เอกสารอ้างอิง

- Wang C.K., "General Computer Program for Limit Analysis", <u>Journal of the Structural Division</u>, ASCE, Vol.89, No.ST6, Proc.Paper 3719, Dec., 1963, pp. 101-117.
- 2. Harrison H.B., <u>Computer Methods in Structural Analysis</u>, Prentice-Hall, New Jersey, 1965, pp. 207-234.
- Lynn S. Beedle, <u>Plastic Design of Steel Frames</u>, John Wiley & Sons, Inc., 1966, pp. 390-391.
- Korn A., and Galambos T.V., "Behavior of Elastic-Plastic Frames", <u>Journal of the Structural Division</u>, ASCE, Vol.94, No.ST5, May, 1968, pp. 1119-1142.
- 5. Robert O. Disque P.E., <u>Applied Plastic Design in Steel</u>, Van Nostrand Reinhold Company, New York, 1971, pp. 213-219.
- Rutenberg A., "A Direct P-Delta Analysis Using Standard Plane Frame Computer Programes", Journal of Computers & <u>Structures</u>, Vol.14, No.1-2, 1981, pp. 97-102.
- 7. Kassimali A., "Large Deformation Analysis of Elastic-Plastic Frames", <u>Journal of Structural Engineering</u>, ASCE, Vol.109, No.8, August, 1983, pp. 1869-1886.
- 8. Gharpuray V., and Aristizabal-Ochoa J.D., "Simplified Second-Order Elastic-Plastic Analysis of Frames", <u>Journal of Computing</u> <u>in Civil Engineering</u>, ASCE, Vol.3, No.1, January, 1989, pp. 47-59.
- 9. Gaiotti R., and Smith B.S., "P-Delta Analysis of Building Structures", <u>Journal of the Structural Division</u>, ASCE, Vol.115, No.4, April, 1989, pp. 755-770.
- คริวุฒิ คคิบูตร, "การวิเคราะห์โครงสร้างด้วยวิธีอิลาสติก–พลาสติก สำหรับโครงเหล็ก ซ้อแซ็ง", <u>วิทยานิพนธ์วิศวกรรมศาสตร์มหาบัณฑิต</u>, ภาควิชาวิศวกรรมโยธา จุฬาลงกรณ์มหาวิทยาลัย, 2533.
- 11. Ram Chandra, Prem Krishna, and D. N. Trikha, "Elastic-Plastic Analysis of Steel Space Structures", Journal of Structural Engineering, ASCE, Vol.116, No.4, April, 1990, pp. 939-955.

- ประมวล หาดขุนทด, "การวิเคราะห์โครงเหล็กข้อแซ็งด้วยวิธีอิลาสติก-พลาสติก สำหรับ น้ำหนักบรรทุกเป็นจุด และ แบบแผ่กระจายสม่ำเสมอ", <u>วิทยานิพนธ์วิศวกรรมศาสตร์</u> <u>มหาบัณฑิต</u>, ภาควิชาวิศวกรรมโยธา จุฬาลงกรณ์มหาวิทยาลัย, 2534.
- วิริยะ สารพา, "การวิเคราะห์และการออกแบบโครงเหล็กข้อแข็งด้วยวิธีอิลาสติก–พลาสติก", <u>วิทยานิพนธ์วิศวกรรมศาสตร์มหาบัณฑิต</u>, ภาควิชาวิศวกรรมโยธา จุฬาลงกรณ์ มหาวิทยาลัย, 2535.
- สัญญา เพชรเนียม, "การวิเคราะห์โครงซ้อแซ็งด้วยวิธีอิลาสติก–พลาสติก โตยคำนึงถึงผล จาก P-△", <u>วิทยานิพนธ์วิศวกรรมศาสตร์มหาบัณฑิต</u>, ภาควิชาวิศวกรรมโยธา จุฬาลงกรณ์มหาวิทยาลัย, 2535.

- 5 - 0

ภาคณเวก ก.

รายการดารางประกอบ

.

