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CHAPTER 1
INTRODUCTION

Let G be a locally compact group. A nonzero continuous function f : G — C
is said to be a solution of the d’Alembert functional equation if for any =,y € G,

we have

flay) + flay™') =2f(2) f(y).

This equation can be solved by an algebraic method, see [3]. However, in 2013,
Yang provided a solution of this functional equation on compact groups in his pa-
per [4] using methods from abstract harmonic analysis.

In 2015, Chahbi et al. generalized d’Alembert functional equation to the equa-
tion

n—1

Flay) + > fot()e) =nf(2)f(y). =, (1.1)

k=1
where o is an automorphism on G such that ¢ = idg . They solved equation ()
on compact groups by applying Fourier transform to the functional equation. The
solution they gave in their paper [1] is

n—1
@)= =3 xoot()
k=0
where x : G — C ~\ {0} is a continuous group homomorphism.
In this work, we generalized the domain of solutions of the functional equation.
We define the functional equation on a compact homogeneous space based on
equation () and give the solution to this functional equation by using Fourier

analysis on compact homogeneous spaces.



CHAPTER II
PRELIMINARIES

In this chapter, we introduce a definition of a topological group and a homo-
geneous space. we also give a reference to important results about Haar measure
on a topological group and G-invariant Radon measure on a homogeneous space.

The material in this chapter can be found in [2].

2.1 Locally Compact Groups

Definition 2.1. A group G is called a topological group if it is equipped with
Hausdorff topology such that the group operations are continuous; that is the

1

maps (z,y) — xy and x — = are continuous.

If G is locally compact Hausdorff, then we call G a locally compact group.

Definition 2.2. Let f be a function on a group . For each y € G, we define the
left translation of f through y by

L,f(z) = fly~'2), for z € G,
and the right translation of f through y by
R, f(x) = f(zy), for z € G.

Note that L,.f = L,L.f and R,.f = R ,R.f.

Definition 2.3. Let G be a locally compact group. A left (resp. right) Haar
measure on G is a nonzero Radon measure p on G that satisfies p(zE) = p(E)
(resp. p(Ex) = p(E)) for every x € G and every Borel set E C G.

A Haar measure on G is a measure p that is both left and right Haar measure.



Observe that if p is a left Haar measure, then the measure fi defined by f(E) =
w(E™Y) is a right Haar measure, and vice versa. Thus it suffices to consider only
left Haar measures on G. Let C.(G) denote the space of continuous functions on

G with compact support.

Proposition 2.4. Let y be a Radon measure on a locally compact group G. Then

i) pis a left Haar measure if and only z'f/Lyf dp = /fdu forally € G and
for all f € C.(G).

it) p is a right Haar measure if and only z'f/Ryf dp = /fdu forally € G
and for all f € C.(Q).

Theorem 2.5. Every locally compact group has a left Haar measure and it is

unique up to scaling.

Let u be a left Haar measure on GG. For each x € GG, we define a measure i,
by 1. (E) = p(Ex) for every Borel set £ C G. Notice that p, is also a left Haar
measure. By the uniqueness of left Haar measure, there is a positive real number

¢, such that p, = c pu.

Definition 2.6. A function A : G — R defined by A(x) = ¢, is called a modular

function of G.

Note that A = 1 if and only if every left Haar measure on G is a right Haar

measure. We call a group GG with such property a unimodular group.

Proposition 2.7. Let G be a locally compact group and i be the left Haar measure
on G. If f € C.(G), then

/G F(o) dn() = /G @) AE) dula).

Proposition 2.8. A is a continuous group homomorphism from G to (R™, x).

Theorem 2.9. If G is a compact group, then G is unimodular.



Proof. Since A is continuous, A(G) is a compact subgroup of (R*, x), and the
only compact subgroup of (R*, x) is {1}. ]

Let G be a compact group. Then G possesses a Haar measure p. Since Haar
measure is a Radon measure, p(G) < co. We say that a Haar measure p on G is

normalized if u(G) = 1.

2.2 Homogeneous Spaces

Let G be a locally compact group and S be a locally compact Hausdorff space.

An action of G on S is a continuous map (x,s) — xs from G x S to S such that
1. For each x € GG, the map s — xs is a homeomorphism on S.
2. (xy)s = x(ys) for all z,y € G and s € S.

