DEVELOPMENT OF CAPILLARY FLOW TECHNIQUE TO INVESTIGATE THE MECHANISM OF BARIUM SULFATE DEPOSITION

Ratchapum Charoenthaipanich

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2011

I 28375087

Thesis Title:	Development of Capillary Flow Technique to Investigate the
	Mechanism of Barium Sulfate Deposition
By:	Ratchapum Charoenthaipanich
Program:	Petrochemical Technology
Thesis Advisors:	Prof. H. Scott Fogler
	Asst. Prof. Pomthong Malakul

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof/Pomthong Malakul)

Thesis Committee:

(Prof, H. Scott Fogler)

(Asst. Prof. Pomthong Malakul)

1. Sputh 1)

(Asst. Prof. Thammanoon Sreethawong)

Pijovat Wathin

(Dr. Piyarat Wattana)

ABSTRACT

5271028063: Petrochemical Technology Program
Ratchapum Charoenthaipanich: Development of Capillary Flow
Technique to Investigate the Mechanism of Barium Sulfate
Deposition.
Thesis Advisors: Prof. H. Scott Fogler and Asst. Prof. Pomthong
Malakul 54 pp.
Keywords: Barium Sulfate/ Scale/ Deposition/ Capillary/ Pressure Drop/
Mechanism/ Smooth Surface/ Rough Surface/ Pre-scaled Surface

Barium sulfate (BaSO₄) deposition is a significant and costly problem in oilfields which can occur when two incompatible waters mix. The precipitation of barium sulfate normally occurs in the bulk solution but for the deposition, it is not clear how barium sulfate deposits in the pipelines. In this research two possible mechanisms were proposed. First, since barium sulfate nucleation and before growth has completed, barium sulfate can deposit in pipelines. Second, after barium sulfate has completed their growth, barium sulfate can deposit in pipelines. To elucidate the possible mechanism, barium sulfate deposition experiments were conducted by flowing barium chloride and sodium sulfate solutions through a smooth and rough capillary. Results show that barium sulfate deposition is non-uniform and most of the deposition is observed at the beginning of the capillary. Moreover, the deposition is almost the same on both smooth and rough surfaces. In order to investigate the second mechanism, precipitated barium sulfate solution was flowed through a capillary. Results reveal that barium sulfate particles will not deposit on either of the surfaces after they precipitated and grew in the bulk solution. However, after a capillary was pre-scaled and precipitated barium sulfate solution was flowed through it, barium sulfate particles would slowly deposit inside the pre-scaled capillary.

บทคัดย่อ

รัชภูมิ เจริญไทยพานิช : การพัฒนาเทคนิคการใหลผ่านท่อแคปปีลลารีเพื่อศึกษากลไก การเกาะติดของแบเรียมซัลเฟต (Development of Capillary Flow Technique to Investigate the Mechanism of Barium Sulfate Deposition) อ. ที่ปรึกษา: ศ. เอช สกอตต์ ฟอกเลอร์ และ ผศ.คร. ปมทอง มาลากุล ณ อยุธยา 54 หน้า

