SOL-GEL PROCESSING OF GLYCOLATO TITANIUM

Mr. Tossaporn Chairassameewong

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003 ISBN 974-17-2346-6

128376407

Thesis Title:Sol-Gel Processing of Glycolato TitaniumBy:Tossaporn ChairassameewongProgram:Polymer ScienceThesis Advisors:Assoc. Prof. Sujitra WongkasemjitProf. Alexander M. Jamieson

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Assoc. Prof. Sujitra Wongkasemjit)

Shy le

(Prof. Alexander M. Jamieson)

AnuntSormal

(Assoc. Prof. Anuvat Sirivat)

Ann

(Dr. Sirirat Jitkarnka)

ABSTRACT

4472026063	: POLYMER SCIENCE PROGRAM
	Tossaporn Chairassameewong: Sol-Gel Processing of
	Glycolato Titanium
	Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit and
	Prof. Alexander M. Jamieson, 40 pp. ISBN 974-17-2346-6
Keywords	: Glycolato titanium/ Sol-gel processing/ The oxide one pot synthesis/
	Titania

The synthesis of new metal alkoxides possessing unique structures and properties is of great significance for the investigation of sol-gel processes as well as the evolution of metal alkoxide chemistry. In this work, glycolato titanium was synthesized directly from inexpensive starting material titanium dioxide (titania), TiO₂, ethylene glycol and TETA as a base catalyst via the Oxide One Pot Synthesis (OOPS) process. The product was characterized using TGA, C¹³-NMR, EA, MS and FTIR. Phase transition and morphology of the product were investigated using XRD and SEM, respectively.

Glycolato titanium was used as a precursor to produce anatase titania by solgel technique. The processing conditions affected the gelation time. The higher acid and water ratios resulted in longer gelation time, measured by cone-and-plate rheometer. Moreover, the surface area of as-prepared titania was affected by gelation times and the calcination temperatures. The calcined products, anatase titania, had a high surface area of $120 \text{ m}^2/\text{g}$.

บทคัดย่อ

ทศพร ฉายรัศมีวงศ์: กระบวนการโซล-เงลของไกลโคลาโตไทเทเนียม (Sol-Gel Processing of Glycolato Titanium) อาจารย์ที่ปรึกษา: รองศาสตราจารย์ คร.สุจิตรา วงศ์เกษม จิตต์ และศาสตราจารย์ คร. อเล็กซานเคอร์ เอ็ม. เจมิสัน 40 หน้า ISBN 974-17-2346-6

การสังเคราะห์สารประกอบโลหะอัลคอกไซค์ชนิดใหม่ที่มีโครงสร้าง และสมบัติที่เป็น เอกลักษณ์มีความสำคัญอย่างมากในการศึกษา กระบวนการโซล-เจล รวมถึงทางด้านเคมีของ โลหะอัลคอกไซด์ ในงานวิจัยนี้ ได้มีการสังเคราะห์ใกลโคลาโตไทเทเนียมโดยใช้ปฏิกิริยา ขั้นตอนเดียวที่เรียกว่า Oxide One Pot Synthesis (OOPS) ด้วยสารตั้งค้นไทเทเนียมได ออกไซด์ (ไททาเนีย) ที่มีราคาถูก และเอซิลีนไกลคอล และใช้เบส TETA เป็นสารเร่งปฏิกิริยา ผลิตภัณฑ์ที่ได้นำไปวิเคราะห์ลักษณะเฉพาะด้วย TGA C¹³-NMR EA MS และFTIR การศึกษาการเปลี่ยนแปลงวัฏภาค และรูปลักษณ์สัญฐานของผลิตภัณฑ์ศึกษาใช้เครื่อง XRD และ SEM ตามลำดับ

ในกระบวนการผลิตอนาเทสไทเทเนียด้วยเทคนิคโซล-เจล ใช้ไกลโคลาโตไทเทเนียม เป็นสารตั้งต้น ซึ่งการผลิตด้วยวิธีนี้ สภาวะที่ใช้ในการผลิตมีผลต่อเวลาที่ใช้ในการเกิดเจล ถ้าใช้ สภาวะที่มีอัตราส่วนของกรดต่อน้ำสูง จะทำให้เกิดเจลได้ช้าลง โดยศึกษาจากเครื่องโคนแอนด์ เพลทรีโอมิเตอร์ นอกจากนี้ เวลาที่ใช้ในการเกิดเจล และอุณหภูมิที่ใช้ในการเผาก็ยังมีผลต่อพื้นที่ ผิวของไททาเนียที่สังเคราะห์ขึ้น อนาเทสไททาเนียที่ผลิตได้มีพื้นที่ผิวสูงถึง 120 ตารางเมตรต่อ กรัม

ACKNOWLEDGEMENTS

This thesis could not have been achieved without his Thai advisor, Assoc.Prof. Sujitra Wongkasemjit, who gave intensive suggestions, useful guidance, laboratory skills, constant encouragement, and vital helps throughout this research work. He also would like to give a great appreciation to his U.S. advisor, Prof. Alexander M. Jamieson for his recommendation on the work.

He gratefully acknowledges all professors and teachers especially Assoc. Prof. Anuvat Sirivat for tendering invaluable knowledge and his helps in fluid rheometric measurement at the Petroleum and Petrochemical College, Chulalongkorn University. He would like to give his appreciation to Assoc. Prof. Tawan Suknoi, Department of Chemistry, King Mongkut's Institute of Technology Ladkrabang for his helps in solid state ¹³C-NMR measurement.