A space S equipped with an action of G is called a G-space.

Definition 2.10. A locally compact Hausdorff space S is called a homogeneous
space if S is a G-space such that the action of G is transitive and .S is homeomorphic

to a quotient space G/H for some closed subgroup H of G.

Here we regard G/H as the space of left cosets of H in G. Let dx and d§ be
the left Haar measure on GG and its closed subgroup H respectively, Ag and Ay
be the modular functions of G and H, and let ¢ : G — G/H be the canonical
quotient map ¢(z) = xH. We define the map P : C.(G) — C.(G/H) by

Pi(aH) = /H F(at) de.

Lemma 2.11. If K C G/H is compact, then there exists ¢ € C.(G) such that
»>0and Pp=1 on K.

Proposition 2.12. If F € C.(G/H), then there exists f € C.(G) such that
Pf=F, q(supp f) =supp F and f >0 if FF > 0.



The following theorem gives a condition for the existence of a G-invariant Radon
measure on GG/ H, and its relation with the Haar measure on the underlying group
G, which will be used in section 3.3. To cover this aspect, we present a proof for

this theorem, which can also be found in [2].

Theorem 2.13. There is a left G-invariant Radon measure pn on G/H if and only
if Agly = An. In this case, p is unique up to a constant factor, and if this factor

is suitably chosen we have

/G f()do = /G JPfdn= /G . /H (€ de da(e ) (2.1)

for all f € C.(G).

Proof. Assume that Ag|,; = Ay. Let f € C.(G). Firstly, we show that / fdr =
G

0 whenever Pf = 0. Indeed, suppose Pf = 0. By Lemma , We can choose

¢ € C.(G) such that ¢ > 0 and P¢p = 1 on g(supp f). Then we have

0= /H F(w€) de
i /H €YY Ap(e) de

- /G o(z) /H F(eE ) Ar(E ) de dr
- /G /H 6(2) f 6 ) Ag(€7) de do

Since the map (, &) — ¢(z) f(z€ ") has support contained in supp ¢ x ((Supp f)"tsupp qb),

which is compact in G x H, we can apply Fubini’s Theorem to get

0= /G /H 6(2) f (26 ) Ag(€7) dE da
_ /H /G o) f (26 V) A (€7 da d.

_ /H /G o) (x) do d.



Since supp ¢ is compact, we can apply Fubini’s Theorem again to get

0—//¢ﬁ r) dw d¢
() s

/ Po(zH) f () dx
:Aﬂ@m

Then we have / fdx = / gdx whenever Pf = Pg. From Lemma , the
e G

map Pf — [ fdx is a well-defined left G-invariant positive linear functional on
G
C.(G/H). By Riesz representation theorem, there is a unique Radon measure p

on G/H that satisfies the equation (@)

Conversely, suppose that the G-invariant Radon measure p on G/H exists.

Then the map f +— Pfdu is a left G-invariant positive linear functional on
G/H
C.(G). By Theorem @ / Pfdu= c/ f dx for some ¢ > 0 and we can assume
G/H G
that ¢ = 1 so that the equation (@) holds. Let f € C.(G) and h € H. Then we
have
h)/ f(z)dx = / f(xh™!
G G
=[] sl ) de dute
G/HJH
= 8al) [ [ fGae) de du(om)
G/HJH
m/ﬂ@m
G
Thus Ag(h) = Ag(H) for all h € H. N

Corollary 2.14. IfG is compact, then G/H admits a G-invariant Radon measure.

Proof. Assume that G is compact. Since H is a closed subgroup of GG, H is also
compact. By Theorem @, we have Ag|y; =1 = Ap. [



Theorem 2.15. If G is compact and dz, d¢ are normalized, then the G-invariant
Radon measure p in (@) is the pushforward measure of the measure dx under the

quotient map q : G — G/H.

