NANO-TITANIUM DIOXIDE SYNTHESIS IN AOT MICROEMULSION SYSTEM WITH SALINITY SCAN

Ms. Suwimol Krathong

A Thesis Submitted in Patial Fulfilment of the Requirements For the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reverse University 2002 ISBN 974-03-1579-8

I 20693680

Thesis Title :		Nano-Titanium Dioxide Synthesis in AOT
		Microemulsion System with Salinity Scan
By	:	Ms. Suwimol Krathong
Program	:	Petrochemical Technology
Thesis Advisors	:	Assoc. Prof. Chintana Saiwan
		Prof. Edgar A. O'Rear, III

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahit.

College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

In

(Assoc. Prof. Chintana Saiwan)

and

(Prof. Edgar A. O'Rear, III)

(Dr. Pomthong Malakul) *

amoch R.

(Asst. Prof. Pramoch Rangsunvigit)

ABSTRACT

4371024063 : PETROCHEMICAL TECHNOLOGY PROGRAM Ms. Suwimol Krathong: Nano-Titanium Dioxide Synthesis in AOT Microemulsion System with Salinity Scan. Thesis Advisors: Prof. Edgar A. O'Rear, III and Assoc. Prof. Chintana Saiwan 80 pp. ISBN 974-03-1579-8
KEY WORDS : Titanium Dioxide/ Nanoparticle/ Microemulsion/ AOT/

EY WORDS : Titanium Dioxide/ Nanoparticle/ Microemulsion/ AOT Nonionic Surfactant/ Salinity Scan

Nanoparticle synthesis is part of an emerging field in nanotechnology. Applications take advantage of the high surface area and confinement effects, which leads to nanostructures with different properties other than those of conventional materials. The main focus of this work was on nanoparticle synthesis based on microemulsions. Change in nanoparticle size due to changes in salt concentration and type of microemulsion was explored. TiO₂ particles were prepared by a precipitation technique in which TiCl₄ was solubilized in the microemulsion system of n-heptane/water/NaCl/AOT reacts with NH4OH at a controlled temperature (30°C). The micellar size and amount of water in the microemulsion phase were analyzed using dynamic light scattering and coulometer. TiO₂ particles were characterized using XRD, SEM, TEM, and BET surface area analyzer. Micellar size of o/w and bicontinuous microemulsions increased with increasing NaCl concentration. However, the micelle size of w/o microemulsion decreased with increasing NaCl concentration. Higher NaCl concentration resulted in a lower amount of water in w/o microemulsions. TiO₂ particle synthesized from the three different types of microemulsion showed differences in the final size and surface area, which was related to the amount of water present. TEM showed that the particle sizes synthesized from w/o microemulsion were monodispersed and smaller in size than those prepared from other types of microemulsion; they also had higher surface area.

บทคัดย่อ

สุวิมล กระทอง : การสังเคราะห์นาโนไททาเนียมไดออกไซด์ ในระบบไมโครอีมัลชัน ของเอโอที (AOT) โดยการเปลี่ยนแปลงความเข้มข้นของเกลือ (Nano-Titanium Dioxide Synthesis in AOT Microemulsion System with Salinity Scan) อ.ที่ปรึกษา : ศ. เอ็ดการ์ เอ โอเรีย ที่ 3 (Prof. Edgar A. O'Rear, III) และ รศ. คร. จินตนา สายวรรณ์ (Assoc. Prof. Dr. Chintana Saiwan) 80 หน้า, ISBN 974-03-1579-8

