
CHAPTER I I I

Ginzburg - Landau Theory

In th is chapter , we study the Ginzburg - Landau theory , 

both pure phenomenological and the microscopic theory.

One of the most fe r t i le  approaches to superconductivity has 

developed from the work of Ginzburg and Landau (15); the Ginzburg - 

Landau phenomenological theory of superconductivity is an-extremely 

uselul tool to study spatia lly  dependent effects. I t  was formulated 

before the microscopic BCS theory , and is independent of the 

detailed mechanisms responsible for the superconductivity. The 

Ginzburg - Landau theory has been shown to be very successful in 

describing macroscopic properties of superconductors , especially in 

inhomogeneous situations where the ordinary BCS theory is d if f ic u lt  

to apply.

Because of the success and generality of Ginzburg - Landau 

theo ry ,it is appealing to apply i t  to description of some of the 

macroscopic properties of the high - Tc superconductors (18 - 22). 

There is not yet a generally accepted microscopic theory of these 

high - Tc temperature superconductor but 1 regardless of the 

underlying mechanism 5 the Ginzburg-Landau theory (with its  own 

resticted va lid ity ) is certain to be applicable

3.1 The Phenomenological Ginzburg - Landau Theory.

As o rig ina lly  , th is theory was a triumph of physical 

in tu itio n , in which a pseudo - wavefunction Y (X) was introduced as
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a complex order parameter เ^ (x)| a to represent the local density 

of superconducting electrons ,na (x ). The theory vas developed by 

applying a variational method to an assumed expansion of the free - 

energy density in power of | ^ |Jand[v^j2 leading to a pair of coupled 

d iffe re n tia l equations for า£ (x) and the vector potential A(x).The 

result vas a generalization of the London theory to deal with 

situations in which ท 15 varied in space , and also to deal with the

nonlinear response to fie lds strong enough to change ทf1.

Athough quite successful in explaning intermediate - state phenomena, 

where the need for a theory capable of dealing with spatia lly 

inhomogeneous superconductivity was evident 5 th is theory was 

generally given lim ited attention in the western lite ra tu re  becouse 

of its  phenomenological foundation.

3.1.1 The Ginzburg - Landau Free Energy

The basic postulate of Ginzburg and Landau is that i f  f  is 

small and varies slowly in space , we can write down the following

expression of the free energy density of a superconducting body ,

expand in a series of the form

where Fn0 is the free energy density in the normal state in zero 

magnetic f ie ld  and where *  and 0 are real temperature dependent 

phenomenological constants, since the order parameter is uniform in 

absence of external fie lds , Ginzburg and Landau added a term 

proportional to IV Y I z , tending to suppress spatial variations 

in y  A h  analogy with the Schrodinger equation , th is  term is written 

as (2m*) 1 I V ¥  11 , when the magnetic fie lds  are present , this

(3.1)

term is assumed to take the gauge invariant form
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(2m*)_1 (-lhv - eA ) (3.2)

c

and h(x) = V X A

determines the microscopis magnetic fie ld . In th is way , the to ta l 

free energy density of the superconducting state in a magnetic f ie ld  

becomes

F_ = F= + + 1 l(- i t  V - e u A ) I I Z t  ha (3.3)

2 2m11 c 8TI

where the last term represents the energy density of the magnetic 

f ie ld . I t  is conventional to choose a particular normalization of, ÿ

m 2

2

(3.4)

where defines an effective superelectron density , and ท0

an electron density.

3.1.2 The Ginzburg - Landau Equations

The free energy of the sample is obtained by integrating Eq. 

(3.3) over the to ta l volume V. In a uniform external f ie ld  H , 

however , the relevent thermodynamic potential is the Gibbs free 

energy (compare Sec. 2.3) , and we must consider

/d ax [F= - ( 411) ~1 h .H ] = /d ax Gs (3.5)

where Gs is the microscopic Gibbs free energy density. To find the 

stable state at temperature T and fie ld  H , we must minimize the 

microscopic Gibbs free energy density. -Now , since Gs depends on
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functions Y  and A , we must use the Euler - Lagrange equations of 

the calculus of variations. since Y  is complex , we can minimize 

with respect to either T{;or Ï*  the equation is

d G % -  1  d_ = 0 (3.6)

d ' t *  ^  'ฮX" >

where 7 ^ ^  is the component of the gradient in the direction j . 

After some manipulation , and with the restric tion  that we use the 

gauge V.A = 0 , Eq.(3.6) becomes

1 ( ihv - ejT) * Y  + + f t  y  =0 (3.7)

2m“ c

In carrying through the variational procedure,the boundary conditions 

must be provided.

ท. 3GS = 0

a<v ï “ >

or ท .(ih  V - e A) = 0 (3.8)

c

where ท is the unit vector normal to the surface, s im ila rly  , we 

can minimize with respect to variational of the vector potential A . 

The appropriate Euler - Lagrange equation is

- J  3l

9 A1 J  d ( 9 A1/ 3xt )

0 (3.9)
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where A1 is i  component of A in the i  th direction. Using the 

constraint of Eq. (3.2) , and we have assume that

n X ( h - H ) = 0 (3.10)

where n is the unit vector normal to the surface , Eq. (3.9) becomes

J = c_ vxh = - ieh ( Y v ï - ÿ v ^ “ ) - (e*)3 I Y I A (3.11)

4n 2m me

Equations (3.7) and (3.11) form the complet of GL equations. 

Note that the current expression (3.11) has exactly the form of the 

usual quantum - mechanical expression for particles of mass m*, 

charge e* , and wavefunctionY (X). Similarly , apart from the 

nonlinear term , Eq. (3.7) has the form of Schrodinger’ s equation 

for such particles , with energy eigenvalue - c<. The nonlinear term 

acts like  a repulsive potential of Y  on its e lf ,  tending to favor 

wave functionY(x) which are spread out as uniformly as possible in 

space.

