., Karayakina, E. E., and Gordon, L. (1997).
 The improvement of polyaniline glucose biosensor stability using enzyme immobilization from water-organic mixtures with a high content of organic solvent. <u>Sensors and Actuators B-Chemical</u>, 44(1-3), 356.
- MacDiarmd, A. G., and Epstein, A. J. (1989). Polyaniline: A Novel Class of Conducting Polymers. <u>Journal of Faraday Disscuss Chemical Society</u>, 88, 317-331.
- Milton, A. J., and Monkmon, A. P. (1993). A comparative study of polyaniline films using thermal analyses and IR spectroscopy. <u>Journal of Physical D:</u> <u>Apply Physics</u>, 26, 1468-1474.
- Mu, S. L. Xue, H. G. (1996). Bioelectrochemical characteristics of glucose oxidase immobilized in a polyaniline film. <u>Sensors and Actuators B-Chemical</u>, 31(3), 155-160.
- Mulchandani, A., and Barrows, L. C. (1995). Chemically modified electrode for hydrogen peroxide measurement by reduction of low potential.
 Biosensor and Chemical Sensor Technology, 613, 61-69.
- Palaniappan, S., and Narayana, B. H. (1994). Temperature Effect on Conducting Polyaniline salts: Thermal and Spectral Studies. <u>Journal of Polymer</u> <u>Science: Part A: Polymer Chemistry</u>, 32, 2431-2436.
- Parente, A. H., Marques, E. T. A., Azevedo, W. M., Diniz, F. B., Melo, E. H. M., and Filho, J. L. L. (1992). Glucose Biosensor using glucose-oxidase

immobilized in Polyaniline. <u>Applied Biochemistry and Biotechnology</u>, 37(3), 267-273.

- Pielichowski, K. (1997). Kinetic analysis of the thermal decomposition of polyaniline. <u>Solid States Ionics</u>, 104, 123-132.
- Pouget, J. P., Jozefowicz, M. E., Epstein, A. J., Tang, X., and MacDiarinid, A. G. (1991). X-ray Structure of Polyaniline. <u>Macromolecules</u>, 24, 779-789.
- Ramanathan, K., Ram, M. K., Molhotra, B. D., and Murthyl, A. S. N. (1995). Application of polyaniline-Langmuir-Blodgett films as a glucose biosensor. <u>Material Science & Engineering C-Biomimetic Materials</u> <u>Sensors and Systems</u>, 3(3-4), 159-163.
- Rebecca, C. W. L., Martin, M. F. C. and Jianzhong, L. (1999). Alcohol Sensing membrane based on immobilized ruthenium (II) complex in carboxylated PVC and surface covalently bonded alcohol oxidase. <u>Talanta</u>, 48, 321-331.
- Salaneck, W. R., Lundström, I., And Ranby, B. (1993). Conjugated Polymers and Related Materials: The Interconnection of Chemical and Electronic Structure. New York: Oxford Science.
- Sangodkar, H., Sukeerthi, S., Srinivasa, R. S., Lal, R., and Contractor, A. Q.
 (1996). A biosensor array based on polyaniline. <u>Analytical Chemistry</u>, 68(5), 779-783.
- Skotheim, T. A. (ed.). (1986). Handbook of Conducting Polymers. New York: Marcel Dekker.
- Suye, S. I., and Mizusawa, A. (1999). Cross-linking of Chitosan Membrane with Polyethylene Glycol Diglycidyl Ether for Immobilization of Uricase. <u>Transaction</u>, 55(2), 73-77.
- Uchiyama, S., and Sakamoto, H. (1997). Immobilization of uricase to gas diffusion carbon felt by electropolymerization of aniline and its