Proof. Assume that G is compact. Then C.(G) = C(G) and C.(G/H) = C(G/H).
Let F' € C(G/H) and let d(zH) denote the pushforward measure on G/H. Then

we have

/ Fd(ﬁH):/Foqu.
G/H G
Observe that F'oq € C(G) and F o q(z§) = F o g(x) for all £ € H. Thus

/G RECIE
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=
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CHAPTER I11
ABSTRACT HARMONIC ANALYSIS

In this chapter, we introduce a tool that is used for solving the functional equa-
tion. The basic definitions about unitary representations are provided in Section
3.1. In Section 3.2, we give a well-known result about Fourier analysis on compact
group. Our main tool for solving the functional equation on a compact homoge-
neous space is developed in Section 3.3. The detailed proof in Section 3.1 and 3.2

can be found in [2].

3.1 Unitary Representations

Definition 3.1. A wunitary representation of G is a continuous group homomor-
phism 7 : G — U(V;) where V; is a nonzero Hilbert space and U(V;) is the
group of unitary operators on V, equipped with the strong operator topology. The

dimension of 7 is defined by d, := dim V..

If V, is one-dimensional, then for each = € G, 7(x) is a scalar multiplication.
In this case, we identify U(V;) with the circle group T := {z € C | |2| = 1} and
call ™ a character of G.
The most natural unitary representation of G arises from the translation action
of G on itself. Suppose G is unimodular. Let L?(G) denote the space of square-
integrable functions on GG with respect to the Haar measure dx. The left reqular
representation of G is a representation 7, : G — U(L?*(G)) given by the left

translation

(o) f)(@) = Lyf(z) = f(y'z),  z,yeG.



Similarly, the right regular representation 7 : G — U(L*(Q)) is defined by

(mr(y)f)(2) = Ryf(x) = f(zy),  zyed.

Proposition @ implies that 7, and 7g are unitary representations.

Definition 3.2. Let m;, my be representations of G. An intertwining operator for
7 and 7o is a bounded linear map 7" : V;, — Vi, such that T'm(z) = me(2)T for all

x € G. The set of all intertwining operator for m; and s is denoted by C(my, ma).

Note that C(my, m2) is a vector space over C. For convenience, we write C(7) :=
C(m,m). We say that m and my are equivalent if C(m,m) contains a unitary
isomorphism. In this case, we write m; ~ m9. It is easy to see that ~ is an

equivalent relation.

Definition 3.3. Let 7 : G — U(V;) be a representation of G. A closed subspace
W of V, is called an invariant subspace for m if w(x)[W] C W for all x € G. The
representation 7 : G — U(W) defined by

is called a subrepresentation of .

A representation 7 is said to be irreducible if T has no invariant subspace other

than {0} and V;. Otherwise 7 is reducible.
Theorem 3.4 (Schur’s Lemma).

i) A unitary representation w of G is irreducible if and only if C(7) contains

only scalar multiple of identity map.

it) Let w1, mo be irreducible unitary representations of G. If my ~ mo, then

C(m1,m2) is one-dimensional. Otherwise, C(my,m) = {0}.
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3.2 Fourier Analysis on Compact Groups

For this section, let G be a compact group with the normalized Haar mea-
sure dzx, G denote the set of all equivalence classes of irreducible unitary repre-
sentations of GG. For each C € @, we fix the representative 1 € C' = [r], so
G = {[n] | 7 are those fixed representatives}.

One of the most important result in harmonic analysis on compact group is the

following theorem.

Theorem 3.5. If G is compact, then every irreducible representation of G is finite
dimensional, and every unitary representation of G is a direct sum of irreducible

representations.

Let G be a compact group. From Theorem @, we know that for each [r] € G,

Vy is finite dimensional. Let {e1,..., €4, } be an ordered orthonormal basis for V.
For each i,5 € {1,...,d:}, the matriz coefficient m;; is a continuous function on G
defined by

mij(x) = (m(x)e;, €;) x € G.

Notice that if we identify V, with C% with this ordered orthonormal basis, the
matrix representation of a linear map 7(x) is precisely the matrix [m;;(x)]. Let M,

be the closure of subspace of L*(G) spanned by the set
{(r(@)u,v) | u,v € Vr}.