The boundary condition on Y  is vary d ifferent from that of 

the usual Schrodinger theory , however , and may be understood as 

guaranteeing that n .j vanishes at the surface of the body. Eq. 

(3.10) implies that the tangential component of the magnetic f ie ld  

is continuous across th is  surface.

3.1.3 Solution in simple Cases

In the absence of fie lds and gradients , Eq.(3.3) , we have

F1 0 -  ¥ n 0 = | ^ | 2+ 1 P  I  Y l 4  (3.12)

2
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Eq. (3.7) has the spatia lly  uniform solutions

I f  |5= 0 or|^| = - (3.13)

~ p

The f i r s t  solution clearly represents the normal state because Fs 

then equals โ '1 0 . The second solution is physically acceptable

only i f  เ^ /2' )  0 or o L /js < 0 , i t  represents the superconducting

state with a corresponding free energy density , Eq. (3.12) becomes

Fm _ Fn0 = - 1 _f£ (3.14)

2 p

ane comparing with Eq. (2.50) yields

£_3 = Hc (T) (3.15)

2 0 80;

In the superconducting phase F= - Fr10 <0 , Eq. (3.14) shows that 

B must be positive , which also ensure that FB is bounded from 

below (see Eq. (3.31)) .Inspection of Eq. (3.13) shows that must 

be nagative. Following Ginzburg - Landau , we assume that p  is 

inedpendent of temperature , while 1X can be expanded about Tc ,

<£ = ^ 0 (1 -t), t  = T/Tc (3.16)

where £̂ 0 is positive constants. This is negative for T < T0 , 

vanishing linearly  at To . Note that in view of Eq. (3.15) , 

th is  assumption is consistent with the linear variation of Ho (T) 

with (1 -t). Putting these temperature variational of and 0 into

Eq. (13.13) , gives
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j ï l 2 ~ (1-t) (3.17)

near Tc . This is consistent with correlating I y. I L with ท3, 

the density of superelectron in the London theory , since ท A~a 

(1-t ) near Tc.

As a second simple case , consider a one - dimensional , 

where Y  varies but h vanishes , Eq. (3.7) reduces to

- h_2 t t I I I  Y  =0 (3.18)

2m“ dz2

I f  we introduce a normalized wave function

f (z) = Y  (3.19)

where I Y J  -  ( <A (3.20)

f t

and the notation y o is conventionally used because Y  approaches 

th is  value at in f in ite ly  deep in the in te rio r of the superconductor , 

where i t  is screened from any surface fie lds or currents . A 

combination of Eqs. (3.18) and (3.19) given

ชุ2 . d“ f - f - f 3 = 0 (3.21)

2fflVl dz2

This makes i t  natural to define characteristic length |(T ) , for 

spatial variation of the order parameter

£(T) = ช ุ2_ ~  1_ (3.22)

2m*l<*l 1-t
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This length is known as ( Ginzburg - Landau ) coherence length . 

Note that th is is certainly not same length as Pippard’ s £ ,

which we used in our discussion of the nonlocal electrodymamies , 

since th is  I  (T) diverges at Tc . In term of ^ (T) , Eq.

(3.12) becomes

$ ? ( T )  d2f + f - f 3 = 0 (3.23)

dz2

multiplying Eq.(3.23) by df/dz and integrating with respect to z, give

£ (T) (d f)2 + f 2 -1_ f 4 = const (3.24)

dz 2

with boundary conditions

f(0) = 0 

lim f(2) = 1

thus , constant = 1/2 . This given

^(T)(df j2 ะะ 1_ (1 - f 2)2 (3.25)

dz 2

I f  f  increases with increasing z , must take the positive square 

root must be taken Eq. (3.25) becomes

df = 1 - f 2 (3.26)

dz /~2

The solution satisfying our boundary conditions is
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f(z) = tanh|,z_ ^ (3.27)

Just as in the electromagnetic penetration 5 the spatial variation
of f is confined to a region Z £ I  , because 1-/ f / vanishes
exponentially for z >> £ .

For a fin a l example 5 consider and applied magnetic fie ld  

with an essentially uniform order parameter I Y I  -  lyCol The 

supercurrent Eq. (3.11) then reduces to

J (X) = - (e“ )3 ท* A (x) = - e“ ท A(x) (3.28)

-  ใ 7

which takes precisely the form of the London equation (2.16). 

The penetration depth for magnetic fie lds follows immediately as

/C (T) = m̂ c3____________ /\J 1_ (3.29)

4ไ1ท3 (T) (e“ ) 1-t

In certain physical situations y  essentially vanishes at 

the boundary of the superconducting region (z = 0) , as

illu s tra te d  in Fig 3.1 . The penetration depth ^ provides the

spatial variation in the electromagnetic effects .
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(a) K << 1

Figure 3.1 Surface 

material for

(a) A << I  ( K << 1 )

(b) K >> 1

region between normal and superconducting 

and (b) A > > ^ ( K > > 1 ) .

I t  is important to emphasize that coherence length £ (T)and 

penetration length A(T) are both phenomenological quantities 

defined in terms of the constants a and p. I t  is conventional to 

introduce the Ginzburg - Landau parameter

K = ACT) (3.30)

£(T>

which is independent of temperature near T=. with the preceding 

defin itions, a simple calculation yields.

K = f 2 e* Hc (T) A (T) (3.31)

h c

K

h e  2 It

(3.32)

each of which is useful in applications. In particular , Eq. 

