POLY(VINYLIDENE FLUORIDE)/BACTERIAL CELLULOSE NANOCOMPOSITE FILMS FOR TOUCH SENSOR APPLICATIONS

Kamonchanok O-Rak

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2013

I28372311

Thesis Title:	Poly(vinylidene fluoride)/Bacterial Cellulose Nanocomposite
	Films for Touch Sensor Applications
By:	Kamonchanok O-Rak
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Hathaikarn Manuspiya
	Prof. Mohini Sain

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

Hothailan M.

(Asst. Prof. Hathaikarn Manuspiya)

(Prof. Mohini Sain)

Tranycleh Chais_

(Asst. Prof. Thanyalak Chaisuwan)

Aprat balattee

(Asst. Prof. Apirat Laobuthee)

561010

ABSTRACT

5472015063: Polymer Science Program
Kamonchanok O-Rak: Poly(vinylidene fluoride)/Bacterial Cellulose
Nanocomposite Films for Touch Sensor Applications
Thesis Advisors: Asst. Prof. Hathaikarn Manuspiya, Prof.Mohini
Sain 93 pp.
Keywords: Poly(vinylidene fluoride)/ Bacterial cellulose/ Multi-walled carbon

nanotube/ Piezoelectric constant/ Dielectric constant Flexible piezoelectric films of poly(vinylidene fluoride) (PVDF)/bacterial cellulose (BC) were successfully fabricated via solvent-casted and compression

methods. The various weight percentage of BC (2.5-40 wt%) loading into PVDF matrix using dimethylformamide (DMF) as a solvent were studied on the basis of piezoelectric touch sensor. The crystalline phase of all PVDF/BC blend films were formed in both of α and β phase which mainly formed in piezoelectric β polymorph. The PVDF₉₀BC₁₀ was selected as a based nanocomposite to develop further due to this component demonstrated highest dielectric constant over other compositions at the frequency range of 10 MHz- 1 GHz and temperature of -50°C - 100°C. This research was firstly report the in-plane piezoelectric coefficient (d₃₃) of PVDF/BC blend films which as high as -11 pC/N. In order to achieve high piezoelectricity for piezoelectric touch sensor, the carboxyl multi-walled carbon nanotube (MWCNT) was introduced to enhance the d₃₃ of PVDF₉₀BC₁₀. MWCNT has high ability to polarize along an applied electric field which yield to high dielectric constant about 72 at temperature about 80°C and frequency of 10 MHz. The addition of MWCNT 3 phr to PVDF₉₀BC₁₀ showed enhancing in d₃₃ from -11 pC/N to -15 pC/N and exhibited highest remanent polarization (Pr) compared to other compositions. The combination of nano-network fiber implied a significant improving in thermal stability and dynamic mechanical properties due to intermolecular interaction among O- and F-atoms.

บทคัดย่อ

กมลชนก โอรักษ์ : ฟิล์มของวัสดุเชิงประกอบในระดับนาโนของพอลิไวนิลลิดีน ฟลูออไรด์และแบคทีเรียเซลลูโลส สำหรับเซนเซอร์สัมผัส (Poly(vinylidene fluoride)/Bacterial Cellulose Nanocomposite Films for Touch Sensor Applications) อ. ที่ปรึกษา : ผศ.คร. หทัยกานต์มนัสปียะ และ ศ.คร. โมฮินิเซน 93 หน้า

