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ABSTRACT

5271030063: Petrochemical Technology Program
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Hydrogenated Biodiesel over Pd and NiM o Catalysts: Effect of
Catalyst Support
Thesis Advisors: Asst. Prof. Siripom Jongpatiwut, Asst. Prof.
Thammanoon Sreethawong, Dr. Suchada Butnark, and Prof.
Somchai Osuwan 73 pp.
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Hydrogenated biodiesel is one of the biofuels not containing oxygen in its
molecules. The absence of oxygen leads to many advantages such as high cetane
number, high heating value, and high miscibility with fossil fuels. In this research,
the effect of catalyst supports on the production of hydrogenated biodiesel using beef
fat as feedstock has been investigated. Pd-based catalysts (PCI/AI203, PCI/F-Al203,
Pd/SiC>2, PdITIC>2, Pd/C, and Pd/KL) and NiMo-based catalysts (i.e. NiM o/A 1203,
NiM o/F-A1203, NiMo/SiC>2, NiMo/TiU2 NiMo/C, and NiMo/Ce02-Zr02) were
prepared by incipient wetness impregnation. The fresh and spent catalysts were
characterized by XRD, TPR, BET, and TPO. The prepared catalysts were tested in a
continuous flow packed-bed reactor at 500 psig, 325 C, H2/feed molar ratio of 30,
and LHSV 1 h'L The products obtained from all catalysts were hydrocarbons in
diesel specification range. The results showed that by varying catalyst supports the
corresponding catalyst had different properties in term of surface area and metal
particle size. The triglyceride conversion increased with decreasing Pd crystallite
size. However, hydrocarbon selectivity was not significantly changed with catalyst
supports. The main products from Pd catalysts were heptadecane and pentadecane,
resulting from hydrodecarbonylation. Among Pd catalysts, Pd/Ti02 exhibited the
highest hydrocarbon yield. For NiM o catalysts, octadecane and hexadecane were the

main hydrocarbon products, resulting from hydrodeoxygenation.
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