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APPENDICES

Appendix A Numerical solution of differential equations by Euler’s method.

Here, the sample of mathematical model is presented by means o f the 
numerical technique which can readily be adapted to the solution o f more 
complicated problems, differential equations.

Consider the following differential equation, which occurred (with 
differential notation) in the prophecy o f meniscus characteristic in the section 3.1.2, 
circular annulus surface:

R| R 2

d h 
dr2

(
1 + dh

v dr y

3/2 + -
dh
dr

1 + ^dh^ 
v dr y

1/2 (A .l)

Since the Equation (A .l) is the second-order nonlinear differential equation. 
Therefore, it is changed to the first-order differential equation by assuming

* = เ ^  (A.2)

The first-order differential equation, which is adjusted, can be simply solved with 
correlation o f

^ 7  = / ( i O  (A.3)

where/ (  (j),r ) is the differential equation evaluated at (j> and r , while the estimation 
is managed by Euler’s method below

<t>i+. = <t>i + ^  (At ) (A.4)

In this even, the slope estimate o f d(j)/dr is used to extrapolate from an old value <j)1 
to a new value <t>i+1 over a step size Ar .
After that, the ordinary differential equation is again solved by the form of

dh
dr" = / ( h ,r ) (A.5)
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where/ (  h,r ) is the differential equation evaluated at h and r , as the evaluation can 
be done along the way of

The values tqand h j+1 are the dependent variables at the beginning and end of the zth 
step size, o f duration Ar .

Meniscus attribute is predicted starting from the meniscus tip location up to 
where the meniscus surface touched with the annular tube wall. In this regard, we 
can know the parameters at the beginning o f estimation, the meniscus tip, there are

On the other hand, the point o f meniscus surface contacted with the annular tube wall 
also present the parameter at the end of estimation, there are

= cot 9 at r = Gap width /2 (A.8)

Then, the problem is untangled by the repetitive nature o f the calculations. Euler’s 
method is readily implemented via spreadsheet, as demonstrably shown in Table A. 1 

The spreadsheet o f Euler’s method solving problem in Table A .l is for 
study o f water rise inside the vertical annular tube at inner/outer tube o f 7/10 mm 
with circular annulus assumption, where

hj+1 = h, + <j> ( Ar ) (A.6)

♦ -  *  -  h -  0
at r = 0 (A.7)

♦ -  *  =  h -  0
at r = 0

and

at r = 0.5/2 = 0.25



42

Table A .l Spreadsheet implementation of Euler’s method with circular annulus 
surface for meniscus in vertical annular tube o f 7/10 mm

A B c D E F G
R(mm) h(mra) dh/dr <t> d<j>/dr(l/mm) Ri=R2=R(mm) H(mrn)

1 0 0 0 0 3.94336596 0.126795231 28.9373
2 0.0001 0 0.00039 0.00039 3.94336688
3 0.0002 3.94E-08 0.00078 0.00078 3.94336964
4 0.0003 1.18E-07 0.00118 0.00118 3.94337424
5 0.0004 2.37E-07 0.00157 0.00157 3.94338067
6 0.0005 3.94E-07 0.00197 0.00197 3.94338895
7 0.0006 5.92E-07 0.00236 0.00236 3.94339907
8 0.0007 8.28E-07 0.00276 0.00276 3.94341103
9 0.0008 1. IE-06 0.00315 0.00315 3.94342483

10 0.0009 1.42E-06 0.00354 0.00354 3.94344046
11 0.0010 1.77E-06 0.00394 0.00394 3.94345794
12 0.0011 2.17E-06 0.00433 0.00433 3.94347726
13 0.0012 2.6E-06 0.00473 0.00473 3.94349841
14 0.0013 3.08E-06 0.00512 0.00512 3.94352141
15 0.0014 3.59E-06 0.00552 0.00552 3.94354624
16 0.0015 4.14E-06 0.00591 0.00591 3.94357292

2502 0.2500 0.209877 5.6715 5.6715 753.729939

Relating to this spreadsheet, observe the following:
1. Digits and letters identity the various rows and columns.
2. In row 1, all o f the parameters at the beginning of estimation are entered into the 

cells such as r = 0 in cell A l, h = 0 in cell B l, dh/dr = <t> = 0 in both cells Cl and 
D l.

3. In column E onwards, the formula o f Equation (A .l) is entered into cells and 
causes the indicated numerical values to appear.

4. Once Euler’s procedures in the Equations (A.4) and (A.6) have been entered, 
such as that in cell D2 and B2, respectively. They can be “pasted” into 
subsequent cells in its column; the row counter will thereby be incremented 
automatically.