การสังเคราะห์อนุภาคนาโนเป็นส่วนหนึ่งของเทคโนโลยีนาโน อนุภาคที่มีขนาคระดับ นาโนเมตรนั้น มีคุณสมบัติที่แตกต่างไปจากอนุภาคอื่น ๆ ทั่วไป การใช้งานอาศัยข้อคีที่มีพื้นที่ผิว สูง ดังนั้นการศึกษาการควบคุม และการสังเคราะห์เพื่อให้ได้อนุภาคที่มีขนาดเล็กจึงเป็นงานที่น่า สนใจ จุดประสงค์หลักของการศึกษาในครั้งนี้ เพื่อสังเคราะห์อนุภาคนาโน ด้วยวิธีไมโครอีมัลชัน ้ศึกษาการเปลี่ยนแปลงขนาดของอนุภาคนาโน โดยการเปลี่ยนความเข้มข้นของเกลือ และการ เปลี่ยนประเภทของไมโครอีมัลชัน เลือกศึกษาอนภาคของไททาเนียมไคออกไซค์ ที่เตรียมจากการ ตกตะกอนไททาเนียมเตตราคลอไรค์ละลายอยู่ในระบบไมโครอีมัลชันของ นอร์มัล-เฮปเทน /น้ำ/ โซเดียมคลอไรด์/เอโอที ที่อุณหภูมิคงที่ 30 องศาเซลเซียส โดยนำมาทำปฏิกิริยากับแอมโมเนียม ไฮครอกไซค์ ศึกษาขนาคของไมเซลล์โคยใช้ไคนามิกไลท์สแกตเตอริ่ง และปริมาณน้ำที่อยู่ในชั้น ของไมโครอีมัลชันโคยใช้ดูโลมิเตอร์ วิเคราะห์อนุภาคไททาเนียมไคออกไซค์ด้วยเครื่องเอ็กซ์เรย์ ดิฟแฟรกชั่น, กล้องจุลทรรศ์แบบส่องกราด, กล้องจุลทรรศ์แบบส่องผ่าน, และเครื่องวิเคราะห์หา ้พื้นที่ผิวบีอีที ผลการทดลองพบว่า เมื่อเพิ่มความเข้มข้นของเกลือ ทำให้ขนาดไมเซลล์ของไมโครอี มัลชันประเภทน้ำมันในน้ำ และประเภทที่ 3 เพิ่มขึ้น แต่กลับทำให้ขนาดไมเซลล์ของไมโครอีมัล ชั้นประเภทน้ำในน้ำมันลุคลง นอกจากนี้ยังทำให้ปริมาณน้ำที่อยู่ในชั้นของไมโครอีมัลชั้นประเภท อนุภาคไททาเนียมไดออกไซด์ที่สังเคราะห์ได้จากไมโครอีมัลชันทั้งสาม น้ำในน้ำมันลดลงด้วย ประเภท มีขนาคของอนุภาค และพื้นที่ผิวที่แตกต่างกัน ซึ่งผลดังกล่าวขึ้นอยู่กับปริมาณน้ำที่อยู่ใน ชั้นของไมโครอีมัลชันด้วย ผลจากกล้องจุลทรรศ์แบบส่องผ่านสามารถบอกได้ว่า ขนาดของ อนุภาคที่สังเคราะห์ได้จากไมโครอีมัลชั้นประเภทน้ำในน้ำมัน มีการกระจายของอนุภาคขนาด เดียว และขนาดอนุภาคที่ได้เล็กกว่าอนุภาคที่สังเคราะห์ได้จากไมโครอีมัลชั้นประเภทอื่น ๆ รวม ทั้งมีพื้นที่ผิวมากกว่าด้วย

ACKNOWLEDGEMENTS

From the deepest of my heart, I would like to express my graceful thank to Associate Professor Chintana Saiwan for her endless advice and to give me valuable suggestions. Especially, I also deeply appreciate Professor Edgar A. O'Rear, III, who always assisted and did correction of this thesis. My thanks are also extended to Prof. John F. Scamehorn, who widened my knowledge in Colloid and Surface Science and Prof. Enrico Traversa is acknowledged for providing his excellent knowledge. Appreciation is also extended to my committee, Dr. Pomthong Malakul and Assistant Professor Pramoch Rangsunvigit.

I would like to express my deep gratitude to Khun Nantana Kanyanuwat from The Department of Mineral Resources for preparing titanium tetrachloride solution. This thesis work could not be completed if I did not have assistance from The Petroleum and Petrochemical College (PPC) for supporting the financial for this work. I sincerely thank all of the PPC staffs and also acknowledge to all PPC faculties.