- Uchiyama, S., and Sakamoto, H. (1997). Immobilization of uricase to gas diffusion carbon felt by electropolymerization of aniline and its application as an enzyme reactor for uric acid sensor. <u>Talanta</u>, 44(8), 1435-1439.
- Vanos, P. J. H. J., Bult, A., and Vanbenneckom, W. P. (1995). A Glucose Sensor, Interference free for Ascorbic-Acid. <u>Analitica Chimica Acta</u>, 305(1-3), 18-25.
- Verghese, M. M., Ramanathan, K., Ashraf, S. M., and Molhotra, B. D. (1998).
 Enhanced loading of glucose oxidase on polyaniline films based on anion exchange. <u>Journal of Applied Polymer Science</u>, 70(8), 1447-1453.
- Wei, Y., Jan, G. W., Hsueh, K. F., Scherr, E. M., MacDiarmid, A. G., and Epstein, A. J. (1992). Thermal transitions and mechanical properties of films of chemically prepared polyaniline. <u>Polymer</u>, 33(2), 314-331.
- Zeng, X. R., and Ko, T. M. (1998). Structures and properties of chemically reduced polyanilines. <u>Polymer</u>, 39(5), 1187-1195.

APPENDICES

APPENDIX A Determination of Molecular Weight of Polyaniline

Molecular weight of polyaniline emeraldine base was determined by using Gel Permeation Chromatography (Waters, 150C-Plus). A refractometer was used as a detector, with an ultrastyragel column at 85°C using NMP (LabScan, HPLC grade) as a solvent, and polystyrenes were used as the standard materials. The polyaniline powder was dissolved in NMP h.p.l.c. grade to give a 0.6 %wt solution. This sample was passed through 0.2µm filter prior to injection. The molecular weights of polyaniline emeraldine base are tabulated in Table A.1

Table A. 1 The molecular weight of polyaniline emeraldine base at 0.6% wt inNMP

	Molecular Weight					
	lst sample	2nd sample	Mean	S.D.		
Retention time, R _t (min)	13.083	13.952	13.517	0.6131		
M _n (g/mole)	22311	20775	21543	1086.1		
M _w (g/mole)	93603	85941	89772	5417.9		
Polydispersity, (M _w /M _n)	4.1950	4.1370	4.1660	0.0410		

APPENDIX B Determination of Geometric Correction Factor (K)

Geometric correction factor (K) is a correction factor which involves the configuration and probe tip spacing of the four-point probe. K factor was calculated by comparing the measured specific resistivity of standard materials from the constructed four-point probe detector with the known specific resistivity.

In this work, the standard materials used were silicon wafers. The geometric correction factor (K) was calculated by using equation B-1 and is shown in Table B.1

$$K = \frac{1}{\sigma_{ref} \times t \times R}$$
(B-1)

When

K = geometric correction factor (w/L)

- σ_{ref} = conductivity from reference (S/cm)
- R = resistivity from four-point probe (Ω)
- t = thickness of standard material (cm).

Figure B. 1 The schematic of Four-point probe meter.

Materials	σ	Thickness	Resistance	V
Waterials	Oref	(cm)	(Ω)	K
Si 10-28B	0.0278	0.0530	4052.6	0.1680
	0.0278	0.0530	3504.7	0.1950
	0.0278	0.0530	3558.6	0.1920
	0.0278	0.0530	3584.1	0.1900
	0.0278	0.0530	2832.2	0.2410
	0.0278	0.0530	3091.6	0.2210
Si 10-28A	0.0286	0.0520	2699.7	0.2460
	0.0286	0.0520	2689.9	0.2470
	0.0286	0.0520	2340.9	0.2340
	0.0286	0.0520	2818.8	0.2360
	0.0286	0.0520	2211.5	0.3010
SiO ₂ / TaB	0.9333	0.0540	115.30	0.1960
	0.9333	0.0540	115.19	0.1960
	0.9333	0.0540	105.44	0.2140
	0.9333	0.0540	100.00	0.2260
	0.9333	0.0540	110.81	0.2040
	0.2390			
	0.0563			

 Table B. 1 Data of the geometric correction factor (K) determination

APPEXDIX C Determination of the applied current used for various acid dopant types

C-1 Applied current used for HCl-doped polyaniline film Testing conditions: Testing temperature = 25°C Relative humidity = 65-70% Amount of moisture content = 2-5%

Table C. 1 Effect of the applied current on the specific conductivity of HCl-doped polyaniline film at 25°C, with relative humidity 65-70%