Theorem 3.6 (Schur Orthogonality Relations). Let  and 7’ be irreducible repre-

sentations of G.
i) If = @', then My, L M.

it) The set
{\/ dﬂ-ﬂ'ij | Z,] = 1,...,dﬂ-}

is an orthonormal basis for M.
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Theorem 3.7 (Peter-Weyl Theorem). Let MY be the subspace of L*(G) spanned
by i row of the matriz [mi5]. Then MS:') is tnvariant under right reqular represen-
tation, and the restriction of the right regular representation to MS:‘) is equivalent

to m. Moreover, L*(G) can be decomposed into the Hilbert space direct sum:

L*(G) = P M,

[x]eCG

and the set

{(Vdems; | i,j=1,....dy, [7] € G}
is an orthonormal basis of L*(G).

Definition 3.8. Let f € L'(G) and [r] € G. The Fourier transform of f at  is
the operator on V. defined by

f(w)u = /Gf(:v)ﬂ(x)u dx, u € Vg,

which we inteprete in the weak sense, that is

(Flmyu,v) = /G f (@) {m(@yu; 0) da

for all u,v € V.

Note that our definition of the Fourier transform is different from the usual
one (we regard G/H as a space of left cosets). The reason for using this definition
will become clear in the next section. For usual definition of Fourier transform on

compact groups, see [2].

Theorem 3.9 (Fourier Inversion Formula). Let f € L*(G). Then

where the sum converges in L* norm.
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Proof. Let f € L*(G). From Peter-Weyl Theorem, {\/d.7;; | i,j = 1,...,ds,[7] €
G}, is an orthonormal basis for L*(G). Thus, in L*(G),

flz) = gg@iﬂi ( /G F)Vdzmis(y) dy) Vi ()

- a3 ([ 70w @) ruo),

[rleG =1 j=1

Observe that

dr  dn - ) ) e e -
ZZ( [ T ) mote) = [ i ;;mj@)my)) &y
dr dr
:/Gm ZZ(W(:E)ej,ei><7r(y)ej7ei>> dy
=\ A\
Z/Gf(y) ZZ(ﬂ(w)€j76i><ei,7r(y)ej>> dy
dr
= | 1) Z<w<x>ej,w<y>ej>> dy
=3 [ Fltatoges v ay
=3 [ Fwttoes atales)dy
=" (s w(e)er)
Z

Hence, in L*(G),
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The following lemmas is frequently used to solve functional equations.

Lemma 3.10. Let f € L*(G). Then

for all z,y € G and [7] € G.

Proof. Let f € L*(@), [r] € G and y € G. Since dz is a Haar measure on G, we

have
Iiy\f(ﬂ') = /GLyf(x)W(x) dx
— [ () da
G
~ [ Hajrlyw) do
G
— (y) /G f(@)m(e) do
= n(y) f(m).
Similarly,

= f(m)m(y)". O

Lemma 3.11. If f € L*(G) is nonzero, then there exists [1] € G such that

~

f(m) #0.
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)

Proof. Suppose f(m) =0 for all [x] € G By Fourier inversion formula, we have

f(z) = Z d, tr <7T(ZL‘_1)A(7T)>

3.3 Fourier Analysis on Compact Homogeneous Spaces

Let G be a compact group and H be a closed subgroup of G with normalized
Haar measure dx and d¢ respectively. Let ¢ : G — G//H be the canonical quotient
map, let d(xH) be the G-invariant Radon measure on G/H as in Theorem
and L?(G/H) be the space of square-integrable functions on G/ H with respect to
this measure. The following theorem gives a relation between L*(G) and L*(G/H).

Definition 3.12. The space of right H-invariant square-integrable functions is

denoted by
LH(G)" = {f € L*(G) | Vo € G V& € H, f(€) = f(a)}.

Equivalently, f € L*(G)" if and only if R¢f = f for all ¢ € H.

Theorem 3.13. L*(G)" is a closed subspace of L*(G), and the map q. : L*(G/H) —
L*(G) given by
Q*<F):Foq7 FGLQ(G/H)’

is a unitary isomorphism.

