LIQUID PHASE ADSORPTION OF N-PARAFFIN AND N-OLEFIN ON SILICALITE

Danupon Dama-U

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2005 ISBN 974-9651-89-8

122222818

Thesis Title:	Liquid Phase Adsorption of n-Paraffin and n-Olefin on
	Silicalite
By:	Danupon Dama-U
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Pramoch Rangsunvigit
	Dr. Santi Kulprathipanja

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantaya Janumet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Pamoik R_

(Assoc. Prof. Pramoch Rangsunvigit)

Santi Kulpzathi

(Dr. Santi Kulprathipanja)

.....

(Asst. Prof. Pomthong Malakul)

B. Kitizanan_

(Asst. Prof. Boonyarach Kitiyanan)

บทคัดย่อ

คนุพล คามาอู : กระบวนการคูคซับของนอร์มอลพาราฟินและนอร์มอลโอเลฟินใน สถานะของเหลวบนซิลิคาไลท์ (Liquid Phase Adsorption of n-Paraffin and n-Olefin on Silicalite) อ. ที่ปรึกษา : รศ. คร. ปราโมช รังสรรค์วิจิตร และ คร. สันติ กุลประทีปัญญา 57 หน้า ISBN 974-9651-89-8

นอร์มอลพาราฟินและนอร์มอลโอเลฟินเป็นสารเคมีที่มีความสำคัญมากในกระบวนการ อุตสาหกรรมปีโตรเกมี กระบวนการแขกสารทั้งสองออกจากกันจึงมีความจำเป็นเพื่อให้เกิดการใช้ ประโยชน์สูงสุดของสารทั้งสองนี้ กระบวนการดูดซับเป็นหนึ่งในกระบวนการที่เหมาะสมในการ แขกอันเนื่องมาจากการใช้พลังงานที่น้อยและค่าการปฏิบัติงานที่ต่ำ งานวิจัยนี้ศึกษาไอโซเทอมการ ดูดซับของสารองค์ประกอบเดียวของนอร์มอลพาราฟินและนอร์มอลโอเลฟินบนซิลิคาไลท์โดย ้วิธีการดูคซับแบบกะที่อุณหภูมิ 25 °ซ ผลการทคลองแสคงถึงปริมาณการดูคซับที่จุคอิ่มตัวของทั้ง นอร์มอลพาราฟินและนอร์มอลโอเลฟินบนซิลิกาไลท์ขึ้นอยู่กับความยาวของโมเลกุลและมี ้ปริมาณที่ใกล้เคียงกันสำหรับนอร์มอลพาราฟินและนอร์มอลโอเลฟินที่จำนวนคาร์บอนเคียวกัน ้ จำนวนปริมาณการคูคซับที่จุดอิ่มตัวในหน่วยโมเลกุลคูดซับต่อหนึ่งหน่วยของซิลิกาไลท์ลคลงเมื่อ จำนวนการ์บอนของโมเลกุลมากขึ้น และลคลงอย่างรวคเร็วระหว่างจำนวนการ์บอน 6 ถึง 8 ของ ทั้งนอร์มอลพาราฟินและนอร์มอลโอลิฟิน ค่าการเลือกที่สภาวะสมคุลสามารถคำนวนไค้จาก ไอโซเทอมการดูคซับของสารสององค์ประกอบระหว่างนอร์มอลพาราฟินและนอร์มอลโอลิฟินที่ จำนวนการ์บอนเดียวกันที่อุณหภูมิ 25 °ซ ผลการทคลองแสดงว่าซิลิกาไลท์ไม่สามารถแยก ้นอร์มอลพาราฟินออกจากนอร์มอลโอเลฟินที่มีจำนวนการ์บอนเดียวกันได้ วิธีการเพาส์เทสถูกใช้ ้เพื่อศึกษาค่าการเลือกที่สภาวะพลวัตที่ 120 °ซ และผลที่ได้สอดคล้องกับค่าการเลือกที่สภาวะ สมคุล

ABSTRACT

4671001063: Petrochemical Technology Program
Danupon Dama-U: Liquid Phase Adsorption of n-Paraffin and n-Olefin on Silicalite.
Thesis Advisors: Assoc. Prof. Pramoch Rangsunvigit, and Dr. Santi Kulprathipanja 57 pp. ISBN 974-9651-89-8
Keywords: Adsorption/ n-Olefin/ n-Paraffin/ Silicalite