Applied	Specific conductivity (S/cm)								
current		of each acid/polymer concentration ratio							
(mA)	1:1	10:1	50:1	100:1	500:1	1000:1			
0.0005	0.0170	-	-	-	0.0200	-			
0.0010	0.0174	-	-	-	0.0199	0.0130			
0.0020	0.0177	0.1177	0.1452	0.0351	0.0208	0.0133			
0.0100	0.0174	0.1140	0.1447	0.0353	0.0200	0.0138			
0.0300	-	0.1094	0.1491	0.0358	-	0.0131			
0.0500	-	0.1107	0.1478	0.0358	-	-			

C-2 Applied current used for H₃PO₄-doped polyaniline film

Table C. 2 Effect of the applied current on the specific conductivity of H_3PO_4 doped polyaniline film at 25°C, with relative humidity 65-70%

Applied current (mA)	Specific conductivity (S/cm)					
	of each acid/polymer concentration ration					
	1:10	1:1	10:1			
0.0010	0.0046	0.0249	-			
0.0020	0.0046	0.0242	-			
0.0050	0.0046	0.0243	0.0834			
0.0100	0.0047	0.0249	0.0847			
0.0150	0.0046	0.0245	0.0849			
0.0200	-	0.0240	0.0848			

C-3 Applied current used for CH₃COOH-doped polyaniline film

Table C. 3 Effect of the applied current on the specific conductivity ofCH3COOH-doped polyaniline film at 25°C, with relative humidity 65-70%

Applied	Specific conductivity (S/cm)						
Current	of	each acid/p	olymer con	centration	ratios (C _a ,	$/C_p)$	
(mA)	1:1	100:1	500:1	1000:1	2000:1	5000:1	
0.00001	0.0022	0.0014	-	-	-	-	
0.00002	0.0023	0.0014	-	-	-	-	
0.00005	0.0023	0.0014	-	-	-	-	
0.00010	0.0022	0.0014	0.0179	0.0182	-	-	
0.00015	0.0022	-	0.0179	0.0182	-	0.0077	
0.00020	0.0022	-	0.0177	0.0181	0.0127	0.0077	
0.00050	0.0023	-	0.0180	0.0187	0.0126	0.0078	
0.00100	0.0023	-	0.0179	0.0184	0.0121	0.0078	
0.00200	0.0023	-	0.0181	0.0186	0.0126	0.0077	

C-4 Applied current used for C₅H₁₁COOH-doped polyaniline film

Table C. 4 Effect of applied current on the specific conductivity of $C_5H_{11}COOH$ -doped polyaniline film at 25°C, with relative humidity 65-70%

Applied	Specific conductivity (S/cm)							
current	of	each acid/p	olymer coi	ncentration	ratio (C _a /C	(p)		
(mA)	1:1	100:1	500:1	1000:1	2000:1	5000:1		
0.00001	0.00096	0.00214	-	-	-	-		
0.00002	0.00096	0.00211	-	-	-	0.00962		
0.00005	0.00095	0.00216	-	-	-	0.00954		
0.00010	0.00095	0.00196	0.00423	0.01257	0.01238	0.00965		
0.00050	-	-	0.00421	0.01225	0.01262	0.00964		
0.00100	-	-	0.00429	0.01273	0.01272	0.00944		
0.00300	-	-	0.00421	0.01218	0.01274	0.00960		
0.00500	-	-	0.00420	0.01215	0.01270	-		
0.01000	-	-	-	-	0.01276	-		

APPENDIX D Electrical Properties Data

D-1 Effect of Aging Time on the Specific Conductivity Testing conditions: Testing temperature = 25°C Relative humidity = 65-70% Amount of moisture content = 2-5%

Table D. 1 Effect of aging time on the specific conductivity of HCl-dopedpolyaniline film with various C_a/C_p (Figure 4.25)