ชนาด	A (in ²)	Ix (in ⁴)	Mp (k-in)	กลุ่มชิ้นส่วน
₩ 8x40	11.75	144	1920	ทุกชิ้นส่วน

ดารางที่ 3.1 คุณสมบัติของชิ้นส่วนของโครงสร้างในตัวอย่างที่ 1

Fy = 36.00 ksi

E = 30000 ksi

ผลการวิเคราะห์	Korn & Galambos (4)	ลัญญา (14)	งานวิจัยนี้
ตัวประกอบน้ำหนักบรรทุก	1.283	1.279 ²	1.292
1120000 (MI1201 IN	-	-0.31 ³	+0.703
การโก่งตัวสูงลุดต่อความสูง	0.02799	0.02039	0.02684
มวรงเกตามหายวงมั่นกระชย	-	-27.15	-4.11

ดารางที่ 3.2 เปรียบเทียบผลการวิเคราะห์ของโครงสร้างในด้วอย่างที่ 1

1 เป็นการเปรียบเทียบโดยใช้การวิเคราะห้อันดับสองของ Korn และ Galambos (4)

2 เป็นการเปรียบเทียบโดยวิธีทำซ้ำของสัญญา (14)

3 เปอร์เซนด์ความแตกต่างเปรียบเทียบกับการวิเคราะห์ของ Korn และ Galambos (4)

จุดหมุนพลาสติก	เมื่อเกิดจุดหมุนพลาสติก (kips)	เมื่อโครงสร้างวิบัติ (kips)	เปลี่ยนแปลง (เปอร์เซนต์)
1	-4.907985e-02	8.021234e-01	-1.73e+03
2	-8.214957e-01	-2.513910e-02	-9.69e+01
3	-1.339668e+02	-1.416037e+02	5.70e+00
4	-6.504409e+01	-6.504409e+01	-

ตารางที่ 3.3 เปรียบเทียบแรงแนวแกน ณ จุดหมุนพลาสติกของโครงสร้างในตัวอย่างที่ 1

ตารางที่ 3.4 เปรียบเทียบแรงดัด ณ จุดหมุนพลาสติกของโครงสร้างในด้วอย่างที่ 1

จุดหมุนพลาสติก	เมื่อเกิดจุดหมุนพลาสติก (kips-inch)	เมื่อโครงสร้างวิบัติ (kips-inch)	เปลี่ยนแปลง (เปอริ์เซนต์)
1	-1.920059e+03	-1.920000e+03	-3.07e-03
2	-1.919969e+03	-1.920000e+03	1.61e-03
3	-1.543606e+03	-1.543606e+03	0.00e+00
4	-1.912329e+03	-1.912329e+03	-

ชนาด	A (in ²)	Ix (in ⁴)	Mp (t-in)	ชั้น
W 6x15.5	4.56	30.1	169.2	1
W 8x31	9.12	110	463.2	2,3
W 8x35	10.3	126	529.2	4
W 10x49	14.4	273	919.2	5
W 12x79	23.2	663	1814.4	6
W 14x87	25.6	967	2302.8	7
W 14x95	27.9	1060	2532.0	8

ตารางที่ 3.5 คุณสมบัติของชิ้นส่วนเสาของโครงสร้างในตัวอย่างที่ 2

Fy = 15.25 tsi

E = 13000 tsi

ชนาด	A (in ²)	Ix (in ⁴)	Mp (t-in)	ชั้น
₩ 8x17	5.01	56.6	242.4	1
₩ 8x20	5.89	69.4	291.6	2
₩ 10x21	6.20	107	367.2	3
W 12x27	7.95	204	579.6	4
₩ 14x30	8.83	290	720.0	5
W 14x34	10.0	340	832.8	6,7
W 14x38	11.2	386	937.88	8

ดารางที่ 3.6 คุณสมบัติของชิ้นส่วนคานของโครงสร้างในตัวอย่างที่ 2

ผลการวิเคราะห์	Korn & Galambos (4)	สัญญา (14)	งานวิจัยนี้
ตัวประกอบน้ำหนักบรรทุก ประวัญกา โอรงสร้าง	1.4111	1.230 ²	1.410
	_	-12.83 ³	-0.073
การโก่งตัวสูงสุดต่อความสูง	0.02666	0.00742	0.02624
ี บระดากขามหายรรมขาวรชย		-72.2	-1.58

ดารางที่ 3.7 เปรียบเทียบผลการวิเคราะห์ของโครงสร้างในตัวอย่างที่ 2

1 เป็นการเปรียบเทียบโดยใช้การวิเคราะห์อันดับสองของ Korn และ Galambos (4)

2 เป็นการเปรียบเทียบโดยวิธีทำซ้ำของลัญญา (14)

3 เปอร์เซนด์ความแตกต่างเปรียบเทียบกับการวิเคราะห์ของ Korn และ Galambos (4)