(3.13) relates K to the measurable quantities Hc and A , i t  may 

also be rewritten as

Hc _ <po (3.33)

2 t j 2  A £

$0 = hc/e* is the flux  quantum.where
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3.1.4 Flux Quantization

The Ginzburg - Landau expression Eq. (3.11) for the

supercurrent allows US to verify Landau ’ ร p red ic tio n  of a

quantized fluxoid in a superconductor . The order parameter may 

be written as

y  = \ y \ e l<p (3.34)

where <p is real , and substitution into Eq. (3.11) gives

or

J = ejh 1Y /2 V ÇP

nT

- ( e V l Y l 2 A

me

A + J m * c 

( e V m *

h  c V f
น

e

(3.35)

(3.36)

Integrate th is equation around a closed path c lying wholly in 

the superconductor ( Fig 2.6 )

^c / \  .d l + m**c c J.d l = ช  c V f . dl
น

e

(3.37)
น 2

(e )

The f i r s t  term on the le f t  may be rewritten with Stokes’ theorem , 

i f  Y is assumed to be single valued , the integral on the right , 

i t  follows that

/ c vp .d l = 2 I  ท (3.38)

where ท is an integer. Hence Eq. ( 3.37 ) becomes

■f -  14 -  t
/  h-ds + me <p J.d l = nhc

น 2 นน 2
(e >

(3.39)
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Comparison which Eq. ( 2.34 ) shows that the le f t  side is London’ s 

fluxiod generalized to nonunifrom systems , and we conclude

that <f> is quantized in units of ^  = hc/e* . I f  the path is 

closen such that J vanishes on c , or that ป้ is perpendicular to 

dl , then the middle term vanishes , and we obtain the quantization

of magnetic flux,

/  h .d ร = ท h c (3.40)
น

e

in units of ‘P o  = hc/e* ~ 2 X 10-’  G - cm* where e*

has ' been taken as 2e , in agreement with experiment ( See Sec.

2.2.3 ).

3.1.5 Surface Energy

The significance of the Ginzburg - Landau parameter K is 

most easily understood by studying the energy associated with a 

surface separating normal and superconducting material (See Fig 3.1 ) 

an applied f ie ld  !!__ parallel to the surface , since the Gibbs 

free energy deep in the normal region

lim G(z) 

z

then equals that deep in the superconducting region

lim G ( z) = Gs0 (3.42)

z -» 00

( compare Eq.(2.49) ). The poss ib ility  of a surface energy

arises in the following way from the occurrence of the two lengths /\

= Gn0 - H* (3.41)

8H
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and £ . I f  the sample were entire ly  normal or entire ly

superconducting , the Gibbs free energy per unit area would be

ร - dz(-Hc / 8TC). In the surface region 5 however 5 the flux is

expelled for z >/ X , while the condensation energy builds up

for z> £ . Hence the true Gibbs free energy per unit area is

given approximately as the sum of two terms

A 2 oO
2

-  I dz (-H^ ) + /  dz (-Hc )
—

8ft ร 8ft

By de fin ition  , the surface energy <5̂5 is the difference between 

the actual Gibbs free energy per unit area and the value that would 

occur i f  the sample were uniformly normal or superconducting

*>5

2 * 
- H l  ( ร

811

dz + /  dz - /  
£■ - «6

dz )

<$-a>  H.

8H

(3.43)

We see that é  is positive for K << 1 but negative for K >> 1 
ฑร

The Ginzbury - Landau theory permits US to study the 

surface energy in greater de ta il. Consider a one - dimensional 

geometry (Fig 3.1) with the magnetic f ie ld  h(z) = h(z) X  and 

vector potential A(z) = A(z) y. In the present problem , y  may be 

chosen real in an appropriate gauge

-h

2m'

day  - *  ÿ  + p Ÿ  - < e V  A 2 y

dz 2m'‘ea

0 (3.44a)
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- c dh = (e*4)3 y 3 A (3.44b)

411 dz m c

dA = -h (3.44c)

dz

The corresponding boundary conditions

Y  = 0 and h = Hc as z -» - °°

-  y. and h = O as Z - 9 +  ° °  (3.45)

guarantee that Eqs. ( 3.41 ) and ( 3.42 ) are satisfied, with the

same de fin ition  of the surface energy , we fine

* r , s  -  c  4z c G(z, - ]
J ° °  dz c G(z) - Gn0 + H* ]

8 It

ะะ ร ’0 dz [F(z) - h(z) H. - Fn0 + H* ]

4  It 8  It

= dz [ + 1 l( - ih v -e *A )y )\(Hc-h )a](3.46)

I  2 ^ ' ~  ^ 1 ๆ ใ

Here the th ird  and fourth lines are obtained with Eqs (3.5 ) and 

(3.3 ) , respectivity. This can be further simplified by noting

that i f  one multiplies the Ginzburg Landau d iffe re n tia l equation 

( 3.7 )by and integrates over a ll z by parts , one obtains the

iden tity

ร ุ ^  dz c l¥ |z + p i y l  +1_ |(-ihv  - e*A)^i ] = 0

2m14 c



6 0

Subtracting th is from Eq. ( 3.46 ) , we obtain the concise from

6 ^ s ะ: j °  dz โ - +  (Hc- (3.47)

1 8lt

Both Eqs. ( 3.46 ) and ( 3.47 ) are exact 5 the former is also 

varia tiona lly  correct while the la tte r use of the exact fie ld  

equations , is considerably simpler.

I t  is conventional to characterize the surface energy 

with a length 6

6  ะะ Hc 6  (3.48)

811

where

+ ( i-h _ )2] (3.49)

Hc

has been rewritten with the aid of Eqs. ( 3.15 ) and ( 3.20 ). 

Although a numerical solution of Eqs. ( 3.44 ) and ( 3.45 )is 

needed to evaluate ร  for arbitrary K , spectial lim iting  cases, 

using Eqs. ( 3.19 ) , ( 3.27 ) and ( 3.45 ) , For these cases,

the following exact results have been obtained as follows.

ร  , i ü  £ ะะ 1.89 I  , K << 1 (3.50a)

= T  7 1

é  = 0 , K = _1 (3.50b)

/โ

cT = - 3 ( / 2 -D A - -1.104A, K >>^ (3.50c)

ü8
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These results support our qualitative reasoning that ร  should be of 

the order of ( £ " A )  in Eq. ( 3.43 ).