5. Dollar signs indicate an absolute cell address, which will not change when a 
formula is pasted into subsequent cells.
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6. The expression of (=A1+0.0001) is got in cell A2 and then paste that expression 
from cell A2 into subsequent cells in column A, while the value 0.0001 is 
intensive and appropriated step size which has generated answers that are 
surprisingly excellent. If required, the extreme accuracy could easily be improved 
by taking a smaller step size (and performing more calculations).

7. The correlation between the curvature o f the surface and the height o f liquid rise 
in annular tube is also put into cell FI, that is R = y /p g h , as follow Equation 
(3.19).

8. The parameter H, the height o f liquid rise in annular tube, is not built into any of  
the formulas, but are located to its own cell in G l. The trial and error is needed to 
guess the exactly right value o f H that can propose dh/dr in cell C2502, the end of 
estimation at r = 0.25, equals to cot 10° or 5.6715.
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Appendix B Demonstration of the pictures of water rise inside annular tube for 
experiments.

The experiments were done according to the instruction in chapter IV, 
meanwhile the photographs o f water rise in annular tube performed by those 
experiments are illustrated in this section.

Figure B .l The unequal rise o f water during the vertical annular tube experiment.

Figure B.2 The water rise in inclined annular tube at 30° inclination.
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Figure B.3 The water rise in inclined annular tube at 45° inclination.

Figure B.4 The water rise in inclined annular tube at 60° inclination.

Figure B.5 The water rise in annular cone at 45° opening angle.
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Appendix c Mathematical calculation by using Force-Balance analysis.

This section was proposed to examine the model by using the relation of 
gravitational force and surface tension force.

The mass M o f an object is a measure o f the amount o f matter. On the other 
hand, the weight พ o f the object is the gravitational force on it, and is equal to Mg, 
where g is the local gravitational acceleration.

The surface tension force operates along the entire meniscus edge, varies 
linearly with the length / o f the meniscus, and is equal to y 2 7โ r.
At equilibrium, these two forces are equated, giving

gravitational force = surface tension force

c.l Vertical Annular Tube

T
H

1

Figure c . l  The schematic diagram of the capillary rise in vertical annular tube.

gravitational force 
Mg

pg(7rr02-7Tr2)H
pg7i(r02-ri2)H

= surface tension force
y l

= y (2ท r0+2 7โTj) cos 9j 
= 2 ท y (r0+rj) COS0J
= 2 71 y (r0+rO cosffpg7r(r0-ri)(r0+n)H
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H = 2ycos 6;
pg(r0 - f.)
2 yco s0 ,H = (C .l)pgd

C.2 Inclined Annular Tube

Figure c.2  The schematic diagram of the capillary rise in inclined annular tube.

gravitational force = surface tension force 
Mg = y /

p g( 7โ r02- 7โ r 2)L = ~  [ ( y2rcrocos(9O°-01 + 0 ) +  y 27rrocos(9O°-0j - 0 )  ) +

( y2 7rriCos(9O°-0j + 0 )  + y 27rrjCos(9O°-0i - 0 )  ) ]

pg(7tr02-7 ir2) - - ^  = yrr [ ( rocos(9O°-0, + 0 )  + rocos(9O°-0l -  0 ) ) +sin 0j
( ^ 0ร(90°-0 , + 0 ) + ricos(9O°-01 -  0 ) ) ]

H = { y7rsin0j[ ( rocos(9O°-0i + 0 )  + rocos(9O°-0i -  0 ) ) +
( r|Cos(90°- 0j + 0 ) + riCOs(90°-0j -  0 ) ) ] } / p g (ทr02- 71 r2)

H = { y sin 0j [ ( rocos(90°-0j + 0 ) + rocos(90°-0j -  0 ) ) +
( rjCos(90°- 0; + 0 ) + rjCOs(90°- 0; -  0 ) ) ] } / pg(r02-r,2) (C.2)
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C.3 Annular Cone

Figure c.3 The schematic diagram of the capillary rise in annular cone.

From Figure c.3, we obtain

cos 0j =  —
z

d
cos 0j 

and

tan 0j = —r
H

tan 0j

(C.3)

(C.4)

gravitational force = surface tension force 
Mg = y /

p g ( y  7โr02(FI + z) - y  TCrj2H - 7c(r0-rj)2z ) = ( y27crocos(9O°-0i + 0 ) ) +

( y 2 ฑ:rjCos(9Oo- 0 r 0 ) )
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y  7T P g ( r02(H + z) - r 2H - (r0-rj)2z ) = 2 ๅาi [  ( roCos(9Oo- 0 j + O) ) +

( riCos(9Oo-0 j-0 )  ) ]

~ p g (  r02H + r02z - r 2H - (r0-rj)2z ) = 2 y [  ( ^00ร(90°-0( + 0 ) ) +

( rjCos(9O°-0j-0) ) ]