จุดหมุนพลาสติก	เมื่อเกิดจุดหมุนพลาสติก	เมื่อโครงสร้างวิบัติ	เปลี่ยนแปลง
	(tons)	(tons)	(เปอร์เซนต์)
1	-1.157793e+00	-1.937923e+00	6.74e+01
2	-1.172068e+00	-1.059795e+00	-9.58e+00
3	-8.876616e-01	-1.491209e+00	6.80e+01
4	-1.223052e+00	-1.972473e+00	6.13e+01
5	-1.216916e+00	-7.248152e-01	-4.04e+01
6	-1.450503e+00	-1.436324e+00	-9.78e-01
7	-1.774951e+00	-1.938169e+00	9.20e+00
8	-1.062208e+00	-1.059908e+00	-2.17e-01
9	-1.074796e+00	-1.972899e+00	8.36e+01
10	-1.716774e+00	-8.599182e-01	-4.99e+01
11	-1.200591e+00	-7.262672e-01	-3.95e+01
12 13 14	-1.607372e+00 -7.585214e-01	-1.439015e+00 -1.494308e+00 -8.685181e-01	-1.05e+01 9.70e+01 -5.29e+00
15	-5.168710e+01	-5.199689e+01	5.99e-01
16	-1.409314e+02	-1.411605e+02	1.63e-01
17	-7.241060e+01	-7.241060e+01	-

ดารางที่ 3.8 เปรียบเทียบแรงแนวแกน ณ จุดหมุนพลาสติกของโครงสร้างในตัวอย่างที่ 2

จุดหมุนพลาสติก	เมื่อเกิดจุดหมุนพลาสติก (tons-inch)	เมื่อโครงสร้างวิบัติ (tons-inch)	เปลี่ยนแปลง (เปอร์เซนด์)
1	-8.311304e+02	-8.311300e+02	-4.81e-05
2	-8.312528e+02	-8.311300e+02	-1.48e-02
3	-3.675332e+02	-3.675300e+02	-8.71e-04
4	-7.184535e+02	-7.182800e+02	-2.41e-02
5	-5.795582e+02	-5.795000e+02	-1.00e-02
6	-9.378962e+02	-9.378800e+02	-1.73e-03
7	8.313414e+02	8.311300e+02	-2.54e-02
8	8.311300e+02	8.311300e+02	0.00e+00
9	7.187220e+02	7.182800e+02	-6.15e-02
10	-2.912979e+02	-2.912800e+02	-6.14e-03
11	5.795221e+02	5.795000e+02	-3.81e-03
12	9.386144e+02	9.378800e+02	-7.82e-02
13	3.675490e+02	3.675300e+02	-5.17e-03
14	2.912931e+02	2.912800e+02	-4.50e-03
15	-4.174847e+02	-4.164775e+02	-2.41e-01
16	-1.999085e+03	-1.999085e+03	0.00e+00
17	-7.257564e+02	-7.257564e+02	-

ดารางที่ 3.9 เปรียบเทียบแรงดัด ณ จุดหมุนพลาสติกของโครงสร้างในตัวอย่างที่ 2

ชนาด	A (in ²)	Ix (in ⁴)	Mp (k-in)	ชั้น
₩ 8x17	5.01	56.56	568.8	1
W 8x28	8.23	98.0	975.6	2
W 10x39	11.5	210.0	1692.0	3,4
₩ 12x40	11.8	310.0	2073.6	5
W 12x50	14.7	394.0	2613.6	6
W 12x58	17.1	477.0	3114.0	7
W 14x61	17.9	640.0	3686.4	8
W 14x74	21.8	798.0	4521.6	9
W 14x84	24.7	928.0	5234.4	10
W 14x111	32.7	1269.0	7056.0	11,12,13
W 14x127	37.3	1476.0	8132.4	14
W 14x136	40.0	1593.0	8737.2	15

ดารางที่ 3.10 คุณสมบัติของชิ้นส่วนเสาของโครงสร้างในตัวอย่างที่ 3

Fy = 36.00 ksi

E = 30000 ksi

ชนาด	A (in ²)	Ix (in ^{^a})	Mp (k-in)	ชั้น
₩ 8x20	5.89	69.3	687.6	1
₩ 10x25	7.36	133.6	1062.6	2
₩ 12x27	7.95	204.4	1368.0	3
₩ 12x36	10.6	281.1	1850.4	4,5
₩ 12x45	13.2	350.0	2336.4	6
W 14x53	15.6	543.0	3135.6	7
W 14x61	17.9	640.0	3686.4	8,9
W 14x74	21.8	798.0	4521.6	10
W 14x78	22.9	849.0	4824.0	11
W 14x84	24.7	928.0	5234.4	12
W 16x88	25.9	1222.0	6084.0	13
W 16x96	28.2	1354.0	6696.0	14
₩ 18x96	28.2	1672.0	7416.0	15