Proof. Let {f.,} be a sequence in L*(G)" that converges to f € L*(G). Then
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/ |fn — f|? dz converges to 0. For each ¢ € H, we have
G

| Ret = 1o = [ 1Ref = Refu+ Ref = 112 da
< [ \Ref = RepuPar+ [ Refu = 1P as
G G
— [ Rl = Pydo+ [ 1fo - 7P
G e}
:2/ |fn — fI?dx — 0 as n — oco.
a
Thus Ref = f, so f € L*(G)".
Clearly g. is linear, also, by universal mapping property of G/H, we can see
that ¢, is onto. Let F' € L*(G/H). Then for any £ € H, F o q(x¢) = F(2(H) =

F(xH) = Foq(z),so Foqe& L*G)". Since d(xH) is the pushforward measure,

we have

/ |F|2d(xH)=/ |Foq|?d.
G/H G

Hence g, is a unitary isomorphism. [

For each unitary representation 7 : G — U(V'), we define the space of H-fixed

vectors by

VH ={veV |Vhe H, r(h)v=nuv}
Since V is finite dimensional, V¥ is a closed subspace of V.

Proposition 3.14. For [r]| € @, the map P, -V — VH given by

Pﬂv:/Hﬂ(f)vdf

is an orthogonal projection.

Proof. Let v €V and h € H. Then

7(h)Pyv = /H r(h)m(€)v dE = /H 7(h€)vde = /H 7(€)vde = P,
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and thus, P,v € V#. Note that if v € V| then / m(&)vdE = / vdé =wv. Thus
H H

P, is a projection. To show that P, is self-adjoint, let u,v € V. Then we have
(Pea,o) = [ (nleyu,v) de
H
~ [ um(eyondg
H
— [ fum(e ) ag
H
= [ ey ae
H

= (u, Pyv).

Thus P, = Py, and so P, is a self-adjoint projection. Therefore, it is an orthogonal

projection. [

Theorem 3.15. If f € L*(G)", we have the identity

o~

flr = f(m)Pw, forveV, [r]eq (3.2)

Proof. Let f € L*(G)". Then we have for v € V and [r] € G,

([ e ac)

f(@)m(z)m(§)v déda

-
£
>
S

Il
g
C)

F(a)m(x€)v de da
F(a)m(x€)v da de
J(a€ (2o da de

T—

I

f(x)m(x)vdx d

Q

Il
=
ey

=

Q.
s

T

I
=)
2

<

O
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Definition 3.16. An H-spherical representation of G is a unitary representation

7 : G — U(V) such that V = {0}. Moreover, we define the set
CT/?I — {[x] € G | 7 is a H-spherical representation}.

Lemma 3.17. Let f € L*(G)!. If [x] ¢ G/H, then f(r) = 0.
Proof. Suppose 7] ¢ G//E Then V = {0}, so that P,v = 0 for any v € V. Thus

o~ ~ -~

J(ry = fm) P = fx)0 =0

forallve V. [
Combining Theorem @ and Lemma , we get the following theorem.

Theorem 3.18. Let f € L*(G)?. Then

where the sum converges in L* norm.



CHAPTER IV
FUNCTIONAL EQUATION ON COMPACT
HOMOGENEOUS SPACES

In this chapter, we define the functional equation on a compact homoge-

neous space GG/H based on the following functional equation on G:

nf(x)f(y), forx,ye G, (4.1)

=
&
o
+
=
R)
>
—~
N3}
=
I

where ¢ is a continuous automorphism on G such that ¢"(z) = x for all z € G.

We give a solution to the functional equation in Theorem @

4.1 The Functional Equation on G/H

Let G be a compact group and H a closed subgroup of G with normalized Haar
measure dr and d§ respectively. Let o be a continuous automorphism such that
o™ is the identity map on G for some n > 2. Our main focus is the functional
equation on G/H given by

n—1

F(zyH) + ZF(ak(y)xH) =nF(xH)F(yH), forz,y€ @G, (4.2)

k=1

where F': G/H — C is a nonzero continuous function.

4.2 Solution of the Functional Equation

In this section, we prove lemmas used in solving the functional equation (@)
The proofs of these lemmas are similar to the ones given in [[l]] with a slight mod-

ification since the definition of Fourier transform in [l is different from what we
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use here.

Lemma 4.1. If f : G — C is a nonzero continuous solution of (@), then f(e) =1
and f oo = f where e denotes the identity of G.