้ฟิล์มเพียโซอิเล็กทริกแบบยืดหยุ่นเตรียมจากพอลิเมอร์ผสมระหว่างพอลิไวนิลลิดีน ฟลูออไรค์และแบคทีเรียเซลลูโลส ถูกเตรียมโคยใช้การขึ้นรูปค้วยสารละลายและการบวนการอัค ้ด้วยความร้อน วัสดุเชิงประกอบถูกเตรียมขึ้นโดยใช้สารละลายไคเมทิลฟอร์มาไมค์ในการช่วยให้ แบคทีเรียเซลลโลส กระจายตัวในเนื้อพอลิเมอร์หลัก ที่อัตราส่วนโคยน้ำหนักต่างๆ กัน เพื่อศึกษา ้สมบัติต่างๆ ที่เกี่ยวข้องการนำไปใช้ตรวจจับแรงสัมผัส พบว่าผลึกของพอลิไวนิลิคีนฟลูออไรค์ถูก ้จัดเรียง ในรูปแบบเบตามากกว่าแบบเอลฟา ซึ่งผลึกแบบเบตาสามารถแสคงสมบัติเพียโซอิเล็ก ทริกได้ดีที่สุด ฟิล์มของพอลิไวนิลลิดีนฟลูออไรด์และแบคทีเรียเซลลูโลส ในอัตราส่วน 90/10 ถูก ้นำมาใช้ศึกษาและปรับปรุงค่าไคอิเล็คทริกและเพียโซอิเล็ก โดยที่อัตราส่วนคังกล่าวแสดงค่าไคอิ เล็กทริกสูงกว่าอัตราส่วนอื่นๆ ในช่วงความถี่ 10 MHz - 1GHz และช่วงอุณหภูมิ -50 ถึง 100 องศา เซลเซียส โดยค่าเพียโซอิเล็กทริก (d,) ของฟิล์มเท่ากับ -11 pC/N เพื่อเพิ่มประสิทธิภาพ ฟิล์ม ้จะต้องมีค่าเพียโซอิเล็กทริกที่สูง ในงานวิจัยนี้ ท่อนาโนคาร์บอนแบบผนังหลายชั้น ถูกนำมาใช้ใน การเพิ่มค่า d₃₃ ในพอลิเมอร์ผสมที่ต้องการศึกษา ซึ่งเป็นสารที่มีความสามารถในการ โพลาไรซ์เมื่อ ถูกเหนี่ยวนำด้วยกระแสไฟฟ้า การเติมท่อนาโนการ์บอนแบบผนังหลายชั้นทำให้เพิ่มค่าไดอิเล็ก ทริก สูงกว่าเมทริกถึง 9 เท่า จากการศึกษาพบว่า ปริมาณท่อนาโนคาร์บอนแบบผนังหลายชั้น 3 phr ส่งผลให้ค่า d₃₃ สูงขึ้นจาก -11 เป็น -15 pC/N และค่าโพลาไรเซชันที่เหลืออยู่เมื่อไม่มี สนามไฟฟ้า มีค่าสูงขึ้นถึง 4 เท่า นอกจากนี้ การผสมเส้นใยโครงสร้างร่างแหในระคับนาโนของ เซลลูโลสในสารผสม ยังเพิ่มความสามารถในการทนความร้อนและสมบัติเชิงกลพลวัต เนื่องจาก แรงระหว่างโมเลกุลที่เกิดจาก อะตอมออกซิเงนและฟลูออรีน

ACKNOWLEDGEMENTS

This thesis work is funded by the Petroleum and Petrochemical College; the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand and the National Research Council Thailand (NRCT), grant number GRB_BSC 55 56 63_07 and GRB_BSS_66_56_63_08.

First of all, I would like to expression my appreciation to my advisor, Assistant Professor Dr. Hathaikarn Manuspiya for her valuable time, guidance, useful suggestion, kindness and vital help throughout this research. In addition, a deeply thanks to all of thesis committee whose taking time to serve on committee and special advices for this research: Assistant Professor Dr. Thanyalak Chaisuwan and Assistant Professor Dr. Apirat Laobuthee.

My special acknowledgement is express to Assistant Professor Dr. Naratip Vittayakporn (King Mongkut's Institute of Technology Ladkrabang), Dr. Teerapon Yamwong (National Metal and Materials Technology Center) and Assistant Professor Dr. Theerachai Bongkarn (Naresuan University) for ferroelectric and piezoelectric measurement to complete my research.