	Number		Specific conductivity (S/cm)				
C_a/C_p	of days stored	lst	2 nd	Mean	S.D.		
	1	0.0256	0.0210	0.0233	0.0032		
	5	0.0135	0.0124	0.0129	0.0007		
	10	0.0135	0.0166	0.0150	0.0021		
	20	0.0104	0.0143	0.0124	0.0027		
	30	0.0117	0.0114	0.0116	0.0002		
	40	0.0114	0.0113	0.0114	0.0001		
	50	0.0255	0.0105	0.0180	0.0106		
	1	0.2666	0.2567	0.2617	0.0070		
10:1	5	0.1520	0.1470	0.1495	0.0035		
	10	0.1249	0.01347	0.0692	0.0787		
	20	0.0123	0.0122	0.0123	0.0007		
	30	0.0125	0.0102	0.0114	0.0016		
	40	0.0112	0.0262	0.0187	0.0106		
	50	0.0203	0.0101	0.0152	0.0072		

	Number	Specific conductivity (S/cm)				
C_a/C_p	of days stored	lst	2nd	Mean	S.D.	
	1	0.1466	0.0833	0.1150	0.0448	
100:1	5	0.2110	0.1737	0.1924	0.0264	
	10	0.1360	0.1237	0.1299	0.0087	
	20	0.0382	0.0360	0.0371	0.0015	
	30	0.0365	0.0363	0.0364	0.0001	
	40	0.0344	0.0443	0.0394	0.0069	
	50	0.0336	0.0364	0.0350	0.0020	
	1	0.0105	0.0105	0.0105	0.0000	
1000:1	5	0.0124	0.0103	0.0114	0.0015	
	10	0.0114	0.0066	0.0089	0.0034	
	20	0.0146	0.0105	0.0125	0.0029	
	30	0.0135	0.0126	0.0130	0.0006	
	40	0.0105	0.0117	0.0111	0.0008	

C_a/C_p	Number of		Specific conductivity (S/cm)				
	days stored	lst	2nd	Mean	S.D.		
	1	0.2628	0.1053	0.1841	0.1113		
1:1	5	0.1056	0.1055	0.1056	0.0001		
	10	0.0810	0.0823	0.0817	0.0009		
	15	0.1370	0.1050	0.1210	0.0226		
	20	0.0206	0.0432	0.0319	0.0159		
	30	0.0295	0.0345	0.0320	0.0035		
	40	0.0265	0.0323	0.0294	0.0041		
	50	0.0314	0.0323	0.0319	0.0006		

Table D. 2 Effect of aging time on the specific conductivity of H_3PO_4 - doped polyaniline film with $C_a/C_p = 1:1$ (Figure 4.26)

	Number		Specific cond	uctivity (S/cm)
C _a /C _p	of days stored	lst	2nd	Mean	S.D.
	1	0.0020	0.0020	0.0020	0.0000
1:1	5	0.0020	0.0017	0.0019	0.0002
	10	0.0021	0.0024	0.0023	0.0002
	15	0.0023	0.0022	0.0023	0.0001
	20	0.0015	0.0015	0.0015	0.0000
	30	0.0016	0.0017	0.0017	0.0001
	40	0.0012	0.0016	0.0014	0.0003
	50	0.0012	0.0017	0.0015	0.0003
1000	1	0.0194	0.0215	0.0205	0.0014
1000:1	5	0.0194	0.0233	0.0214	0.0027
	10	0.0174	0.0234	0.0204	0.0042
	15	0.0186	0.0241	0.0214	0.0039
	20	0.0158	0.0213	0.0186	0.0039
	30	0.0157	0.0205	0.0181	0.0034
	40	0.0155	0.0240	0.0197	0.0060
	50	0.0136	0.0235	0.0185	0.0070

Table D. 3 Effect of aging time on the specific conductivity of CH_3COOH doped polyaniline film with various C_a/C_p (Figure 4.27)

