
CHAPTER III 
MODELING

The incident o f annular rise, which was inquired in this work, can be used to 
ascertain the liquid surface tension and suggested to be one way further o f the 
accurate methods. The liquid rise in an annular tube is illustrated in Figure 3.1, an 
annular tube is dipped into a liquid that wets the tube. The capillary force in annular 
tube and force o f surface tension between the liquid and the tube are the reason of 
liquid rises in an annular tube.

Figure 3.1 Capillary rise in an annular tube with vertical orientation.

A principle o f surface tension definition is the line o f force (y= F /l). The 
phenomenon o f annular rise can be similarly treated as the capillary rise. 
Understanding the annular rise phenomenon allows US to clarity correlation between 
any performing conditions or material properties and interfacial tension, which can 
be determined by

= PgH(r0 -  r, )
2 cos 9

where y is the surface tension of liquid, (mN/m). 
p is the liquid density, (kg/m3).
0 is the contact angle between annular tube wall, air, and liquid.

(3.1)
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H is the height o f the rising liquid, (m). 
g is the gravitational acceleration, (m/s2). 
r0 is the outer tube radius o f annular tube, (m). 
ri is the inner tube radius o f annular tube, (m).

A liquid film is formed by surface tension that is balanced by some equal 
and contrary forces and an excess pressure comes from stresses within the particle. 
The difference in pressure that occurs across a curved interface has many important 
consequences.

The meniscus formed at the junction between a liquid surface (chemical 
used in this work is water) and wall o f a glass tube is an indication o f the spreading 
or wetting tendency of liquid on glass. The liquid spreading up the tube wall and is 
limited in its ascent only by the gravitational force.

The mathematics describing the shape o f the meniscus is, in principle, very 
simple. The hydrostatic pressure at any point on the meniscus surface is balanced by 
the pressure due to the curvature at that point as expressed by Equation (2.18), it can 
be related to the theory o f static pressure as follows

pgh = y 1_ 1 
+ R (3.2)

2 /
when Ri, R2 and L are manifested in terms of Cartesian coordinates by analytical 
geometry, It becomes apparent that Equation (3.2) is deceptively simple. The full 
equation becomes (Elunter, 1986)
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where (p"-p') is the difference in densities between the two phases that form the 
interface, and gravity is taken as acting in the z direction along with the height o f  
meniscus rising.
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Providing the surface has axial symmetry, (about z say) as is often the case 
for surfaces that will interest US, Equation (3.3) becomes Equation (3.4) (Hunter, 
1986) as shown below

(p"-p')gh
Y

d2h
dr2

1 + ^dh^ 
vdr J

ๆ 3 / 2 +
dh
ch

1 + dh
vdr y

1/2 (3.4)

where r, a radius o f meniscus region, is measured axially.
Equation (3.4), which has some approximate analytical solutions, was 

derived by Young in 1805. Generally, though, it can be solved numerically. This way 
is a relatively easy task for computer era using extensive spreadsheet solving to get 
solutions, accompanying the computer program to generate them.

In case o f the left-hand side term in Equation (3.4) is zero (no pressure 
across the interface), the solution is still an ordinary differential equation in pure 
mathematics (Nitsche, 1975) and has only newly been analyzed in full (Almgren and 
Taylor, 1976). If the left-hand side is non-zero, numerical methods o f integration are 
the only source o f recourse.

The complicated differential equation relates to the shape o f an axially 
symmetrical interface and liquid rising height, permits US to understand the shape 
assumed by mobile interfaces and suggests that the height o f rising liquid might be 
calculated through a study of these shapes.

3.1 The Vertical Capillary Tube

3.1.1 The Meniscus Shape with Hemispherical Shape
A capillary tube is dipped vertically into a liquid that wets the tube. 

We observe that the liquid rises in the tube, above the level o f the free surface. The 
mathematical model was derived to relate the height o f liquid rising v/ith the surface 
tension.

This model will be solved by using a numerical method called 
“shooting method”, with measuring the surface tension.
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Figure 3.2 Pressure difference across a curved surface.

If we presume the meniscus as a hemisphere, then the two radii of 
curvature are equal to each other, and are given by R] = แ 2 = R.

As the Equation (2.18), Laplace Equation, we can find the pressure 
difference across the meniscus as

Ap = p 1 - Po = ^ (3.5)

(Note the positive sign. The pressure on the liquid side o f the meniscus Po is below 
atmospheric. The pressure is always higher on the concave side o f the surface Pi, 
which in this case is in the atmosphere.)