การเกาะติดของเกลือแบเรียมซัลเฟตเนื่องงากการผสมกันของน้ำสองชนิดที่ไม่เข้ากัน เป็นปัญหาที่รุนแรงและมีค่าใช้ง่ายสูงในกระบวนการขุดเจาะน้ำมัน โดยปกติ การตกตะกอนของ แบเรียมซัลเฟตมักเกิดขึ้นในวัฏภาคของสารละลาย แต่สำหรับการเกาะติดของแบเรียมซัลเฟตใน ท่อนั้นยังเป็นที่ไม่ทราบแน่ซัดถึงขั้นตอนการเกิด งานวิจัยนี้จึงนำเสนอกลไกที่น่าจะเป็นไปได้ใน การเกาะติดสองกลไก โดยในกลไกที่หนึ่ง เริ่มจากการเกิดนิวเคลียสของแบเรียมซัลเฟตที่เกาะติด บนผิวท่อ และเกิดการเดิบโตขยายขนาดของแบเรียมซัลเฟตค่อบนผิวท่อ ส่วนในกลไกที่สองนั้น แบเรียมซัลเฟตจะตกตะกอนในสารละลายก่อน แล้วจึงไปเกาะบนผิวท่อส่อไป เพื่อที่จะเข้าใจถึง กลไกที่เป็นไปได้ จึงได้ทำการทดลองการเกาะติดของแบเรียมซัลเฟตโดยการไหลของสารละลาย แบเรียมซัลเฟตจะตกตะกอนในสารละลายก่อน แล้วจึงไปเกาะบนผิวท่อต่อไป เพื่อที่จะเข้าใจถึง กลไกที่เป็นไปได้ จึงได้ทำการทดลองการเกาะติดของแบเรียมซัลเฟตโดยการไหลของสารละลาย แบเรียมตลอไรด์และโซเดียมซัลเฟตผ่านท่อแตปปิลลารีแบบที่มีผิวเรียบและแบบผิวขรุงระ จาก ผลการศึกษาพบว่าการเกาะติดของแบเรียมซัลเฟตเป็นไปแบบไม่สม่ำเสมอ โดยส่วนใหญ่เกาะอยู่ที่ ผิวช่วงหน้าของท่อแคปปิลลารีและการเกาะติดมีลักษณะคล้ายกันทั้งแบบผิวเรียบหรือแบบผิว งรุงระ สำหรับการศึกษากลไกการเกาะติดแบบที่สองนั้นใช้สารละลายที่มีตะกอนแบเรียมซัลเฟต ไหลผ่านท่อแคปปิลลารี จากผลการศึกษาพบว่าแบเรียมซัลเฟตไม่เกาะบนผิวของแคปปิลลารีไม่ว่า จะเป็นผิวแบบเรียบหรือแบบผิวขรุงระ อย่างไรก็ตามผลการศึกษาเพิ่มเดิมพบว่าแบเรียมซัลเฟต สามารถเกาะติดอย่างช้าๆบนผิวที่มีชั้นของแบเรียมซัลเฟตเกาะอยู่แล้วได้

ACKNOWLEDGEMENTS

My master thesis could not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study. First and foremost, I would like to offer my utmost gratitude to Professor H. Scott Fogler who presented me a great opportunity to do a research and served as my supervisor throughout my stay at the University of Michigan. I am also sincerely thankful to Assistant Professor Pomthong Malakul who served as my Thai advisor for being patient in aiding me in my thesis.

I am very grateful to Fogler research group: Tabish Maqbool, Jason Huang, Nasim Haji Akbari Balou, Adegoke Oluwasegun, Claudio Vilas Boas Favero, Shiv Shankar Kundu, Shanpeng Han, Satinee Yindee, Perapat Srikiratiwong, and especially Michael Hoepfner for their supporting, useful advices, thoughtful discussions and being a good friend. Special thanks also to the previous group member, Ryan Hartman, for providing me suggestions and recommendations which is helpful for my project.

I would also like to acknowledge the faculty and staff in Chemical Engineering Department of the University of Michigan: Professor Nicholas Kotov, Shelly Feller, Claire O'Connor, Susan Hamlin, Laura Bracken, Pablo Lavalle, and Michael Africa for technical support, departmental and visiting-scholar business. Especially thanks to Tom Yavaraski for his instructions of carrying out ICP/MS measurement.

I would like to thanks members of Affiliates Program: Chevron, ConocoPhillips, MSi Kenny, NALCO, Schlumberger, Shell, Statoil, and Total for funding support, comments, suggestions, and directions for my project.

I would also like to show my gratitude to all of my friends in Ann Arbor who creating me precious memories. Particularly thanks to Claudio Vilas Boas Favero, Tanawan Pinnarat, Phapanin Charoenphol, Shreyank Muralidhara, and Christopher Hajime Gerdes who are not only being a great friend but also helping me in everything throughout my stay in Ann Arbor. The author is grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College (PPC); and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand. I would also like to convey thanks to Assistant Professor Thammanoon Sreethawong, and Dr.Piyarat Wattana who served as my thesis committee. I would like to thank all my classmates in PPC, especially Varun Chuenmeechao, who came with me and did research work in the same laboratory, for his support.