	Number of		specific conductivity (S/cm)				
C_a/C_p	days stored	lst	2nd	Mean	S.D.		
	1	0.0010	0.0014	0.0012	0.0003		
1:1	5	0.0011	0.0018	0.0015	0.0005		
	10	0.0008	0.0015	0.0012	0.0005		
	15	0.0010	0.0010	0.0010	0.0000		
	20	0.0007	0.0007	0.0007	0.0000		
	30	0.0009	0.0009	0.0009	0.0000		
	40	0.0008	0.0008	0.0008	0.0000		
	1	0.0108	0.0103	0.0106	0.0004		
1000:1	5	0.0099	0.0100	0.0010	0.0000		
	10	0.0083	0.0098	0.0091	0.0011		
	15	0.0078	0.0076	0.0077	0.0001		
	20	0.0083	0.0072	0.0078	0.0008		
	30	0.0076	0.0085	0.0081	0.0006		
	40	0.0122	0.0087	0.0104	0.0025		
	50	0.0114	0.0066	0.0090	0.0034		

Table D. 4 Effect of aging time on the specific conductivity of $C_5H_{11}COOH$ doped polyaniline film with various C_a/C_p (Figure 4.28)

D-2 Effect of dopant types and acid/polymer concentration ratio (C_a/C_p) on the specific conductivity

Table D. 5 Effect of C_a/C_p on the specific conductivity of polyaniline films doped with HCl, CH₃COOH and C₅H₁₁COOH measured in air at 25°C, with relative humidity 65-70% (Figure 4.29)

Acid		Mole ratio	Specific conductivity (S/cm)			
dopant	C_a/C_p	(N_a/N_p)	lst	2nd	Mean	S.D.
	1:1	9.8E+00	0.0256	0.0280	0.0268	0.0017
HCI	10:1	9.8E+01	0.1032	0.1097	0.1065	0.0046
	50:1	4.9E+02	0.0205	0.0181	0.0193	0.0017
	100:1	9.8E+02	0.0165	0.0158	0.0162	0.0005
	500:1	4.9E+03	0.0113	0.0134	0.0124	0.0015
	1000:1	9.8E+03	0.0125	0.0125	0.0125	0.0000
	1:1	5.9E+00	0.0021	0.002	0.0021	0.0001
CH ₃ COOH	10:1	5.9E+01	0.0022	0.0021	0.0022	0.0001
	50:1	2.9E+02	0.0031	0.0036	0.0034	0.0004
	100:1	5.9E+02	0.0062	0.0069	0.0066	0.0005
	500:1	2.9E+03	0.0106	0.0104	0.0105	0.0001
	1000:1	5.9E+03	0.0111	0.0114	0.0113	0.0002
	2000:1	1.2E+04	0.0107	0.0119	0.0113	0.0008
	5000:1	2.9E+04	0.0107	0.0106	0.0107	0.0001
	1:1	3.1E+00	0.0001	0.0001	0.0001	0.0000
C ₅ H ₁₁ COOH	10:1	3.1E+01	0.0001	0.0001	0.0001	0.0000
	50:1	1.5E+02	0.0014	0.0019	0.0017	0.0004
	100:1	3.1E+02	0.0020	0.0022	0.0021	0.0001
	500:1	1.5E+03	0.0122	0.0102	0.0112	0.0014
	1000:1	3.1E+03	0.0106	0.0116	0.0111	0.0007
	2000:1	6.2E+03	0.0126	0.0099	0.0113	0.0019
	5000:1	1.5E+04	0.0094	0.0105	0.0100	0.0008

Table D. 6 Effect of N_a/N_p on the specific conductivity of polyaniline films doped with HCl, CH₃COOH and C₅H₁₁COOH measured in air at 25°C, with relative humidity 65-70% (Figure 4.30)