Nevertheless, I have to mention my cheerful for Mantana, Boonyarat, Visava, Aonsurang, Nipapun, Wasan and all of my friends who shared either enjoy or sorrow with me when we were together at PPC. Finally, I also appreciate my family who always gave me a cheerful and taking care of me with their love.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	х
List of Figures	xii

CHAPTER

Ι	INTRODUCTION	1
	1.1 Motivation	1
	1.2 Objectives	2
II	LERATURE SURVEY	3
	2.1 Nanoparticles	3
	2.2 Microemulsions	5
	2.3 Nanoparticles Synthesis from Microemulsions	6
	2.4 Particles Design and Method of Control	11
	2.5 Titanium Dioxide Nanoparticles	13

CHAPTER

III	EXPERIMENTAL	16
	3.1 Chemicals	16
	3.2 Experimental Methods	17
	3.2.1 Formation of Microemulsion	17
	3.2.1.1 Phase behavior of microemulsion	17
	3.2.1.2 Effects of salt on the micellar size and the	17
	amount of water	
	3.2.1.3 Effects of TiCl ₄ concentration	18
	3.2.1.4 Effects of weight ratio of oil to aqueous	18
	phases	
	3.2.2 Characterization of Microemulsions	
	3.2.2.1 Dynamic light scattering (DLS)	18
	3.2.2.2 Coulometer	18
	3.2.3 Formation of Titanium Dioxide Particles in	19
	Microemulsion	
	3.2.3.1 Synthesis of titanium dioxide particles in	19
	microemulsions	
	3.2.4 Characterization of Titanium Dioxide Particles	19
	3.2.4.1 X-ray diffraction (XRD)	19
	3.2.4.2 Electron microscopes (SEM and TEM)	20
	3.2.4.3 Surface area analyzer	21

IV	RESULTS AND DISCUSSION	23
	4.1 Formation of Microemulsion	23
	4.1.1 Phase Behavior of Microemulsion	23
	4.1.2 Effects of Salt on the Micellar Size and the Amount	24
	of Water	
	4.1.3 Effects of TiCl ₄ Concentration	28
	4.1.4 Effects of Weight Ratio of Oil to Aqueous Phases	32
	4.2 Formation of Titanium Dioxide Particles in Microemulsion	35
	4.2.1 Synthesis of Titanium Dioxide Particles in	35
	Microemulsions	
	4.2.1.1 pH studies of titanium dioxide particles	35
	4.2.1.2 Calcination temperature studies	35
	4.2.1.3 Synthesis of titanium dioxide particles in	38
	different types of microemulsion	
	4.2.1.4 Size estimation	44
V	CONCLUSIONS AND RECOMMENDATIONS	47
	5.1 Conclusions	47
	5.2 Recommendations	48
	5.2.1 Controlling the Titanium Dioxide Formation	48
	5.2.2 Other Particles Synthesis Based on Microemulsion	49
	Technique	
	5.2.3 The Applications of Titanium Dioxide Nanoparticle	49
	Obtained from Microemulsion Technique	

REFERENCES

50

CHAPTER

PAGE

APPENDICES	
Appendix A Formation of Microemulsion	
A1 Phase Behavior of Microemulsion	54
A2 Effects of TiCl ₄ Concentration	58
A3 Effects of Weight Ratio of Oil to Aqueous Phases	64
Appendix B Characterization of Titanium Dioxide	70
B1 XRD Patterns of TiO ₂ Reference	70
B2 Estimation of TiO ₂ Particle Size by XRD	71
B3 Calculation of Rutile Percentage	72
Appendix C Photocatalytic Study of Titanium Dioxide	
Particles	
C1 Chemicals	73
C2 Experimental	73
C3 Photocatalytic Study of Titanium Dioxide Particles	74

CURRICULUM VITAE

80

LIST OF TABLES

TABLE		PAGE
4.1	Amount of rutile phase (%) calculated based on XRD data of	38
	anatase and rutile peak areas	
4.2	Specific surface area, pore volume, and pore radius of titanium	42
	dioxide particle synthesized from different types of	
	microemulsion and commercial titanium dioxide	
4.3	Comparison of particle size of titanium dioxide (nm)	45
A1.1	Dynamic light scattering data for micellar size determination.	55
A1.2	Coulometer data for determination of water	57
A2.1.1	Dynamic light scattering data of o/w microemulsion	59
A2.1.2	Dynamic light scattering data of bicontinuous microemulsion	60
A2.1.3	Dynamic light scattering data of w/o microemulsion	61
A2.2	Coulometer data for determination amount of water	62
A2.3	Summary of effect of TiCl ₄ concentration	63
A3.1.1	Dynamic light scattering data of o/w microemulsion	65
A3.1.2	Dynamic light scattering data of bicontinuous microemulsion	66
A3.1.3	Dynamic light scattering data of w/o microemulsion	67
A3.2	Coulometer data for determination amount of water	68
A3.3	Summary of effect of weight ratio	69