ดารางที่ 3.11 คุณสมบัติของชิ้นส่วนคานของโครงสร้างในตัวอย่างที่ 3

ผลการวิเคราะห์	Korn & Galambos (4)	ລັກຼຸທາ (14)	งานวิจัยนี้
ตัวประกอบน้ำหนักบรรทุก ประวัญกางโครงสร้าง	1.375'	1.296 ²	1.375
D1=08001 (411101 1)	-	-5.75 ³	0.003
การโก่งตัวสูงสุดต่อความสูง	0.01730	0.01203	0.01730
กระงบน เหนารรรณาระดย		-30.46	0.00

ดารางที่ 3.12 เปรียบเทียบผลการวิเคราะหชองโครงสร้างในตัวอย่างที่ 3

1 เป็นการเปรียบเทียบโดยใช้การวิเคราะหอันดับสองของ Korn และ Galambos (4)

2 เป็นการเปรียบเทียบโดยวิธีทำซ้ำชองลัญญา (14)

3 เปอร์เซนต์ความแตกต่างเปรียบเทียบกับการวิเคราะห์ของ Korn และ Galambos (4)

จุดหมุนพลาสติก	เมื่อเกิดจุดหมุนพลาสติก (kips)	เมื่อโครงสร้างวิบัดิ (kips)	เปลี่ยนแปลง (เปอร์เซนต์)
1	-2.153623e+00	-1.468906e+00	-3.18e+01
2	-1.913754e+00	-2.089867e+00	9.20e+00
3	-2.568435e+00	-1.753657e-01	-9.32e+01
4	-5.925784e-01	-7.450898e-01	2.57e+01
5	-2.330570e+00	-2.479419e+00	6.39e+00
6	-1.879324e+00	-2.173906e+00	1.57e+01
7	-2.237172e+00	-1.872927e+00	-1.63e+01
8	-2.360967e+00	-2.570086e+00	8.86e+00
9	-2.400939e+00	-2.727669e+00	1.36e+01
10	-2.489134e+00	-3.055229e+00	2.27e+01
11	-2.078909e+00	-3.038527e+00	4.62e+01
12	-1.880026e+00	-1.851045e+00	-1.54e+00
	-1.883709e+00	-1.872927e+00	-5.72e-01
13	-2.492564e+00	-3.144266e+00	2.61e+01
14	-4.409389e-01	-1.823431e-01	-5.86e+01
	-4.323077e-01	-1.753657e-01	-5.94e+01
15	-1.637870e+01	-1.646370e+01	5.19e-01
16	-2.148700e+00	-2.116375e+00	-1.50e+00
17	-1.445535e+00	-1.498563e+00	3.67e+00
18	-2.499298e+00	-2.499298e+00	_

ตารางที่ 3.13 เปรียบเทียบแรงแนวแกน ณ จุดหมุนพลาสติกของโครงสร้างในตัวอย่างที่ 3

จุดหมุนพลาสติก	เมื่อเกิดจุดหมุนพลาสติก (kips-inch)	เมื่อโครงสร้างวิบัติ (kips-inch)	เปลี่ยนแปลง (เปอร์เซนต์)
1	-1.850305e+03	-1.850400e+03	5.13e-03
2	-2.336044e+03	-2.336400e+03	1.52e-02
3	-1.368477e+03	-1.368000e+03	-3.49e-02
4	-1.850650e+03	-1.850400e+03	-1.35e-02
5	-3.135857e+03	-3.135600e+03	-8.20e-03
6	-3.685764e+03	-3.686400e+03	1.73e-02
7	-1.062462e+03	-1.062000e+03	-4.35e-02
8	-3.687448e+03	-3.686400e+03	-2.84e-02
9	-4.524320e+03	-4.521600e+03	-6.01e-02
10	-4.825352e+03	-4.824000e+03	-2.80e-02
11	-5.237658e+03	-5.234400e+03	-6.22e-02
12	1.062336e+03	1.062000e+03	-3.16e-02
	1.062336e+03	1.062000e+03	-3.16e-02
13	-6.086359e+03	-6.084000e+03	-3.88e-02
14	1.368030e+03	1.368000e+03	-2.19e-03
	1.368030e+03	1.368000e+03	-2.19e-03
15	5.690035e+02	5.688000e+02	-3.58e-02
16	2.336380e+03	2.336400e+03	8.56e-04
17	1.850489e+03	1.850400e+03	-4.81e-03
18	3.134839e+03	3.134839e+03	-