The surface energy is important in determining the behavior 

of a superconductor in an applied magnetic f ie ld  , and a material is 

conventionally classified as type I or type I I  according as 

is positive or negative. Comparison with Eq. ( 3.50 ) yields the 

following crite rion

Type I ะ K < 1 |(T) > /i A(T) é > 0 (3.51a)

น ิ '

Type I I  : K > 1 ^ (T) </2 A(T) < 0

น ิ

(3.51b)

The positive surface energy of type - I materials ( most elements ) 

keeps the sample spatia lly  homogeneous , and i t  exhibits a complete 

Meissner effect for a ll H < Hc . In contrast , type - I I  

materials ( most alloys and compounds ) tend to break up into 

microscopic domains as soon as the magnetic f ie ld  exceeds a lower 

c r it ic a l f ie ld  Hc1 , which is always lass than Hc . For H > 

H , magnetic flux  penetrates the sample in the from of 

supercurrent vortices that surround a normal core containing one 

flux  quantum ( hc / 2e ) , and the sample is said to be in the 

vortex state ( or mixed state ) . structure of the vortex state 

illu s tra te d  in figure 3.2.
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Figure 3.2 Vortex state in applied magnetic f ie ld of

strength just Hc1 < H <

(a) Lattice of cores and associated vortices.

•(๖) Variation with position of concentration of

superelectrons.

(c) Variation of flux  density
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This state persists up to an upper criteca l f ie ld  Hc = J Ï  KHC 

above which the sample becomes the normal state. We sketched 

magnetization curves in figures 3.3 and 3.4.

Figure 3.3 Magnetization versus applied magnetic fie ld  for a bulk 

superconductor exhibiting a complete Meissner effect (perfect 

diamagnetism).

Figure 3.4 Superconducting magnetization curve of a type I I  

superconductor.

The poss ib ility  of type - I I  superconductivity was f i r s t  

suggested by Abrikosov ( 50 ) , who used the Ginzburg - Landau 

theory to study the vortex state in de ta il. We regret that th is  vast 

subject cannot be included here, and we must refer the reader to 

other sources ( 51 ) .
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3.2 Microscopic Ginzburg - Landau Theory

For in th is  section , we now present Gorkov’ s microscopic

derivation of the Ginzburg - Landau equations ( 16 ). This

calcutation determines the phenomenological constant d irec tly  in 

terms of the microscopic parameter ; i t  also c la rifie s  the range of 

v a lid ity  of the equations and allows direct extensions to more 

complicated systems such as superconducting alloys. Indeed , many

microscopic calculation now proceed by deriving approximate Ginzburg 

- Landau equations , whose solution is considerably simpler than

that of the orig inal equations.

3.2.1 General Formulation

We take the model BCS Hamiltonian of Eqs. ( 2.73 ) 

(2.74) and ( 2.83 ) to describe the electrons without the magnetic 

f ie ld . I f  we add the interaction with the magnetic f ie ld  5 

discussed in Ref. 52 , the Hamiltonian operater can be rewritten in

terms of these f ie ld  operators as follows

K = K 0 + V

= /d 3x y Tx) T (x)f(x) + l / / d 3x d3x 'Y (x ) f ( X )  V (x,x) f(x)Y(x)

= /d 3x ไ ;̂x) {_1 C-ihv - e A (x) ] z - แ } Y(x)
2m c

-1 V /  d3 x f | x )  Y(x) Y^(x) ใ^ (x)
2

(3.52)
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where แ  is the chemical potential , A(x) is the vector potential.

As an introduction to our subsequent development, we f i r s t  

review the Hartree - Fock theory , which may be obtained by 

approximating the exact interaction operator V in Eq. ( 3.52 > as 

a b ilinear form

î - v  - - v / d * . r < i ' Æ f . ( î )  > „ v ; < ï )  ๕ ,
- < Y ใX) f ( x )  > 11 _ Y^x) Y(X) ]

V 3 HF p *
(3.53)

Here the angular brackets denote an ensemble average with the 

density operator

and

■ ร .

+ VHr

(3.54a)

(3.54b)

In th is  approach , KHFis used to define a f in ite  - teaperatrue 

Heisenberg operator

A
y  (XT)
KT

A
r  /  k

with the equation of motion

ธ é? Y. i XT) = -Cl_ (-ihv -e A )a-/x ] ^  (xT>

3 r 2m

+ V < y ไ X )  f  KX) y
kY

(XT')-V< y  (X) Ÿ (X) -ไ? (XT)

c
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The corresponding single - partic le  Green’ s function

= -  < Tr  1 V ? T )  K t ' " "  >

The self - consistency here appears through VHF , which both 

determines and is determined by Eq. ( 51.4 ).

The precise structure of VHF can be understood by seeking 

a linear approximation to the exact equations of motion, since the 

commutator tv, y  (X) ] contains three file d  operators , i t  must be

approximated by alinear from tv, y j x ) ]  ~■> 0 y  ( X )  where the

j^ a re  c-mumber coefficients. This replaecment has the consequence 

that { tv, (x)3, y ^ (y ) }  —* £  à  (x-y). In face , the le ft

side of th is relation is s t i l l  quadratic in the fie ld  operators. We 

therefore replace i t  by its  ensembly average to obtain the 

linearized theory , which provides a prescription for determinining 

f  . The approximate form VHF in Eq. (3.53) is chosen to

reproduce the corresponding linear equations.