Acid donants	Mole ratio Specific conductivity (S/cm)			m)	
	(N_a/N_p)	lst	2nd	Mean	S.D.
	9.8E+00	0.0256	0.0280	0.0268	0.0017
HCl	9.8E+01	0.1032	0.1097	0.1065	0.0046
	4.9E+02	0.0205	.0181	0.0193	0.0017
	9.8E+02	0.0165	0.0158	0.0162	0.0005
	4.9E+03	0.0113	0.0134	0.0124	0.0015
	9.8E+03	0.0125	0.0125	0.0125	0.0000
	5.9E+00	0.0021	0.0020	0.0021	0.0001
CH ₃ COOH	5.9E+01	0.0022	0.0021	0.0022	0.0001
	2.9E+02	0.0031	0.0036	0.0034	0.0004
	5.9E+02	0.0062	0.0069	0.0066	0.0005
	2.9E+03	0.0106	0.0104	0.0105	0.0001
	5.9E+03	0.0111	0.0114	0.0113	0.0002
	1.2E+04	0.0107	0.0119	0.0113	0.0008
	2.9E+04	0.0107	0.0106	0.0107	0.0001
	3.1E+00	0.0001	0.0001	0.0001	0.0000
C₅H ₁₁ COOH	3.1E+01	0.0001	0.0001	0.0001	0.0000
	1.5E+02	0.0014	0.0019	0.0017	0.0004
	3.1E+02	0.0020	0.0022	0.0021	0.0001
	1.5E+03	0.0122	0.0102	0.0112	0.0014
	3.1E+03	0.0106	0.0116	0.0111	0.0007
	6.2E+03	0.0126	0.0099	0.0113	0.0019
	1.5E+04	0.0094	0.0105	0.0100	0.0008

D-3 The Specific conductivity of doped-polyaniline film when exposed to water

Testing conditions: Testing temperature = 25°C

Relative humidity = 65-70%

Amount of moisture content in dry state = 2-5%

Table D. 7 The specific conductivity of HCl-doped polyaniline film whenexposed to water at 25°C, with relative humidity 65-70% (Figure 4.33)

Madium			Specific conductivity (S/cm)				
Medium	C_a/C_p	Mole ratio	1 st	2nd	Mean	S.D.	
	1:1	9.8E+00	0.0331	0.0320	0.0326	0.0008	
in air	10:1	9.8E+01	0.1032	0.1097	0.1065	0.0046	
	50:1	4.9E+02	0.0205	0.0181	0.0193	0.0017	
	100:1	9.8E+02	0.0165	0.0158	0.0162	0.0005	
	500:1	4.9E+03	0.0113	0.0134	0.0124	0.0015	
	1000:1	9.8E+03	0.0093	0.0107	0.0100	0.0010	
	1:1	9.8E+00	0.0546	0.0546	0.0546	0.0000	
in water	10:1	9.8E+01	0.1561	0.1510	0.1536	0.0036	
	50:1	4.9E+02	0.0396	0.0363	0.0380	0.0023	
	100:1	9.8E+02	0.0396	0.0354	0.0375	0.0030	
	500:1	4.9E+03	0.0298	0.0202	0.0250	0.0068	
	1000:1	9.8E+03	0.0202	0.0234	0.0218	0.0023	

Madium		Mole ratio	Specific conductivity (S/cm)				
Medium	C _a /C _p	(N_a/N_p)	lst	2 nd	Mean	S.D.	
	1:10	3.6E-01	0.0051	0.0054	0.0053	0.0002	
in air	1:1	3.6E+00	0.0262	0.0244	0.0253	0.0013	
	5:1	1.8E+01	0.0369	0.0388	0.0379	0.0013	
	10:1	3.6E+01	0.0614	0.0593	0.0604	0.0015	
	1:10	3.6E-01	0.0068	0.0069	0.0069	0.0001	
in water	1:1	3.6E+00	0.0905	0.0900	0.0903	0.0004	
	5:1	1.8E+01	0.0921	0.1117	0.1019	0.0139	
	10:1	3.6E+01	0.1155	0.1162	0.1159	0.0005	

Table D. 8 The specific conductivity of H_3PO_4 -doped polyaniline film when exposed to water at 25°C, with relative humidity 65-70% (Figure 4.35)