Eventually, I would like to express my gratitude to my family for their unequivocal support throughout, as always, for which my mere expression of thanks likewise does not suffice.

TABLE OF CONTENTS

			PAGE
	Title P	age	i
	Abstra	ct (in English)	iii
	Abstra	ct (in Thai)	iv
	Ackno	wledgements	v
	Table	of Contents	vii
	List of	Tables	x
	List of	Figures	xi
СНА	PTER		
	I	INTRODUCTION	1
	II	LITERATURE REVIEW	3
	ш	EXPERIMENTAL	17
		3.1 Materials	17
		3.2 Equipment	17
		3.2.1 HPLC Pumps	17
		3.2.2 Peristaltic Pump	17
		3.2.3 Stirrer	17
		3.2.4 Syringe Pump	17
		3.2.5 Syringe	17
		3.2.6 Stainless Steel Type 316 Tubing	17
		3.2.7 Stainless Steel Fittings from Upchurch Scientific	17
		3.2.8 Differential Pressure Transducer	17
		3.2.9 USB-6009 14 bit, 48 kS/s Multifunction Data	
		Acquisition System	17
		3.2.10 Inductive-Coupled Plasma Spectroscopy/Mass	
		Spectroscopy (ICP/MS)	17

IV

PAGE

viii

3.2.11 Nikon Eclipse E600 Optical Microscope	18
3.2.12 Olympus SZX12 Stereo Microscope	18
3.3 Software	18
3.3.1 LabVIEW by National Instruments	18
3.3.2 ELAN9000	18
3.3.3 WinTV2000	18
3.3.4 Image Pro	18
3.4 Methodology	18
3.4.1 Barium Sulfate Deposition	18
3.4.1.1 Effect of Surface Heterogeneity	19
3.4.2 Flowing Precipitated BaSO ₄ Solution Through a	
Capillary	19
3.4.2.1 Effect of Surface Heterogeneity	20
3.4.3 Quantifying the Deposit Mass	20
3.4.3.1 Dissolution Method	21
3.4.3.2 Gravimetric Method	21
RESULTS AND DISCUSSION	22
4.1 Barium Sulfate Deposition	22
4.1.1 Reused Capillary	22
4.1.2 Decreasing Radius of Capillary	24
4.1.3 Effect of Salt Concentration	25
4.1.4 Effect of Surface Heterogeneity	26
4.2 Comparison of Techniques to Quantify Deposit Mass	29
4.3 Barium Sulfate Dissolution	29
4.4 Non-uniform Deposition	30
4.5 Deposit Location	31
4.6 Flowing Precipitated BaSO ₄ Solution Through a Capillary	y 32
4.6.1 Effect of Surface Heterogeneity on Barium Sulfate	
Particle Deposition	35

V	CONCLUSI	ONS AND RECOMMENDATIONS	41
	5.1 Conclusio	ons	41
	5.2 Recomme	endations	42
	5.2.1 Ex	perimental System	42
	5.2.2 Fu	rther Investigation	42
	REFERENC	ES	44
	APPENDICI	ES	47
	Appendix A	Cleaning System	48
	Appendix B	Morphology and Particle Size of Barium Sulfate	49
	Appendix C	Capillary Position	50
	Appendix D	Dissolution Technique	52
	Appendix E	Supersaturation Ratio and Ion Ratio	53

CURRICULUM VITAE

54

LIST OF TABLES

TABLE		PAGE
4.1	Deposit mass from dissolution method and gravimetric	
	method	29
4.2	Collected mass and total time for fresh capillary and	
	reused capillary	30
4.3	Comparison of uniform mass and collected mass	31
4.4	The collected mass in each capillary sections	32
D. 1	Comparison of the total dissolution time and volume of	
	DTPA solution at different flow rate	52
E.1	Supersaturation ratio and ion ratio at different salt	
	concentration	53