TABLE

B2	Size estimation	71
B3	Amount of rutile	72
C1	HPLC data for 4-chlorophenol analysis	75
C2	TOC data for 4-chlorophenol analysis	76

LIST OF FIGURES

FIGURE

2.1	Single microemulsion technique	8
2.1	Double or multiple microemulsions technique	9
4.1	Phase behavior with salinity scans	24
4.2	Micellar size of o/w microemulsion obtained from dynamic	25
	light scattering	
4.3	(a) Micellar size of bicontinuous microemulsion obtained from	26
	dynamic light scattering, (b) amount of water in the	
	bicontinuous microemulsion phase	
4.4	(a) Micellar size of w/o microemulsion obtained from dynamic	27
	light scattering, (b) amount of water in the w/o microemulsion	
	phase	
4.5	Micellar size of o/w microemulsion at different $TiCl_4$	29
	concentrations	
4.6	Bicontinuous microemulsion at different TiCl ₄ concentration	30
	(a) micellar size and (b) amount of water	
4.7	W/O microemulsion at different TiCl ₄ concentration (a)	31
	micellar size and (b) amount of water	
4.8	Micelle size in o/w microemulsion at different weight ratio of	32
	oil to brine phases	
4.9	(a) Micellar size of bicontinuous microemulsion obtained from	33
	dynamic light scattering, (b) amount of water in the	
	bicontinuous microemulsion phase	
4.10	W/O Microemulsion at different weight ratio of oil to brine	34
	phases (a) micellar size and (b) amount of water	

FIGURE

4.11	XRD patterns of titanium dioxide precipitated at different pH in	36
	w/o microemulsion containing 0.3 M TiCl ₄ and 4.0% NaCl and	
	calcination temperature at 500°C	
4.12	XRD patterns of titanium dioxide precipitated at different	37
	calcination temperature in w/o microemulsion containing 0.3 M	
	TiCl ₄ and 4.0% NaCl and precipitaed at pH 6.0	
4.13	XRD patterns of titanium dioxide particles synthesized from	39
	different types of microemulsion, precipitated at pH 6.0 and	
	calcined at temperature 460°C	
4.14	XRD patterns of titanium dioxide synthesized in w/o	40
	microemulsion with varying NaCl concentration and	
	calcination temperature at 460°C	
4.15	Scanning electron microscope of titanium dioxide obtained	43
	from (a) P25 commercial titanium dioxide, (b) o/w	
	microemulsion (0.4% NaCl), (c) bicontinuous microemulsion	
	(2.0% NaCl), (d) w/o microemulsion (4.0% NaCl), (e) w/o	
	microemulsion (6.0% NaCl), and (f) w/o microemulsion (8.0%	
	NaCl)	
4.16	Transmission electron microscope of titanium dioxide obtained	45
	from (a) P25 commercial titanium dioxide, (b) 0.4% NaCl, (c)	
	2.0% NaCl, (d) 4.0% NaCl, (e) 6.0% NaCl, and (f) 8.0% NaCl	

FIGURE

B1	XRD patterns of the important phase of titanium dioxide (a)	70
	anatase phase, (b) rutile phase, and (c) brookite phase	
C1	Schematic of the photocatalytic study	74
C2	Photocatalytic degradation rate of 4-chlorophenol with different	75
	titanium dioxides	
C3	Relative concentration of of TOC with different titanium	77
	dioxide	
C4	Comparison of relative concentration of C/C_0 and TOC/TOC_0	78
	of (a) commercial titanium dioxide P25 and (b) TiO_2	
	synthesized from o/w microemulsion, (c) TiO ₂ synthesized	
	from bicontinuous microemulsion, and (d) TiO_2 synthesized	
	from w/o microemulsion	