The foregoing discussion must now be generalized to include 

the one essentially new feature of a superconductor , namely the 

poss ib ility  that two electrons of opposite spins can form a self - 

bound Cooper pair. As a model for th is phenomenon , we add two extra 

terms representing the pairing amplitudes to Eq. ( 3.53 )

Ve VHF _ 1 V / d ax [< f \ x )  y * i x )  > Y  (X) ? ( x )
2

+ y jx )  y  ไX) < ใ? (X) f (x )  >] (3.55)



effective hamiltonian becomes

= Ko - V /d 3xc< ^ ไ*) ^ )

+ i ÿ . x )  y \ x > < f t (x) $ 1 (x> >] (3.56)

which forms the basis for the BCS theory. The theory is self - 

consistent 5 because the angular brackets are interpreted as an 

ensemble average evaluabed with Keff> , in particular , quantities 

such as

< ^ X) ร'ะ*) > = Tr Ce~^eff

1 e'^Rcff ~~

do not vanish , because CKaf.4, , N3 t  0 

we now introduce Heisenberg operators

= ek r f  r A  $๙) e'K' " t A  (ร .57a)

$ ; เ ๙ r> = e * 'f f  " A  (3.57b)

since the Cooper pair has spin zero , the indices a  and p in Eq.
(35.5 ) must refer to opposite spin projections , and the to ta l

Satisfying the linear equations of motion

ธ?f„ t  = - [  1 (-ihv- e_A )2 - y u j  f  k -  y +k 1  (3.58a)

^  2m ไ โ
ธ V f ใ  1 = [1_ (ih V -  eA)2 -  ><] f * - v  < v V +> Y kt (3.58b)

As the fin a l step in these 5 we define a single - partic le  Green’ s 

function
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G (XT, X T )  = - < Tt [ Y K 1. (xT) Y (XT')] > (3.59)

where a particular choice of spin indices has been made to simplify 

the motion. D ifferentiate G with respect to T. The derivative acts 

both on the f ie ld  operator and on the step functions im p lic it in the 

"time" ordering , which yields

t j?  G (xT, x f )  = - h m r ) J ( x r ) } >

a<r - < T^c f c ^ x r ;  )]>
r  d r  พ

= -h <5 (x-x) ร ( T - T ) -  [ 1 (- ihv - eA>°- jul

2m c
xG (xr, x'r') + V <Yf (x )^ (x ) > < Tt [ ^ ( x r )  Y (xV )]>  (3.60)

we are thus led to consider two new functions

J ( X T ,  x ' r ' )  =- < L . [ Ç  ( X T )  Y  ( X T )  ]> (3.61a)
7 kt k i

/ ( x r ,  X T )  =-< T. c ■’P(xT) ^ (  xV  ) ]> (3.61b)

and Eq. ( 3.60 ) becomes

[ -h d  - 1 (-ihv - e A ) + M. ] G (X7", x ' r ) -  v<^(x) ^ (X) >

a r  2m 0

>< J* ( x r .x V S  = ธ <$(x-x) <ร ( r - , / )  (3.62)

In the usual case of a time - independent hamiltonion, the functions 

G , J and J+ depend only on the difference T - r  , and i t  is 

convenient to introduce the abbreviation
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a ( x ) VJ (XT, XT) = - V < (X) Y (X) > = V < Y^(x) Yj(x) >(3.63)

which defines the gap function A (x). A combination of Eqs. (3.62)and 

( 3.63 ) yields

C-fià - 1 (-ifrv - eA )2 + n  3 G (xT , XT') + a ( x ) J* ( x  T  , XT)

2m e

= h <5 (x-x) (ร ( f - T )  (3.64)

In a sim ilar way , the functions J and J* are easily seen to 

obey the equations of motion

C-h d _  - 1 (-ihv - eA)2 +/0<] J (XT, X T)

2m e

= - V < Yf (x)  Y^(X) X  t t  [ ( X T )  ) ? k , ( x n ]  >
A (X) G (XT, XT ) (3.65)

Ch (ihv - eA)a + น ] J4- ( X T  , XT )

• 3 r  2m c

g < f / ( x )  Yt*(x) X Tt C yk t  ( X T )  Y jx  v ' ) ]  >

= À* ( x ) g (XT, XT) (3.66)

For most purposes , i t  is su ffic ient to consider Eq. ( 3.64 ) and 

(3.66) as a pair of coupled equations for G and J+.

Nevertheless , there are defin ite  advantages to combining the

three equations in a single matrix equation. Introduce a two - 

component f ie ld  operator
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l ? ( x r  )
i ' ; r l

ใน' ( X r  )
Ki

and a 2x2 matrix Green’ s function

G (XT , x T )  = - < Tt [ f^ fx T )  * r / ) ] >
G (XT, XT) J (XT, X* r  )

J+ (XT, XT') -  G+ (XT, XT)

(3.67)

(3.68)

The corresponding equation of motion becomes 

D-7. G(xf,XT) = t il <5(x-x) ร (T-T) (3.69)

where D̂ “r  is a matrix d iffe re n tia l operator

-h 3 - _1 (-ihv - eA ) + M -
H r

Ù (? )

2m (3.70)

/ J
1 2.

?  (X) - li_3> + 1_ (ihv - eA) - f t
d r  72m c

This matrix formulation has bee used extensively in studies of the 

electron - phonon interaction in superconductor. Unfortunately , i t  

is not possible to consider these questions here , and we generally 

rely on the orig inal Gorkov equations ( 3.64 ) and ( 3.66 ).

As we now , in the temperature technique a ll quantities are 

expanded in Fourier series with respect to the frequency น)n . In 

almost a ll case of interest the hamiltonian is time independent, and 

the corresponding Green’ s functions depend only on T - T  . I t  is then 

useful to introduce a Fourier representation.
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G (XT',XT) = (J6h)_1 e ~ lU* C r r ^ G  (x,x,Vr1) (3.71a)

/

(xr,xr) = (^h)-1 e~lwCT r ’ J4" (x ,xs¥11) (3.71b)

where the choice ¥11 = ( 2n+l)7l//e^ guarantees the proper Fermi

s ta tis tics . The corresponding equations of motions are

ihwt1 - _1 /- ih v -e A ) +/C G(x,x พ 11) +û(x) Jj’ (x ,x ,พ 11)

2m c

= ช (x-x) (3.72a)

-ih¥11 - 1 ( i h  V -  e _ & y M  J*(x,x^wt1) - A* (X) G (x ,x ,พr 

2m G

0 (3.72b)

which must be solved along with the self - consistency conditions

A*(x) = - V (^ ' (X) (X) > = V j4'( x r t,x r )  (3.73)

= V y  e ~ iv'r' J  J+(x,x^w )

J l  *

3.2.2 Microscopic Derivation of Ginzburg - Landau Equations 

The properties of superconductors near the c r it ic a l 

temperature constitute a special case , since then the size of the 

gap a(x) is small enough to cause a ll the equations to become much 

simple. ¥e sta rt from the pair of coupled equations ( 3.72 ) for G 

and J+. Here we are interested in the effect of arbitrary magnetic 

fie lds .