Madium		Mole ratio	Specific conductivity (S/cm)				
Medium	C_a/C_p	(N_a/N_p)	lst	2nd	Mean	S.D.	
	1:1	5.9E+00	0.0021	0.0020	0.0021	0.0001	
in air	100:1	5.9E+02	0.0069	0.0062	0.0066	0.0005	
	500:1	2.9E+03	0.0106	0.0104	0.0105	0.0001	
	1000:1	5.9E+03	0.0111	0.0114	0.0113	0.0002	
	2000:1	1.2E+04	0.0107	0.0119	0.0113	0.0008	
	5000:1	2.9E+04	0.0107	0.0106	0.0107	0.0001	
	1:1	5.9E+00	0.0063	0.0088	0.0076	0.0018	
in water	100:1	5.9E+02	0.0147	0.0123	0.0135	0.0017	
	500:1	2.9E+03	0.0171	0.0142	0.0157	0.0021	
	1000:1	5.9E+03	0.0166	0.0142	0.0154	0.0017	
	2000:1	1.2E+04	0.0155	0.0145	0.0150	0.0007	
	5000:1	2.9E+04	0.0142	0.0165	0.0154	0.0016	

Table D. 9 The specific conductivity of CH_3COOH -doped polyaniline film when exposed to water at 25°C, with relative humidity 65-70% (Figure 4.36)

Madium		Mole ratio	Spe	cific condu	ctivity (S/c	m)
Medium	C_a/C_p	(N_a/N_p)	lst	2nd	Mean	S.D.
	1:1	3.1E+00	0.0010	0.0010	0.0010	0.0000
in air	100:1	3.1E+02	0.0020	0.0021	0.0021	0.0001
	500:1	1.5E+03	0.0102	-	0.0102	-
	1000:1	3.1E+03	0.0106	0.0116	0.0111	0.0007
	2000:1	6.2E+03	0.0126	0.0099	0.0113	0.0019
	5000:1	1.5E+04	0.0105	0.0094	0.0100	0.0008
	1:1	3.1E+00	0.0101	0.0104	0.0103	0.0002
in water	100:1	3.1E+02	0.0116	0.0121	0.0119	0.0004
	500:1	1.5E+03	0.0140	0.0122	0.0131	0.0013
	1000:1	3.1E+03	0.0159	0.0133	0.0146	0.0018
	2000:1	6.2E+03	0.0162	0.0132	0.0147	0.0021
	5000:1	1.5E+04	0.0126	0.0145	0.0136	0.0013

Table D. 10 The specific conductivity of C_5H_{11} COOH-doped polyaniline film when exposed to water at 25°C, with relative humidity 65-70% (Figure 4.37)

D-4 The Specific Conductivity of polyaniline film when exposed to water and 100% ethanol at 25°C, with relative humidity 65-70%

Table D. 11 The specific conductivity of HCl-doped polyaniline film whenexposed to water and 100% ethanol at 25°C (Figure 4.38)

		Mole ratio	Sp	ecific condu	ctivity (S/cn	n)
Medium	C_a/C_p	(N_a/N_p)	lst	2 nd	Mean	S.D.
	1:1	9.8E+00	0.0331	0.0320	0.0326	0.0008
in air	5:1	4.9E+01	0.0463	0.04821	0.0473	0.0013
	10:1	9.8E+01	0.1032	0.1097	0.1065	0.0046
	30:1	2.9E+02	0.0387	0.0393	0.0390	0.0004
	50:1	4.9E+02	0.0205	0.0181	0.0193	0.0017
	100:1	9.8E+02	0.0165	0.0158	0.0162	0.0005
	500:1	4.9E+03	0.0113	0.0134	0.0124	0.0015
	1000:1	9.8E+03	0.0093	0.0107	0.0100	0.0010
	1:1	9.8E+00	0.0546	0.0546	0.0546	0.0000
in water	5:1	4.9E+01	0.0873	0.0876	0.0876	0.0002
	10:1	9.8E+01	0.1561	0.1510	0.1536	0.0036
	30:1	2.9E+02	0.0612	0.0592	0.0602	0.0014
	50:1	4.9E+02	0.0396	0.0363	0.0380	0.0023
	100:1	9.8E+02	0.0396	0.0354	0.0375	0.0030
	500:1	4.9E+03	0.0298	0.0202	0.0250	0.0068
	1000:1	9.8E+03	0.0202	0.0234	0.0218	0.0023
	1:1	9.8E+00	0.0438	0.0398	0.0418	0.0028
in 100% ethanol	5:1	4.9E+01	0.0653	0.0665	0.0659	0.0009
culturol	10:1	9.8E+01	0.1258	0.1373	0.1316	0.0081
	30:1	2.9E+02	0.0483	0.0473	0.0478	0.0007
	50:1	4.9E+02	0.0355	0.0337	0.0346	0.0013
	100:1	9.8E+02	0.0342	0.0307	0.0325	0.0025
	500:1	4.9E+03	0.0103	0.0178	0.0141	0.0053
-	1000:1	9.8E+03	0.0144	0.0113	0.0129	0.0022