Proof. Take y = e in the equation (@), we get for any = € G,

Since f is nonzero, we can choose x € G such that f(z) # 0. Then we have

fle)=1.
Next, We take z = e in (@) Then we get the equation

~ Flo @) = nf()
Since 0" (y) = y, we have
RS k 1 k
flo@)=—) Holyh == flo"y)) = fy)
for all y € G. O

Lemma 4.2. Let f : G — C be a nonzero continuous solution of (@) Then for
7] € G, either f(ﬁ) =0 or f(ﬁ) is invertible.

Proof. Let f € C(G) be a nonzero continuous solution of the functional equation

(@) Rewrite the equation as
n—1
Ryf(@) + ) Lovy-1f (@) = nf(y) f(x).
k=1
Let [n] € G. By Lemma , taking Fourier transform at 7 with respect to  gives

f@ry™) + Y w0 () (x) = nfy)f(m) (4.3)
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o~

Let v € ker f(m). Then

so that 7(y~ v € ker J/c\(ﬂ') for all y € G. Thus ker J/c\(ﬂ') is an invariant subspace of

7. Since 7 is irreducible, ker f(7) is {0} or V;, which means that f(r) is invertible

-~

or f(m) =0. O

Lemma 4.3. Let f € L*(G)" be a solution of (@) For each [7] € G, if f(m) # 0,
then [r] € (j/?{

~

(7) satisfies the

~

f(m) # 0. By Lemma @, () is invertible. Since f € L*(G)¥
identity (@) Then

Proof. Let f € L*(G)" satisfies the equation (@) and [7] € G. Assume that
S

o~

Pov= flz) " f(m)v = v

for all v € Vj, which implies that P; is the identity map and hence V¥ = V. # {0}.
Thus [7] € 5/?] : O

Our main result is the following theorem.

Theorem 4.4. Let F : G/H — C be a nonzero continuous solution of the func-

tional equation (@), i.e.,

F(xyH) + iF(Uk(y)xH) =nF(zH)F(yH).

Then there exists a one-dimensional H-spherical representation x : G — T such

that H < ker(y o ") for all k € {0,1,...,n — 1} and

FaH) = =3 xoo*(z) ()

forallx € G. Moreover, the function F' defined in (%) is a solution of the functional

equation (@)
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Proof. The idea of the proof is the same as the one given in [l]. Let F € C(G/H)
be a nonzero solution of (@) Let f = Fogq. Then f € L*(G)" and f satisfies the
equation (@) Since F is nonzero, f is also nonzero. Then there exists [7] € G
such that f(r) # 0. By Lemmas @ and @, f(x) is invertible and [r] € CT/T-I :
From equation (@), we have

3
—_

w(@™) +Y flm) (ot (@) f(r) = nf(x)]

1

B
Il

where I denotes the identity map on V.. Taking trace both sides gives

o)

tr(r(z)) + > _tr(r(o" (@) = nd.f ().

k=1

Thus e
@) = 2 3 talr(o* (@) ). (4.4)

Observe that f(zy) = f(yx) for all x,y € G. Then f(ﬂ)w(y) = W(y)f(w) for all

y € G, so that f(m) € C(m). Since 7 is irreducible, by Schur’s lemma, f(7) is a

nonzero scalar multiple of /. Thus equation (@) becomes
n—1
> modt(z) =nf(a)I. (4.5)
k=0

Note that 7 o ¢® is also an irreducible representation of G on V. Let i,j €

{1,...,d;}. Consider the matrix coefficients in (@) Since [ is the identity map,

we have
ot nf(z™h), ifi=j;
> (rooh)y(x) = (4.6)
k=0 0, ifi # 3.

To show that d, = 1, assume that d, > 2. Let S={k €N |k <nand 7 ~
moo"}. If S = @, by Schur’s orthogonality relation, M, L M, for all k < n,

so {(moo®);; | k=1,...,n— 1} is a linearly independent set. But (@) implies
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that

which is a contradiction.