I t  is convenient to introduce a new temperature Green’ s 

function G (x ,x ,¥11) that describes the normal state in the same 

magnetic f ie ld . I t  satisfies the equation
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[ih¥11 + fr2 ^v-ie A (X) ) + M  ]G“ (x ,x ,¥11)=!! é> (x-x) (3.74a;

ธc

V + ieA (x ) jf>c ]G“ (x,x ,¥11)=!! ^ (x-x) (3.74b)

2m ÎLC

obtained from Eq. ( 3.72a ) and its  analog for G (x ,x ,พ11) with 

A = 0 . This auxiliary function enables US to rewrite Eqs. ( 3.72 )

as the following pair of coupled integral equations

G(x,x,พ11) = G(x,x, พ11)-h_1/d 3y G9 Ox,y,พ 11) A (y) J *(y ,x ,พ11) (3.75a)

Ji (x,x,/พ 11) = h-1/d ay G°(y,x,-Wn) A*iy) G (y,x^wi1) (3.75b)

which are easily verified  by direct substitution into the orig inal 

d iffe re n tia l equations. Note carefully the rather complicated 

arguments in Eq. ( 3.75b ) , they are necessary to reproduce the

structure of Eq. ( 3.72b) A simple manipulation of Eqs. ( 3.75 )

yields

G (X,X^W11) = G°(x,x,พ 11)-h~2/d 3y d3z G° ( / ,y ,¥11) A(y)

xG*(z,y,-wi1) a “ ( z ) G ( z , x >w 11) (3.76a)

h-1/d 3y G<’ (y,x,-Wi1) A“ (y) G“ (y,x, พ11)-h2/d 2y d3z 

xG“ (y,x,-wr1) A*(y) G°(y,z พ11) a ( z ) J*(z, x, พ 11) (3.76b)

which are exact integral equations for G and separately

Further progress deponds on the assumption of small A , and 

we f i r s t  concentrate on Eq. ( 3.75b ). The second term on the right 

becomes a small perturbation in th is lim it , and an expansion gives

J+(x,x,พ11) =

Cih¥ 11 + h2̂
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J+(x,X,พn)

-b3/d 3y d3z d3w G“ (y,x,-Wr1) AU(y) 5“ (y ,z ,พ11) A (z)

xG°(w,z,-Wn) A*(w) G° (พ,X,พr1) + . . .  (3.77)

Where Eq. ( 3.77 ) is combined with the self - consistent gap 

condition ( 3.73 ) , we obtain an integral equation for the gap

function its e lf

V-1A*(x> = /d 3y Q (x,y) û“ (y)

+/d3y d3z d3w R (x ,y ,z ,พ) A*(y)a ( z ) a * (พ) (3.78)

where higher - order terms have been neglected. Here the Kernels 

invole G° and thus depen only on the properties of the normal metal

Q(x,y) = (/ih3)-1 2 Cr“ (y,x,-wr1) G° (y ,x ,พ 14) (3.79)
ฑ

R(x,y,z,พ) = - (/3hA)_1£  G°(y,x,-พJท

xG°(y,z,-wn) G°(w,z,-wn) G° (พ,X,พ 11) (3.80)

We see that the assumption of small Ta ! only leads to a nonlinear 

integral equation. The simpler d iffe re n tia l structure of the 

Ginzburg - Landau equations requires the additional and separate 

assumption (Tc-T)/Tc << 1 , since A* and A then very slowly 

with respect to the range of the kernels Q and R . These two 

conditions are physically quite d is tin c t , for a su ffic ien tly  

strong magnetic f ie ld  can render A* small, even at T = 0.

I t  is now neecssary to examine the Kernels Q and R. As a 

f i r s t  step , we evaluate the normal - state Green’ a function G° in
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the absence of a magnetic fie ld . This function depends only on x-x 

and is precisely that studied temperature Green’ s functions

G°(x, ¥11) = -h (2 it r7 d 3ke1*** ( i  ช ¥11 (3.81)

where

- t  k

2m

Although the complete spatial dependence is rather complicated, the 

relevant lengths in Eqs. (3.78) to (3.79) are a ll much longer than 

interatomic dimensions, and i t  is therefore permissible to assume 

1<_X >> 1 . In addidion i f  the discrete frequency

satisfies the restric tion  I hu>.j4/C<?then the dominant contribution 

arises from the v ic in ity  of the Fermi surface , and we find

G“ (x พ ) ~ "h N(o) ร  d£ j  (kx)

>

7c1 ~h N (o) /  djr jexp( i  (KF + % )x j

2iKFX (ifc ¥11 - J )  hvF

- - TfhN(0 ) exp ^ ik Fx sgnwn-x เพr1! ^ (3.82)

Kf X  V F

This last restric tion  ( I hwn| << A *  ) is fu lly  ju s tif ie d  

in practice, because the terms omitted make a negligible

contribution to the sum over ท in Eqs.(3.79) and (3.80). Varies with 

the natural length A(T). In contrast, G° oscillates with a much 

shorter length K 1F so the A can be considered locally

constant over many wavelengths. Gorkov thus makes an eikonal (phase-

> A- exp^-1 (KF +

•A  n ) l
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integral) approximation, assuming that the dominant e fffec t of the 

magnetic f ie ld  can be included in a slowly varying envelope function f

G° ( x , x  พn) e ' P * * ’ * ’ g“ ( x , - x , W n ) (3.83)

The contribution of A is negligible for x«x  ; hence <)> is 

chosen to satisfy

<t> (x,x) = 0

Direct calculation with Eq. (3.83) gives

 ̂ g-ieA ja(j° = e1* v“g“ + 2i (v4»-eA) . vG° + fiv%

he he

- ie(v-A ) - (g0- eA )°] G° \  (3.85)he he
Here the terms are grouped in approximate ascending powers of 

eA/ficKF because G° varies with the characteristic length KF . 