Table D. 12 The specific conductivity of CH3COOH-doped polyaniline filmwhen exposed to water and 100% ethanol at 25°C, with relative humidity65-70% (Figure 4.39)

Medium		Mole ratio	Specific conductivity (S/cm)			
	C_a/C_p	(N_a/N_p)	lst	2nd	Mean	S.D.
	1:1	5.9E+00	0.0021	0.0020	0.0021	0.0001
in air	100:1	5.9E+02	0.0069	0.0062	0.0066	0.0005
	500:1	2.9E+03	0.0106	0.0104	0.0105	0.0001
	1000:1	5.9E+03	0.0111	0.0114	0.0113	0.0002
	2000:1	1.2E+04	0.0107	0.0119	0.0113	0.0008
	5000:1	2.9E+04	0.0107	0.0106	0.0107	0.0001
	1:1	5.9E+00	0.0063	0.0088	0.0076	0.0018
in water	100:1	5.9E+02	0.0147	0.0123	0.0135	0.0017
	500:1	2.9E+03	0.0171	0.0142	0.0157	0.0021
	1000:1	5.9E+03	0.0166	0.0142	0.0154	0.0017
	2000:1	1.2E+04	0.0155	0.0145	0.015	0.0007
	5000:1	2.9E+04	0.0142	0.0165	0.0154	0.0016
	1:1	5.9E+00	0.0071	0.0069	0.0070	0.0001
in 100% ethanol	100:1	5.9E+02	0.0106	0.0124	0.0115	0.0013
	500:1	2.9E+03	0.0124	0.0124	0.0124	0.0000
	1000:1	5.9E+03	0.0136	0.0134	0.0135	0.0001
	2000:1	1.2E+04	0.0140	0.0120	0.0130	0.0014
	5000:1	2.9E+04	0.0142	0.0165	0.0154	0.0016

Ethanol				
concentration (M)	lst	2nd	Mean	S.D.
0.00	0.1421	0.1443	0.1432	0.0585
1.70	0.1398	0.1476	0.1437	0.6354
3.40	0.1426	0.1393	0.1410	1.3305
5.10	0.1339	0.1387	0.1363	2.0264
8.50	0.1324	0.1296	0.1310	3.4166
11.9	0.1320	0.1312	0.1316	4.8044
17.0	0.1258	0.1373	0.1316	6.8865

Table D. 13 The specific conductivity of HCl-doped polyaniline films whenexposed to ethanol solution at 25°C, with relative humidity 65-70%(Figure 4.41)

Table D. 14 The specific conductivity of CH_3COOH -doped polyaniline films when exposed to ethanol solution at 25°C, with relative humidity 65-70% (Figure 4.42)

Ethanol		Specific conductivity (S/cm)					
(M)	lst	2nd	Mean	S.D.			
0.00	0.0143	0.0146	0.0145	0.0002			
1.70	0.0144	0.0144	0.0144	0.0000			
3.40	0.0143	0.0144	0.0144	7.07E-05			
5.10	0.0141	0.0139	0.0140	0.0001			
8.50	0.0137	0.0137	0.0137	0.0000			
10.2	0.0136	0.0135	0.0136	7.07E-05			
11.9	0.0136	0.0135	0.0136	7.07E-05			
17.0	0.0136	0.0134	0.0135	0.0001			

4

CURRICULUM VITAE

Name:	Lucksanaporn Tarachiwin			
Date of Birth:	August 26, 1976			
Nationality:	Thai			
University Educat	tion:			
1994-1997	Bachelor Degree of Science in Chemistry, Faculty of			
	Science, Chulalongkorn University			