From Equation (3.4), although the fact that the local curvature can be 
approximated, can also be presented by general form with connecting to Equation 
(3.2), that is

i

d 2h
dr2

1 + A lh  x
v dr y

ๆ 3 / 2 + -
dh
dr

1 +
—11 / 2dh

vdr y

(3.6)

The following expressions from analytical geometry is a general 
function for Ri'1 and R2’1 for surfaces with an axis o f symmetry. (Fennell and 
Wennerstrom, 1994) There are,
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R(' =
1 +

d 2h /d r 2 
(dh / dr )2 } 12 (3.7)

and

R2' =
1 +

dh / dr 
(dh / dr )2 ] 12 (3.8)

To predict a hemispherical surface, the Equation (3.7) which is 
hemispherical term (Wilkes, 1999) is taken to characterize that shape and is 
rearranged to be

d 2h _ 1
dr7  = 2R^

Equation (3.7) is a second-order nonlinear differential equation. 
Therefore, the assumption of differential terms is needed to convert the second-order 
differential equation to the first-order differential equation by assuming,

1 + dh
v dry (3.9)

1 = dh
♦  *

combining Equations (3.9) and (3.10) gives

(3.10)

d<t>
dr

1
2R, ( i +<!>2 y r ‘ (3.11)

Meniscus attribute is predicted starting from the meniscus tip location 
up to where the meniscus surface touched with the capillary tube wall. In this regard, 
we can know the parameters at the beginning of estimation, the meniscus tip, there 
are

4 > = ~ = h = 0  at r = 0 (3.12)

On the other hand, the point o f meniscus surface contacted with the 
capillary tube wall also present the parameter at the end o f estimation, there are

—— = cot 0 at r = capillary diameter /2 (3.13)dr
Applying a numerical method which is shooting method with Euler’s

method solving the first derivative over the step size dr. Further, because of the
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repetitive nature o f the calculations, Euler’s method is used to implement by 
spreadsheet as shown in Appendix A.

This mathematical model may remain in error if  we assume that the 
meniscus is a hemisphere, but this is a good assumption for liquids that wet the 
inside o f the tube wall with a contact angle near zero, in very small capillary tubes.

3.1.2 The Meniscus Shape with Circular Shape o f Capillary Tube
In case we reconsider the meniscus as a circular, which is used to 

characterize any general liquid surfaces in capillary tube. Therefore, the two radii of 
curvature o f this circular surface are dissimilar. (R] *  R2)

We ought to predict the meniscus shape by using both Ri and R2 
simultaneously. From the Equation (3.6), we diminish the left-hand side o f that 
equation with supposing

J _  1 R, + R 2 = 1
R| R, R]Rj RR (3.14)

where RR = R, + R2
Take the place o f Equation (3.15) into Equation (3.6). Hence, we gain

d 2h dh

RR
1 +

dr2

f — TV dr ,
ๆ 3 / 2

1 + T

v dr y
ๅ 1 /  2 (3.15)

Since the above equation is the second-order linear differential 
equation, which is still complex to solve the problem. In consequence, the 
assumption of differential terms are needed to simplify that obstacle as it was done as 
Equation (3.10).
Assuming,

dh
th

Dealing Equations (3.10) with (3.15) gives
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RR = [ T ^ r + r[l+ Î 2J /2
So,

(3.16)

ch{>
dr (3.17)

At this place, we can manipulate Equation (3.17) to predict the 
meniscus shape that rise in vertical capillary tube. (The inspection o f other positions 
o f capillary tube and another geometry is considered in next sections.) The numerical 
methods, shooting method with Euler’s method, are used to provide a direct 
estimation o f meniscus shape as well as the liquid rising height as following 
relationship, from Equations (3.4), (3.6) and (3.14).

R, R 2
1 +

d 2h
dr2

^ 2
v dr y

ๅ 3 / 2 +

1 +

dh
dr

^dh2: 
dr ,

1/2 - ร ่ - T °">
Likewise, we can know the parameters at the beginning o f estimation, 

the meniscus tip, there are

(j) = ^ -  -  h = 0 at r = 0 (3.19)

While, the point of meniscus surface contacted with the capillary tube 
wall also present the parameter at the end o f estimation, there are

= cot 9 at r = capillary diameter /2 (3.20)dr
Considering especially for last two terms of the above equation, we 

are able to find for the liquid rising height, that is

h = pg(RR) (3.21)



20

3.2 The Inclined Annular Tube

This section was intended to display the techniques that are available to 
investigate the annular tube in any positions, the complicated trace. In the same way, 
the Laplace Equation is valuable to clear up the obstacle.

The Equation (3.18), circular surface analysis, was taken to characterize the 
meniscus in any inclined annular tubes. The numerical methods, shooting method 
with Euler’s method, are used to provide a direct estimation o f meniscus shape and 
the liquid rising height.

Figure 3.3 The meniscus in inclined annular tube illustration.

Meniscus shape can be predicted from inner tube wall to outer tube wall of 
an annular tube (annular tube gap). However, the parameters at the beginning and the 
end of estimation for any assigned position o f annular tube (experimental data) can 
be proposed to identify the meniscus surface, there are

dh
dr = cot 70° and dh

dr" = cot 30° at 30° inclination (3.22)

dh
dr = cot 55° and dh

dr = cot 25° at 45° inclination (3.23)

dh
~dr = cot 40° and dh

~dv = cot 20° at 60° inclination (3.24)
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The procedure o f trial and errors o f Ri is also considerable to identify the 
meniscus shape that rises in inclined annular tube in view of Figure 3.4. In addition, 
this estimation can be applied under other characteristics, which are being in the 
same manner as inclined annular tube, for example, the investigation o f water 
retained in annular cone.

A x is  o f  Sym m etry

Figure 3.4 The schematic diagram o f meniscus curve deliberation.
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