Since A is of order AH 5 th is parameter may be rewritten as 

AeH/hcKF , which is small for a ll magnetic fie lds of interest. In 

consequence, we neglect the last term of Eq.(3.85) entire ly , while 

$ is determined from the condition

L V-<t> ( x,x ) - eA (X) ]• (  x-x ) = 0 (3.86)

he

Given A(x), th is f i r s t  - order d iffe re n tia l equation can always be 

integrated.
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We now return to kernel Q(x,y) . A eombinition of Eqs. (3.79) 

and (3.83) gives

Q(x,y) = ( £ธ3 )_1 J  e3' ^  £«?'*3 g“ (y -X,- พn) G c y - X> ^

q“ (x-y)= e
a i * c พ, «ว

(3.87)

which defines the kernal Q“ in the absence of a magnetic fie ld . 

This function is readily evaluated with Eq. (3.82) and the relation

z t  (เพ!.yา

Q" (x)

2 I  f (พุ1)

j" TIN (O) j 3 1 Y exp (~2xlvj )
£ v_Kf X

UN(O) 1
i

(3.88)

F ^sin h (2 E X I p  h VF)

Near Tc, the kernel Q °  vanishes exponentially for X  > >  f i v F / / c  7 C 

** 0 (1 .)  » and i t  thus has a range comparable with the

(temperature - indepent) Pippard coherence length, since £0 is much 

shorter than the scale of variation of either the vector potential 

or the gap function, i t  is permissible to treat A and / as slowly 

vary functions. In particular , Eq.(3.86) can be integrated

e xp lic itly

$ (x,x) = e CA(x) + A (X) 3. (x-x)

2hc

where the symetrized form represents a compromise between the two 

forms of Eq.(3.74). Furthermore, A is of order Hc(T) à (T) «ะ(Tc-T )1/2
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the restricted range of Q“ then mean that 4> (x,x' ) i ts e lf

becomes small as T->TC, permitting an expansion of e1* in 

power of 4>.

The above condition allow us to evaluate the f i r s t  term on 

the right side of Eq. (3.78). With the defin ition  Z = y - X  we have

/d 3y Q (x,y) û“ (y) = /d 3z Q“ (z)exp [ _ie[A(x> + A(x+z>]. z ; \  a * ( x +z >
I TTc, 1

The short range of Q“ requires that z , and the remaining 

functions may be expanded in a Taylor series about z=0 . Retaining 

the leading correction term, we find

/d 3y Q (x,y) t ! ? ï y )  —  a “  ( x ) /  d3z Q“ (z)

where V denotes the gradient with respect to X  and acts only on the 

vector potential A(x) and the gap function û* ( X ) .  Note that we 

have now reduced the orig inal integral operator to simpler 

d iffe re n tia l one. The properties of the normal state appear 

only in the numerical coefficients of Eq.(3.91), and we f i r s t  

consider /d 3z Q°(z), which diverges logarithmically at the

c A(x) + A (x+z)]-z} + . . .  A U ( X + Z ) (3.90)

-flfv-(2ie A(x) ] a “ ( x ) /d 3z z“q“ (z)

6 he

(3.91)
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/d “z Q0 (z) = ifร ธ2)-1 (2lO~a /d ak 2 (k ¥11) G“ (-K,-Wn )

ท

= £7(2lO~a /  d3k-2  (ft2 พ̂  + ^ 2)-1

we now introduce the approximation (210 /  dak— = N(o) /d j , ..

/d az Q“ (z) = N(o) / K"p J.1 tan Q /8 ^

2

= N(o) In (fiwD/3 ) - /  d d tan h (|/2 )

T . 1 ^
= N(o) In (26 พ0 P  e I  )

and comparison with Eq. (2.90) gives

/  daz Q“ (z) = N(o) In (  Tc ) + p N (o )  (1-T) + V-1 (3.92)

T v  ~

The other integral in Eq.(3.91) can be evaluated d irec tly  in 

coordinate space using Eq. (3.88). since th is  term is already

the coeffic ient of a small correction . we set T=TC and obtain

/d 3z z2 Q° (z) 1_ ̂  KN(o) j  JcTz csch^.2iz j

c  K r  0 c h v r

orig in , th is singular behavior reflects the unphysical approximation
of short- range potential in Eq. (3.52). I t  must therefore be cut
o ff in momentum space of I = fiwD ,

p
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- 1 N(0 )  ̂ pr~BvF J / 0 dy y2

4 H sinhy

-  (ร) N ( 0 )  ̂ .fi VF j2
ร  yr^Tc

where

Kf = (2ltg-hg) N(0)

01

$<3> = 2 /  dy y 2

7 sinh y

(3.93)

The only other calculation is the small nonlinear correction 

in Eq. (3.78), which may be evaluated in lowest order 0 by setting 

°« G° and taking a ll the factor of A at the same point

/d 2y d3z d2w R (x ,y ,z ,พ) A * ( y )  A(z) A*(w)

~  A * ( x )  A (X) g ร d3y d3z d3w R (x ,y ,z ,พี)

A straightforward calculation in momentum space gives

/d 3y d2z d3w R(x,y,z,พ) = -yS X,(2H)3 /d 2k (  fi2w2 + ^  )

= - ILN(O) 2 . 1 ^  w j  a

2 P c  '

= - N ( 0 ) 7 i  (3)  (nKBT t_ )  ~ 2  ( 3 . 9 4 )
8

where T has again been set equal T .
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The fin a l equation for A*(x) is obtained by combining Eqs. 