n-Paraffins and n-olefins are important raw materials in the petrochemical industry. Consequently, separation processes are needed to fully utilize both classes of chemical. Adsorption is considered to be the most viable process due to its low energy and operating costs. Single component adsorption isotherms of n-paraffin and n-olefin including carbon numbers ranging from 6 to 20 in liquid phase were studied using a batch adsorption technique on silicalite at 25 °C. The results show that saturation capacities of both n-paraffin and n-olefin on silicalite depended strongly on the molecular chain length. There was no significant difference in the capacities between n-paraffin and n-olefin at the same carbon number. The number of molecules adsorbed per unit cell also decreased with increasing carbon number. A significant drop in capacity was observed for the C_6 to C_8 paraffins and olefins. The equilibrium selectivities were also investigated by adsorption of binary mixtures between n-paraffin and n-olefin with silicalite at 25 °C. The results show that there was no separation between n-paraffin and n-olefin for the same carbon number. The dynamic selectivities from the plus test method at 120°C agreed with the equilibrium selectivities.

.

ACKNOWLEDGEMENTS

This work has been a very invaluable experience. This work would not have been succeeded without assistance of many persons and organization.

First of all, I would like to express the deepest gratitude to Dr. Santi Kulprathipanja, my US advisor from UOP LLC, for his precious advice, invaluable knowledge, encouragement, and well-being while I carried out part of this work at UOP LLC for two months. I would like to forward my appreciation to Ms. Apinya Kulprathipanja for abundant kindness throughout my stay work there.

Moreover, I greatly appreciate Assoc. Prof. Pramoch Rungsunvigit, my Thai advisor, not only for his excellent guidance and assistance, but also for his patience in listening and proofreading my thesis. He also made this thesis fascinating.

I would like to extend special thanks to UOP LLC for a great support and it staff for the help and warm welcome throughout the period at the company.

Unforgettable, appreciation is forwarded to all staff of The Petroleum and Petrochemical College and my friends for warm support, help and suggestion throughout this research work.

This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Finally, the sincerest appreciation goes to my parents and family for their love, encouragement and measureless support.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	viii
List of Figures	ix

PAGE

CHAPTER

Ι	INTRODUCTION	1
II	BACKGROUND AND LITERARURE REVIEW	3
	2.1 Background	3
	2.1.1 Adsorption	3
	2.1.2 Selectivity	3
	2.1.3 Liquid Phase Adsorption Mechanisms	4
	2.1.3.1 Equilibrium-Selective Adsorption	4
	2.1.3.2 Rate-Selective Adsorption	5
	2.1.3.3 Shape-Selective Adsorption	5
	2.1.3.4 Ion Exchange	5
	2.1.3.5 Reactive Adsorption	6
	2.1.4 Zeolites	6
	2.2 Literature Review	9
III	EXPERIMENTAL	15
	3.1 Materials	15
	3.1.1 Chemicals	15

	3.1.2 Adsorbents	16
	3.2 Experiment	16
	3.2.1 Single Adsorption Experiment	16
	3.2.2 Binary Component Competitive Adsorption	
	Experiment	16
	3.2.3 Dynamic Adsorption: Multi-component Pulse Test	17
IV	RESULTS AND DISCUSSION	19
	4.1 Single Component Adsorption	19
	4.2 Binary Component Competitive Adsorption	29
	4.3 Multi-Component Pulse Test Experiments	40
	4.4 Energy Simulation	46
V	CONCLUSIONS AND RECOMMENDATIONS	49
	REFERENCES	51
	APPENDIX	53
	A.1 Selectivity Calculation	53
	A.1.1 Binary Competitive Equilibrium Adsorption Isotherm	53
	A.1.2 Dynamic Adsorption: Multi-Component Pulse Test	53
	A.2 Sample Preparation	54
	A.2.1 Single Component Adsorption Isotherm	54
	A.2.2 Binary Competitive Adsorption Isotherm	55
	A.3 Double Site Langmuir Parameters	55
	A.3.2 Single Component Adsorption Isotherm	55
	A.3.2 Binary Competitive Adsorption Isotherm	56

CURRICULUM VITAE

57

LIST OF TABLES

TABLE PAGE 3.1 Chemicals used in this work 15 Average equilibrium selectivity for n-paraffin/n-olefin in 4.1 binary competitive adsorption on silicalite at 25 °C 39 Dynamic selectivities for n-paraffin/n-olefin by pulse test 4.2 method on silicalite at 120 °C 43 Dynamic selectivities for n-olefin/n-paraffin by pulse test 4.3 method on silicalite and NaX at 120 °C 46

.

LIST OF FIGURES

FIGURE

.