Besides, I would face more difficulties while doing this thesis without the college's staffs, PPC's friends and specially HM group. Thanks for your help, cheerful and suggestions. This is memorable time in my life.

Finally, I would like to especially thanks to my beloved parent, for their trust, support, understand and always beside me. Thank you very much to everyone that I mention above, you are one part of my journey.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	Х
List of Figures	xii

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Piezoelectric Materials	3
	2.1.1 Principle of Piezoelectric Material	3
	2.1.2 Structural Requirement for Piezoelectric Polymer	4
	2.1.3 Piezoelectric Properties of Polymer	4
	2.2 Poly(vinylidene fluorine)	7
	2.3 Cellulose	10
	2.3.1 Source of Cellulose	10
	2.3.2 Chemical Structure of Cellulose	11
	2.3.3 Bacterial Cellulose	15
	2.3.4 Development Cellulose Electro-active paper	18
III	EXPERIMENTAL	21
	3.1 Materials	21
	3.2 Experimental Procedures	21
	3.2.1 Extraction and Purification of Bacterial Cellulose	21

	3.2.2 Preparation of Bacterial Cellulose Suspension in DMI	21
	3.2.3 Fabrication of PVDF/BC Blend Films	22
	3.3 Equipment	23
	3.3.1 Fourier Transform Infrared (FTIR)	23
	3.3.2 Scanning Electron Microscope (SEM)	23
	3.3.3 Transition Electron Microscope (TEM)	23
	3.3.4 X-ray Diffraction (XRD)	23
	3.3.5 Thermogravimetric Analysis (TGA)	24
	3.3.6 Differential Scanning Calorimeter (DSC)	24
	3.3.7 Dynamic Mechanical Analysis (DMA)	25
	3.3.8 Network analyzer	25
	3.3.9 d ₃₃ Meter	25
	3.3.10 Ferroelectric Analyzer	25
	3.3.11 Compression Molding Machine	25
IV	PREPARATION AND CHARACTEIZATION OF	
IV	PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL	
IV	PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS	26
IV	PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS 4.1 Abstract	26 26
IV	 PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS 4.1 Abstract 4.2 Introduction 	26 26 26
IV	 PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS 4.1 Abstract 4.2 Introduction 4.3 Experimental Procedures 	26 26 26 28
IV	 PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS 4.1 Abstract 4.2 Introduction 4.3 Experimental Procedures 4.3.1 Materials 	26 26 26 28 28
IV	 PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS 4.1 Abstract 4.2 Introduction 4.3 Experimental Procedures 4.3.1 Materials 4.3.2 Extraction and Purification of Bacterial Cellullose 	26 26 28 28 28
IV	 PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS 4.1 Abstract 4.2 Introduction 4.3 Experimental Procedures 4.3.1 Materials 4.3.2 Extraction and Purification of Bacterial Cellullose 4.3.3 Fabrication of Nanocomposite Films 	26 26 28 28 28 28 28
IV	 PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS 4.1 Abstract 4.2 Introduction 4.3 Experimental Procedures 4.3.1 Materials 4.3.2 Extraction and Purification of Bacterial Cellullose 4.3.3 Fabrication of Nanocomposite Films 4.3.4 Characterizations 	26 26 28 28 28 28 28 28 28
IV	 PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS 4.1 Abstract 4.2 Introduction 4.3 Experimental Procedures 4.3.1 Materials 4.3.2 Extraction and Purification of Bacterial Cellullose 4.3.3 Fabrication of Nanocomposite Films 4.3.4 Characterizations 4.4 Results and Discussion 	26 26 28 28 28 28 28 28 28 29
IV	 PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS 4.1 Abstract 4.2 Introduction 4.3 Experimental Procedures 4.3.1 Materials 4.3.2 Extraction and Purification of Bacterial Cellullose 4.3.3 Fabrication of Nanocomposite Films 4.3.4 Characterizations 4.4 Results and Discussion 4.4.1 Bacterial Cellulose Characterization 	26 26 28 28 28 28 28 28 29 29
IV	 PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS 4.1 Abstract 4.2 Introduction 4.3 Experimental Procedures 4.3.1 Materials 4.3.2 Extraction and Purification of Bacterial Cellullose 4.3.3 Fabrication of Nanocomposite Films 4.3.4 Characterizations 4.4 Results and Discussion 4.4.1 Bacterial Cellulose Characterization 4.4.2 PVDF/ BC Blends Characterization 	26 26 28 28 28 28 28 28 29 29 31
IV	 PREPARATION AND CHARACTEIZATION OF POLY(VINYLIDENE FLUORIDE) / BACTERIAL CELLULOSE NANOCONPOSITE FILMS 4.1 Abstract 4.2 Introduction 4.3 Experimental Procedures 4.3.1 Materials 4.3.2 Extraction and Purification of Bacterial Cellullose 4.3.3 Fabrication of Nanocomposite Films 4.3.4 Characterizations 4.4 Results and Discussion 4.4.1 Bacterial Cellulose Characterization 4.4.2 PVDF/ BC Blends Characterization 4.4.3 Crystalline Phase Behavior 	26 26 28 28 28 28 28 29 29 31 33