He would like to extend his thanks to Ms. Mathavee Sathupunya, Ms. Bussarin Ksapabutr, and Mr. Phirat Phiriyawirut for intensive guidance and suggestion throughout this work.

He is grateful for the partial scholarship and partial funding of the thesis work provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Furthermore, He would like to take this important opportunity to thank all of his graduate friends for their unforgettable friendship and hospitality.

Finally, the sincerest appreciation is to his family whose love, encouragement, and understanding play the greatest role in his success.

TABLE OF CONTENTS

	Title Page		i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowle	dgements	v
	Table of C	Contents	vi
	List of Ta	bles	ix
	List of Fig	gures	х
СНАРТЕ	R		
Ι	INTROD	UCTION	1
	1.1 Backg	ground	1
	1.2 Sol-G	el Process	1
П	LITERA	FURE SURVEY	5
	2.1 Synth	esis of Metal Alkoxides	5
	2.2 Synth	esis of Titania	7
III	EXPERIN	MENTAL	10
	3.1 Mater	ials	10
	3.2 Equip	oment	10
	3.2.1	Thermogravimetric Analysis (TGA)	10
	3.2.2	Nuclear Magnetic Resonance Spectroscopy (NMR)	10
	3.2.3	Elemental Analysis (EA)	11
	3.2.4	FAB ⁺ -MS Spectroscopy (MS)	11
	3.2.5	Fourier Transform Infrared Spectroscopy (FTIR)	11
	3.2.6	X-Ray Diffraction (XRD)	11
	3.2.7	Scanning Electron Microscopy (SEM)	12
	3.2.8	Rheometric Measurement	12
	3.2.9	BET Surface Area Measurement	12

IV

3.3	3.3 Methodology		13
	3.3.1	Synthesis of Glycolato Titanium via Oxide-One-Pot-	
		Synthesis (OOPS) Process	13
	3.3.2	Sol-Gel Processing of Glycolato Titanium	13
	3.3.3	Rheological Study of Glycolato Titanium	13
	3.3.4	Characterization	14
		3.3.4.1 Characterization of Glycolato Titanium	
		Precursor	14
		3.3.4.2 Characterization of Glycolato Titanium Gel	14
		3.3.4.3 Characterization of Titania Powder	14
RE	SULTS	S AND DISCUSSION	15
4.1 Synthesis of Glycolato Titanium Precursor		15	
4.2 Characterization		15	
	4.2.1	Characterization of Glycolato Titanium Precursor	15
		4.2.1.1 Thermogravimetric Analysis (TGA)	15
		4.2.1.2 Nuclear Magnetic Resonance Spectroscopy	
		(NMR)	16
		4.2.1.3 Elemental Analysis (EA)	17
		4.2.1.4 FAB ⁺ -MS Spectroscopy (MS)	18
		4.2.1.5 Fourier Transform Infrared Spectroscopy	
		(FTIR)	19
		4.2.1.6 X-Ray Diffraction (XRD)	20
		4.2.1.7 Scanning Electron Microscopy (SEM)	21
	4.2.2	Characterization of Glycolato Titanium Gel	22
		4.2.2.1 Rheometric Measurement	22
	4.2.3	Characterization of Titania Powder	28
		4.2.3.1 X-Ray Diffraction (XRD)	28
		4.2.3.2 Scanning Electron Microscopy (SEM)	31
		4.2.3.3 BET Surface Area Measurement	33

CHAPTER		PAGE
V	CONCLUSIONS AND RECOMMENDATIONS	35
	REFERENCES	37
	CURRICULUM VITAE	40

LIST OF TABLES

TABLE

1.1	Partial charge $\delta(M)$ and maximum coordination number (N)	
	of some tetravalent metal alkoxides $(Z = 4)$	3
4.1	Percent elements of glycolato titanium	17
4.2	The proposed structure and the pattern of fragmentation of	
	glycolato titanium	18
4.3	Assignment of IR spectrum of glycolato titanium	19
4.4	Surface area of titania powder obtained from various	
	hydrochloric acid and water ratios at different calcined temperatures	33

LIST OF FIGURES

FIGURE

4.1	TGA profile of glycolato titanium	16
4.2	¹³ C-NMR spectrum of glycolato titanium	17
4.3	IR spectrum of glycolato titanium	19
4.4	XRD patterns of glycolato titanium calcined at different	
	temperatures	20
4.5	SEM micrographs of glycolato titanium calcined at	
	different temperatures, with magnification of 10000	22
4.6	The frequency scan of G' and G" of glycolato titanium gel	
	at different hydrochloric acid and water ratios: a) 35: 125,	
	b) 40: 120, c) 45: 115 and d) 50:110	25
4.7	The frequency scan of tan δ of glycolato titanium gel at	
	different hydrochloric acid and water ratios: a) 35: 125,	
	b) 40: 120, c) 45: 115 and d) 50: 110	28
4.8	XRD patterns of titania powder calcined at different	
	temperatures and different hydrochloric acid and water ratios:	
	a) 35: 125, b) 40: 120, c) 45: 115 and d) 50: 110	30
4.9	SEM micrographs of titania powder calcined at different	
	temperatures and different hydrochloric acid and water ratios:	
	a-c) 35: 125, 600° to 800 °C, d-f) 40: 120, 600° to 800 °C,	
	g-i) 45: 115, 600° to 800 °C, j-l) 50: 110, 600° to 800 °C	33