LIST OF FIGURES

FIGU	IGURE		PAGE
2.1	Schematic of mixing of two incompatible waters;		
	seawater and formation water		3
2.2	Turbidity, ion product and number of particles as a		
	function of time		5
2.3	Variation of the absorbance as a function of time.		
	Numbers in the graph are driving forces, which were	۰.	
	calculated from the concentration of two solutions used	1	
	for precipitation of barium sulfate	2	6
2.4	Turbidity of BaSO ₄ solution in absence and presence of	• 2	
	different inhibitor concentrations		7
2.5	Zoom of Figure 2.4 for the first 10 minutes		7
2.6	Mean volume weighted particle size as a function of		
	supersaturation at constant free lattice ion ratio R=5	2	9
2.7	Streaming potential and particle charge measurement as a		
	function of ion ratio at supersaturation ratio $S_a=750$		10
2.8	Mean volume weighted particle size as a function of free		
	lattice ion ratio for $S_a=350$ and 750		10
2.9	Predicted barium sulfate supersaturation with changing		
	temperature at the fixed pressure and changing pressure at		
	the fixed temperature for the low sulfate scaling brine		12
2.10	Schematic diagrams of the structures of EDTA and DTPA		14
2.11	The dissolution of barium sulfate at different DTPA		
	concentrations, 0.05 M and 0.5 M, in the temperature		
	range 22-80 °C		15

2.12	The dissolution of barium sulfate at various DTPA	
	concentrations, 0.0001-0.5 M, at room temperature	
	(22 °C)	16
3.1	Schematic of the experimental apparatus for barium	
	sulfate deposition	19
3.2	Experimental schematic for flowing precipitated particles	
	through a capillary	20
4.1	BaSO ₄ deposition in 1 foot length reused capillary	23
4.2	BaSO ₄ deposition in 3 feet length reused capillary	23
4.3	The radius of capillary as a function of time	24
4.4	Effect of salt concentration on the deposition	25
4.5	Zoom of Figure 4.4 for 3 mM and 5 mM	26
4.6	Outside surface of a capillary. Left: smooth (normal)	
	surface. Right: rough surface	27
4.7	BaSO ₄ deposition in smooth and rough surfaces,	
	$[Ba^{2^+}] = [SO_4^{2^-}] = 1 \text{ mM}$	27
4.8	BaSO ₄ deposition in smooth and rough surfaces,	
	$[Ba^{2+}] = [SO_4^{2-}] = 3 \text{ mM}$	28
4.9	BaSO ₄ deposition in smooth and rough surfaces,	
	$[Ba^{2^+}] = [SO_4^{2^-}] = 5 \text{ mM}$	28
4.10	Accumulated mass of BaSO4 as a function of time of 3	
	feet length capillary	31
4.11	Capillary section schematic	32
4.12	Micrographs showing the morphology and particle size of	
	BaSO ₄ at different salt concentration, $[Ba^{2+}]$: $[SO_4^{2-}]$, in	
	mM: a) 0.41 : 0.7 and b) 5 : 5	33

FIGURE

4.13	Flowing precipitated barium sulfate solution through a	
	smooth surface capillary at different concentrations	34
4.14	Comparison of barium sulfate particles deposition in	
	smooth surface capillary at different concentrations	35
4.15	Flowing precipitated barium sulfate solution through a	
	rough surface capillary at different concentrations	36
4.16	Comparison of barium sulfate particles deposition in	
	rough surface capillary at different concentrations	36
4.17	Creating a pre-scaled surface for 1 mM salt concentration	38
4.18	The deposition of barium sulfate particles in the pre-	
	scaled capillary at 1 mM of $BaCl_2 \cdot 2H_2O$ and Na_2SO_4	
	solutions	38
4.19	Creating a pre-scaled surface for 3 mM salt concentration	39
4.20	The deposition of barium sulfate particles in the pre-	
	scaled capillary at 3 mM of $BaCl_2 \cdot 2H_2O$ and Na_2SO_4	
	solutions	40
A.1	Barium sulfate deposition in the mixing tee	48
B .1	Micrographs showing the morphology and particle size of	
	barium sulfate after BaCl2·2H2O and Na2SO4 solutions	
	were mixed for 5 sec. a) 1 mM b) 3 mM and c) 5 mM	49
C.1	Pressure drop as a function of time when a capillary was	
	mounted in horizontal position	50
C.2	The deposition of flowing two solutions, 3 mM, through	
	horizontal and vertical capillary	51