ตารางที่ 3.14 เปรียบเทียบแรงดัด ณ จุดหมุนพลาสติกของโครงสร้างในตัวอย่างที่ 3

ภาคณเวก ซ.

รายการรูปประกอบ

รปที่ 1.1 กราฟสมมุติฐานแบบจำลองพฤติกรรมของโครงลร้าง

รูปที่ 2.1 ระบบพิกัดเฉพาะที่และระบบพิกัดในวงกว้าง

รูปที่ 2.2 การเปลี่ยนดำแหน่งและแรงภายในของชิ้นล่วนโครงข้อแซ็ง

รูบ่ที่ 2.6 กราฟเงื่อนไขของการเกิดจุดหมุนพลาสติก สำหรับเหล็กหน้าตัดสี่เหลี่ยมผืนผ้า

0.6

0.7

0.8

0.9

1.0

M. Mp

0.5

0.4

0

0.1

0.2

0.3

รูปที่ 2.7 ชิ้นส่วนที่มีจุดหมุนพลาสติกเกิดที่จุดข้อต่อทางซ้ายมือ

รูปที่ 2.8 ขึ้นล่วนที่มีจุดหมุนผลาสติกเกิดที่จุดข้อต่อทางขวามือ

รูปที่ 2.9 ขึ้นส่วนที่มีจุดหมุนพลาลติกเกิดในชั้นล่วน

รูบ่ที่ 2.10 ขึ้นล่วนที่มีจุดหมุนพลาลติกเกิดที่จุดข้อต่อทั้งทางซ้ายมือและในขึ้นล่วน

รูบ่ที่ 2.11 ขึ้นส่วนที่มีจุดหมุนพลาสติกเกิดที่จุดข้อต่อทั้งทางขวามือและในชิ้นส่วน

รูบที่ 2.12 ชิ้นส่วนที่มีจุดหมุนพลาลติกเกิดที่จุดช้อต่อทั้งทางข้ายมือและทางชวามือ

รูบ่ที่ 3.1 ลักษณะของโครงสร้างในตัวอย่างที่ 1

รูปที่ 3.2 กราฟแสดงค่าของตัวประกอบน้ำหนักบรรทุกละลมกับการโก่งตัวลูงลุดต่อความสูง ของโครงสร้างในตัวอย่างที่ 1

รูปที่ 3.3 ตำแหน่งและลำดับของการเกิดจุดหมุนนลาลดิกของโครงสร้างในด้วอย่างที่ 1

รูปที่ 3.4 ลักษณะของโครงสร้างในด้วอย่างที่ 2

57

รูบ่ที่ 3.5 กราฟแสดงค่าของตัวประกอบน้ำหนักบรรทุกสะสมกับการโก่งตัวสูงสุดต่อความสูง ชองโครงสร้างในตัวอย่างที่ 2

รูปที่ 3.6 ดำแหน่งและลำดับของการเกิดจุดหมุนพลาสติกของโครงสร้างโนตัวอย่างที่ 2

รูบ่ที่ 3.7 ลักษณะของโครงสร้างในตัวอย่างที่ 3

60

รูบ่ที่ 3.8 กราพ่แลดงค่าของตัวประกอบน้ำหนักบรรทุกละลมกับการโก่งตัวลูงอุดต่อความลูง ของโครงสร้างในตัวอย่างที่ 3

รูบ่ที่ 3.9 ตำแหน่งและลำดับของการเกิดจุดหมุนพลาสติกของโครงสร้างในตัวอย่างที่ 3

ภาคผนวก ค.

แผนภาพขั้นดอนการทำงานของ โปรแกรม

ภาคผนวกง.