(3.78), (3.91), and (3.92) to (3.94). After manipulation, the term 

v-1**(x) cancels indentically , and we find

โ7 + 2ieA(x) 3 A*(x> + 6 I3 (KRT1_)2 T -T **๕ ) - 7 £(3)û*(x) 1 A ( x ) l

เ - 7 $ ( 3 ) < - Tc 8<IK T )3

= 0 (3.95)

The relation with the Gingburg-Landau equation can be made e xp lic itly  

by defining a wave function

f i x ) 7Ü(3)n 1 y 2 / ' a ( x ) = 7 น 3 )
2 2

8(Ik  T ) 81 j

(3/96)

that satisties the following equation (note the complex conjugation)

1 r - ih  V -  2eA(x) j “ ^ (x )  +61° (KBiy ) a £-(TcZT) f i x )

4m c 7§(3) €* T^

+ ท-1  f  ( X )  j f ( x ) ะะ 0 (3.97)

Here ท is the to ta l electron density, and comparison with Eq. (3.7) 

iden tifies  the phenomenological parameters

m“ = 2m , e“ = 2e*

*  =-6 l3(kH T̂  )3 (Te-T), yB = 6ท:'3 (kBTc) i
________ B c — ร .. ..

7 ^(3)6" Tc 7 Ç (3) £* ท

(3.98)

T
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The preceding derivation shows how the f i r s t  Ginzburg-Landau 

equation emerges as an expansion of the self-consistent , gap 

equation near Tc. Ve now consider the supercurrent, from the 

quantum-mechanical expression, which can be related to spatial 

derivatives of the s ingle-partic le Green’ s function G

J(x) = -ieh (v-v) G (X T ,xf)| 2 ^ 1  A(x) G(xT\x'p (3.99)

m me

Here the factor2 arises from the spin sums. I f  Eq.(3.76a) is 

expanded as

G (x,x, ¥11)

with

G (x,x ¥11)

= G“ (x ,x ,¥11) + £ g (x ,x ,¥11)

= -h 2 /d 3y d3z G° (x,y,¥11)

xG“ ("z,y,-¥11 ) G“ (z, x,¥11) A (y) A*(z) (3.100)

then a simple calculation with Eqs. (3.83) and (3.89) shows that the 

zero-order contribution vanishes

- ieh (v-v) G° (x r ,x r ) -  2e A(X)GC (x r ,x r  ) =0

x=x me

In th is  way , the to ta l supercurrent reduces to

J (X) = -ie  z  [(v-v) 

me

G (x ,x ,พ 11 )] 2e° A (x) E <5g (x ,x .¥11) 

meph

The remaining calculation depends on the e xp lic it form of G, 

and substitution of Eq. (3.100) gives
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J(x) + 2e3 A(x) E é G (x ,x ,พ11) = e

mcpti miph3

*G°(z,y,-wn) CG(z,x,พ11) 7XG<> (x ,y ,พr1) -G(x,y,พ 11) VXG (z ,x ,พ11)] (3.101)

The spatial derivatives can be evaluated with Eqs. (3.83) and (3.89),

and the result can be sim plified with the slow variation of A

J (x) + 2e2 A ( X )  E é  G (x,x ,¥ ) = ie E /  d3y d3z A ( y )  A* (z)
ฑ n “  n

meet mpft3

xG°(z,y,-¥11) 12ie A (x) G° (x,y ,¥11) g“ (z ,x ,¥11) + e“ c e1* ' 2' * 3 

he

xCG“ (z-x,¥11) VXG° (x-y,¥11)-G“ (x-y,¥11) Vx G“ (z-x,¥11)]}

The f i r s t  term on the right side now cancels the le f t .  ¥hich the 

same approximation as Eq. (3.90), the supercurrent near Tc becomes

J(x) = ie___2  /d 3y d3z G°(z-y,- ¥11) CG°(z-x,¥11)vxG°(x-y,¥11)

m h“p

- G°(x-y,¥11) vx G° (z-x,¥11) ] c ^ (x )!-1' ’ + |a ( x ) | 3 2ie

he

XA(x).(z-y) + A*(x)(y-x). V A ( X )  + a ( x ) ( z - x ) . V A * ( X ) ] (3.102)

several terms vanish identica lly  owing to the spherical symmetry , 

J(x) = ie_ E /d 3y d3z G°(z-y,- ¥11) c G°(z-X,¥11) Vx G°(x-y,¥11) 

mph3

-G°(x-y,¥11) VXG° (z-x,¥11)] X L 2ie | a ( x ) | 3 A(x) . (z-y) +A(x) V XA * ( X )  .z

he

+ A * ( x )  v xA ( x ) . y ]

E ร  day d3z A (y) A*(z)

(3.103)
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The remaining integration is most easily performed with the Fourier 

representation of G° from eq.(3.81), and a lengthy but 

straightforward calculation gives

J(x) = 7^(3)n f-2ieh IIa(x) \ a(x) -a(x)wa*(x)

16(ItkBTc) 2 ^ 2m

With the wave function in Eq. (3.96) we fin a lly  obtain

J(x) = - ieh [TjT(x) w ï  (X)- -2^3 * A(x) เ^' (x)}2"

2m me

or

J(x) = -ie*ft[ ^*(x)vÿ(x)- f(x )v  (x)] - (e*)2fV(x)| 2 A(x)

2m1* rnc*5

in complelte agreement with Eq. (3.11).

In summary , we have shown how the Ginzburg - Landau 

equations (3.7) and (3.11) can be obtained from the Gorkov equations 

under the following set of assumptions

1. The order parameter a ( x )  and the vector potential A(x) 

are small.

(3.105)

(3.106)

- 4eaA(x)( a ( x )1 J(3.104) 

me

2. The range of the kernels in Eqs. (3.) and (3.) is small 

compared to the characteristic length for spatial variations of A (x)

( i.e . , the coherence length £•) and A(x) ( i .e . ,  the penetration 

length >.).

3. The eikonal approximation also requies AKf >> 1 (which

is are always satisfied su ffic ien tly  close to the transition

temparature T1_.
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