2.1	Secondary building units and commonly occurring	
	polyhedral units in zeolites framework structure	
	(http://chemmacl.usc.edu/bruno/zeodat/Intro.html)	7
2.2	Characteristic layer of silicalite (Olson et al., 1981)	8
2.3	3-Dimention of the pore structure of silicalite	9
3.1	Experimental set-up of the pulse test unit	18
4.1	Adsorption isotherm for n-hexane at 25 °C	20
4.2	Adsorption isotherm for 1-hexene at 25 °C	20
4.3	Adsorption isotherm for n-octane at 25 °C	21
4.4	Adsorption isotherm for 1-octene at 25 °C	21
4.5	Adsorption isotherm for n-decane at 25 °C	22
4.6	Adsorption isotherm for 1-decene at 25 °C	22
4.7	Adsorption isotherm for n-dodecane at 25 °C	23
4.8	Adsorption isotherm for 1-dodecene at 25 °C	23
4.9	Adsorption isotherm for n-tetradecane at 25 °C	24
4.10	Adsorption isotherm for 1-tetradecene at 25 °C	24
4.11	Adsorption isotherm for n-hexadecane at 25 °C	25
4.12	Adsorption isotherm for 1-hexadecene at 25 °C	25
4.13	Adsorption isotherm for n-octadecane at 25 °C	26
4.14	Adsorption isotherm for 1-octadecene at 25 °C	26
4.15	Adsorption isotherm for n-eicosane at 25 °C	27
4.16	Adsorption isotherm for 1-eicosene at 25 °C	27
4.17	Saturation capacities of n-paraffin and n-olefin on silicalite	
	with the carbon numbers ranging from 6 to 20 on silicalite	
	at 25 °C	28
4.18	Binary adsorption isotherms for n-hexane/1-hexene at 25 $^{ m o}{ m C}$	30

FIGURE

PAGE

4.19	Binary adsorption isotherms for n-octane/1-octene at 25 $^{\circ}\mathrm{C}$	31
4.20	Binary adsorption isotherms for n-decane/1-decene at 25 $^{\circ}C$	31
4.21	Binary adsorption isotherms for n-dodecane/1-dodecene	
	at 25 °C	32
4.22	Binary adsorption isotherms for n-tetradecane/1-tetradecene	
	at 25 °C	32
4.23	Binary adsorption isotherms for n-hexadecane/1-hexadecene	
	at 25 °C	33
4.24	Binary adsorption isotherms for n-octadecane/1-octadecene	
	at 25 °C	33
4.25	Binary adsorption isotherms for n-eicosane/1-eicosene	
	at 25 °C	34
4.26	Comparison between saturation capacities for single and	
	binary component adsorption for n-paraffin and n-olefin on	
	silicalite at 25 °C	34
4.27	Selectivity for n-hexene/1-hexene at 25 °C	35
4.28	Selectivity for n-octane/1-octene at 25 °C	36
4.29	Selectivity for n-decane/1-decene at 25 °C	36
4.30	Selectivity for n-dodecane/1-dodecene at 25 °C	37
4.31	Selectivity for n-tetradecane/1-tetradecene at 25 °C	37
4.32	Selectivity for n-hexadecane/1-hexadecene at 25 °C	38
4.33	Selectivity for n-octadecane/1-octadecene at 25 °C	38
4.34	Selectivity for n-eicosane/1-eicosene at 25 °C	39
4.35	Pulse test results for C_6 , 1- C_6 , 1- C_8 , C_9 , 1- C_9 on silicalite	
	at 120 °C	41
4.36	Pulse test results for C_{10} , 1- C_{10} , C_{12} , 1- C_{12} , C_{14} , 1- C_{14} on	
	silicalite at 120 °C	41

FIGURE

•

PAGE

4.37	Pulse test results for C_{16} , 1- C_{16} , C_{18} , 1- C_{18} , C_{20} , 1- C_{20} on	
	silicalite at 120 °C	42
4.38	Net retention volumes on silicalite for n-paraffin and n-	
	olefin carbon numbers ranging from 6 to 20 at 120 $^{\circ}\mathrm{C}$	42
4.39	Pulse test results for C_6 , 1- C_6 , 1- C_8 , C ₉ , 1- C_9 on NaX at	
	120 °C	44
4.40	Pulse test results for C_{10} , 1- C_{10} , C_{12} , 1- C_{12} , C_{14} , 1- C_{14} on	
	NaX at 120 °C	44
4.41	Pulse test results for C_{16} , 1- C_{16} , C_{18} , 1- C_{18} , C_{20} , 1- C_{20} on	
	NaX at 120 °C	45
4.42	Net retention volumes on NaX for n-paraffin and n-olefin	
	carbon numbers ranging from 6 to 20 versus carbon number	
	at 120 °C	45
4.43	Molecule and silicalite pore structure set up for energy	
	simulation	47
4.44	Energy simulation for n-paraffin and n-olefin carbon number	
	ranging from 6 to 10	48