ระบบของแรงยัดแน่น

แลดงการหาค่าของแรงยึดแน่น (Fixed End Forces) เนื่องจากแรงภายนอกที่ กระทำของชิ้นส่วนเป็นแบบแผ่กระจายสม่ำเสมอ และสภาพของจุดรองรับแตกต่างกัน ดังต่อไปนี้

ก. มีสภาพของจุดรองรับแบบยึดแน่นที่ปลายทั้งสองด้าน

ตามรูปช้างบนจะได้ค่าชองแรงยึดแน่น ดังนี้

 $F_{1} = wL/2$ $F_{2} = wL/2$ $F_{3} = wL^{2}/12$ $F_{4} = -wL^{2}/12$

ข. ปลายช้ายของชิ้นล่วนเกิดจุดหมุนพลาลติก และปลายขวาของชิ้นส่วนเป็นแบบยึด

แน่น

ดามรูปจะได้ค่าของแรงยึดแน่นดังนี้

$$F_{1} = 3wL/8$$
$$F_{2} = 5wL/8$$

$$F_3 = 0.0$$
$$F_a = -wL^2/8$$

 ค. ปลายขวาของชิ้นส่วนเกิดจุดหมุนพลาสติก และปลายช้ายของชิ้นส่วนเป็นแบบยึด แน่น

ตามรูปอ้างบนจะ ได้ค่าของแรงยึดแน่นดังนี้

$$F_{1} = 5wL/8$$
$$F_{2} = 3wL/8$$
$$F_{3} = wL^{2}/8$$
$$F_{4} = 0.0$$

ง. มีลภาพของจุดรองรับแบบยึดแน่นที่ปลายทั้งสองด้าน และเกิดจุดหมุนพลาสติกขึ้น ภายในขึ้นล่วน

ตามรูปจะได้ค่าชองแรงฮืดแน่น ดังนี้

 $F_{1} = w(5x_{1}^{4} + 8x_{1}x_{2}^{3} + 3x_{2}^{4})/(8(x_{1}^{3} + x_{2}^{3}))$

5

$$F_{2} = w(3x_{1}^{4} + 8x_{1}^{3}x_{2} + 5x_{2}^{4})/(8(x_{1}^{3} + x_{2}^{3}))$$

$$F_{3} = wa(x_{1}^{4} + 4x_{1}x_{2}^{3} + 3x_{2}^{4})/(8(x_{1}^{3} + x_{2}^{3}))$$

$$F_{4} = -wb(3x_{1}^{4} + 4x_{1}^{3}x_{2} + x_{2}^{4})/(8(x_{1}^{3} + x_{2}^{3}))$$

จ. ปลายซ้ายของชิ้นส่วนเกิดจุดหมุนพลาสติก ปลายขวาของชิ้นส่วนเป็นแบบยึดแน่น และเกิดจุดหมุนพลาสติกชิ้นภายในชิ้นส่วน

ดามรูปจะได้ค่าของแรงชิดแน่น ดังนี้

$$F_{1} = wx_{1}/2$$

$$F_{2} = w(x_{1}/2+x_{2})$$

$$F_{3} = 0.0$$

$$F_{4} = -wx_{2}(x_{1}+x_{2})/2$$

 นลายขวาของชิ้นส่วนเกิดจุดหมุนพลาสติก ปลายช้ายของชิ้นส่วนเป็นแบบยึดแน่น และเกิดจุดหมุนพลาสติกชิ้นภายในชิ้นส่วน

ตามรูปจะได้ค่าของแรงอิดแน่น ดังนี้

$$F_{1} = W(x_{1}+x_{2}/2)$$

$$F_{2} = Wx_{2}/2$$

$$F_{3} = Wx_{1}(x_{1}+x_{2})/2$$

$$F_{4} = 0.0$$

ช. ปลายขวาและปลายซ้ายของชิ้นส่วนเกิดจุดหมุนพลาสติก

ตามรูปจะได้ค่าชองแรงยึดแน่น ดังนี้

$$F_{1} = wL/2$$

 $F_{2} = wL/2$
 $F_{3} = 0.0$
 $F_{4} = 0.0$

ประวัดิผู้เชียน

นายบุญแสง สิริรัตน์ช่วงค์ เกิดเมื่อวันที่ 12 มีนาคม พ.ศ. 2510 ที่จังหวัดกรุงเทพฯ ลำเร็จการศึกษาวิศวกรรมศาสตรบัณฑิต จากภาควิชาวิศวกรรมโยธา จุฬาลงกรณ์มหาวิทยาลัย เมื่อปีการศึกษา 2531 เข้าศึกษาหลักสูตรวิศวกรรมศาสตรมหาบัณฑิต ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัยเมื่อปีการศึกษา 2532