On the other hand, if S # &, let s be the smallest element in S. We see that
m~moo™ for all m € N. Let ¢ = ged(n, s). Then there exist a,b € Z such that
an+bs = q. Hence 7 ~ m00” = 100 = 1009, so we must have ¢ = s. Thus

slnand S = {s,2s,...,Ns =n —s}. Since m ~ 7o ¢o®, there is a unitary operator

T on V, such that 7o 0*(x) = T*7(x)T for all z € G. Then we have
7o ot (z) = (T*)*7r 0 0®(z)T"

for all x € G and a,b € N. Since T’ is unitary, there is an orthonormal eigenbasis
{e1,...,eq,} for T. Let \; be the eigenvalue of 7" associated with e;. Since T
is unitary, |A;| = 1. If we compute matrix coefficients on the diagonal line with

respect to this orthonormal basis, we get

( T)e;, ;)
(T o a®(x)T%;, e;)

= (1 0 o®(x)T%;, T";)
(

7 oo’ (z)\%;, Aoe;)
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forall 2 =1,...,d,, which implies that

1

((r 0011 (x) — (70 0™)a(x)) = 0. (4.7)

0

S

B
Il

Fwmoctfor0<k<l<s— 1, Schur’s orthogonality relation implies

Since mo o
that {(mo0%); | 0 <k <s—1,1 <i<d,}isan orthogonal set. Thus the equation
(@) is impossible, so we must have d, = 1. Hence 7 is a character of G.

Define x : G — T by x(z) = tr(r(z™")) = n(x™"). Then x is a character and

also an H-spherical representation of G. Then (@) becomes

Fogq(x) ZXOO’ (4.8)

Let ¢ € H. Since f(e) = 1 and f € L*(G)", we have f(&) = f(e€) = f(e) = 1.
Then

n—1

n=nf(&) =Y xod*(¢) (4.9)

k=0
Since y is unitary, |y o o*(¢)] = 1 for all k € {0,1,...,n — 1}. Using the triangle
inequality, we can deduce that y o ¢®(€) = 1 for all k. Thus H < ker(x o o*) for

n—1

all k € {0,1,...,n—1}, so that — Z x 0" (x) is a well-defined function on G/ H.
n
k=0
Finally, we check that the function F given by (@) is indeed a solution of the

functional equation (@) Since xy and o are continuous, the right-hand side of

(@) is a continuous function. Moreover,

_ZXOU xy) Zxoa )x o ¥ (y)

and

n—1

% X_:x o ot (ol (y)z) = % Y xodk(z)xoc*(y)

k=0
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forall [ € {1,...,n —1}. Thus

—Zxoa () + Y (%z_jxoo’f(al(y)x))
=1 k=0

n—1 n—1

= —ZXOO‘ XOO‘(y)+%ZZXOU}C($)XOOk+l(y)

k=0 I=1
= % Z x 0 o”(x) (i X o 0’“”(@/))
k=0 =0
(S
k=0 =0
(o) )
k=0 =0
1 n—1 . 1 n—1 l
(Bt (o)
k=0 =0

Hence the function

n—1
1
E == &
(H) = =3 xoo()
k=0
is a nonzero continuous solution of (@) O

4.3 An Example: The Circle Group

Let G := T the circle group, (, := e’n' where n is a positive integer, H := ( (, )
the group of n™ roots of unity in T and o(z) := 27! for z € G. Note that H is
closed because it is the kernel of the continuous group homomorphism z — 2".

Then the functional equation () on G/H is
F(zyH) + F(y 'vH) = 2F(zH)F(yH), z,y € G.

It is well-known that every irreducible representation of GG is one-dimensional and
G = {xm | m € Z} where x.,(z) := 2™. Note that x,, € CT/?[ if and only if there
exists z € C \ {0} such that x,,(z)z = z for all x € H. Since H is a cyclic group
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generated by (,, we have for m € Z,

Xon € G/H if and only if xm(Ca) = ¢™ = 1

if and only if n divides m.

Hence

G/H = {xm | m € nZ}.

Let xm € CT/?—I . To show that H < ker x,, N ker(x,, o o), it suffices to prove
that ¢, € kery,, N ker(x,, o o). Since x,, € G{/?I, m is divisible by n. Thus
Xm(Cn) = ¢ =1 and x,n 0 0(¢,) = ¢,™ = 1. By Theorem @, every nonzero

continuous solution of
F(ayH) + F(y 'zH) = 2F(«H)F(yH), =,y €G,

is of the form
xk’n + l,fk:n

B wilas—= 5

where k € Z.
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