Dealing with Equations (c.3) and (c.4), we are able to diminish r and Z terms that is
1 r (H + d /c o s  0 ,)2 11 + (H + d /c o s  0,)d H3
3 ^  tan2 0 ( tan2 0 i cos0j tan 2 0j

" H + d /c o s 0 , H ไ 2 
v tan 0; ta n 0 iy d / cos ©i ] = 2y[ ( H +(d/ ‘-°s 9 ' ) cos(90°-e,+e) )

+ ( — cos(9u"-ni-n ) ) ] tan 0j

---- ^ ----  [ (H + (d /  cos 0 , ) ) 2 H + (H + d /  c 0 s 9 l)d . H 3 . ( d / c o s 0 t )3 ] =
3 tan 0; cos 0,

[ ( (H+d/cos0,)cos(9Oo-0, + 0 )  ) + (  H cos(9O °-0,-0) ) ]tan 0j

p ë -  - [ (H + (d / cos 0;))2 H + Ĥ + d /e ° S 9 |^  - H3 - (d /cos 0, )3 ] = 3 tan 0, cos ©1
2 Y [ ( (H+d/cos 0j )cos(90°-0, + 0 )  ) + (  H cos(9O°-01- 0 ) ) ] (C.5)



50

Appendix D Appearance of the radii of curvature on the curved surface under 
the water rising in annular tube.

The expression of radii o f curvature R2 is much greater than radii of 
curvature Ri in case o f water rising in annular geometry, was also explained in this 
section.

The radii o f curvature Ri and R2 were designated over the water surface, 
while their characteristics were shown in the Figure D .l.

Figure D .l The picture to show the radii o f curvature on the water surface within 
annular geometry.

From the Equation (3.6), the local curvature can be approximated, that is
d h
dr 2

-13 / 2 +

dh
ch

1 + dh
v dr J

1 + ^dhA
vdr )

1/2

The following expressions from analytical geometry is a general function
for Ri and R?" on the surface, there are

1 +
d2h /d r 2 
(dh / dr )2 J3/ 2 (D .l)

and

R -1 =
1 + (dh / dr)2 J 2

(D.2)

Applying a numerical method with shooting method solving both Equations 
(D .l) and (D.2). Then, the dimension of radii o f curvature Ri and R2 can be
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perceived and were presented in Table D .l, which are the radii o f curvature results 
on the water surface in vertcal annular tube alignment (fundamental results of 
annular geometry study).

Table D .l The radii o f curvature results on the water surface in vertical annular tube 
alignment

Inner/Outer Tube 
Diameter (mm) Ri (mm) R2 (mm) 1/Ri (1/mm) 1/R2 (1/mm)

7/10 0.2536 5.3411 3.9447 0.1872
10/15 0.7613 8.4283 1.3135 0.1186
15/20 0.7613 9.8290 1.3135 0.1017
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Appendix E Comparison of meniscus configuration from modeling and 
experiment.

The annular tube consists o f two capillary tubes; outer and inner capillary 
tubes. There are two meniscuses occurring; one in the inner capillary tube and the 
other in annulus. However, the clear picture o f meniscus rising in annular tube could 
not be photographed. Therefore, the pictures o f meniscus in inner capillary tube were 
used to compare with the meniscus in annular tube predicted by the model.

Figure E.l Comparison of meniscus resulted from the model and experiment for 
vertical annular tube at inner/outer tube o f 7/10 mm.

Figure E.2 Comparison of meniscus resulted from the model and experiment for
vertical annular tube at inner/outer tube of 10/15 and 15/20 mm.
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Figure E.3 Comparison o f meniscus resulted from the model and experiment for 
inclined annular tube at inner/outer tube o f 7/10 mm with 30° inclination.

Figure E.4 Comparison of meniscus resulted from the model and experiment for 
inclined annular tube at inner/outer tube o f 7/10 mm with 45° inclination.
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Figure E.5 Comparison of meniscus resulted from the model and experiment for 
inclined annular tube at inner/outer tube o f 7/10 mm with 60° inclination.

Figure E.6 Comparison of meniscus resulted from the model and experiment for
inclined annular tube at inner/outer tube of 10/15 and 15/20 mm with 30° inclination.
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Figure E.7 Comparison of meniscus resulted from the model and experiment for 
inclined annular tube at inner/outer tube o f 10/15 and 15/20 mm with 45° inclination.

Figure E.8 Comparison of meniscus resulted from the model and experiment for
inclined annular tube at inner/outer tube of 10/15 and 15/20 mm with 60° inclination.
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Figure E.9 Comparison of meniscus resulted from the model and experiment for 
annular cone at gap width 3.0 mm with 45° opening angle.
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