-

viii

- -

		4.4.5 Dynamic Mechanical Properties	39
		4.4.6 Dielectric Properties of PVDF/BC Blend Films	42
		4.4.7 Ferroelectric Properties of PVDF/BC Blend Films	48
	4.5	Conclusions	50
	4.6	Acknowledgement	50
	4.7	References	51
V	PR	EPARATION AND CHARACTEIZATION OF	
	PO	LY(VINYLIDENE FLUORIDE) / BACTERIAL	
	CE	LLULOSE NANOCONPOSITE FILMS	
	5.1	Abstract	53
	5.2	Introduction	53
	5.3	Experimental Procedures	54
		5.3.1 Materials	54
		5.3.2 Extraction and Purification of Bacterial Cellullose	55
		5.3.3 Fabrication of PVDF/BC-MWCNT Nanocomposite	
		Films	55
		5.3.4 Characterizations	55
	5.4	Results and Discussion	56
		5.4.1 Crystalline Phase Behavior	56
		5.4.2 Thermal Transition Observation	58
		5.4.3 Dynamic Mechanical Properties	61
		5.4.4 Dielectric Behavior	63
		5.4.5 Ferroelectric Properties	69
		5.4.6 Piezoelectric Properties	72
	5.5	Conclusions	73
	5.6	Acknowledgement	73
	5.7	References	74

CHAPTER

VI	CONCLUSIONS AND RECOMMENDATIONS	75
	6.1 Conclusions	75
	6.2 Recommendations	76
	REFERENCES	77
	APPENDICES	83
	Appendix A PVDF/BC Blend Analysis	83
	Appendix B PVDF ₉₀ BC ₁₀ -MWCNT Blend Analysis	88
	CURRICULUM VITAE	93

LIST OF TABLES

TABLE		PAGE
2.1	Properties comparison of common piezoelectric polymer	
	and ceramic	5
2.2	Piezoelectric properties of polymers	5
2.3	Comparison between the different methods for enhancing	
	the dielectric permittivity	6
2.4	Chemical composition of some cellulose sources	11
2.5	A classification of the bacteria's capability to produce	
	cellulose	15
2.6	Properties of bacterial cellulose	17
4.1	Crystallinity Index and crystallite size of bacterial cellulose	30
4.2	β -phase contents, F(β) (%) of PVDF and PVDF/BC blends	34
4.3	DSC parameters of PVDF and PVDF/BC blend films	36
4.4	TGA parameters of PVDF and PVDF/BC blend films	36
4.5	Summary of transition temperature and storage modulus of	
	PVDF/BC at different composition from DMA technique	42
4.6	The polarization profile of PVDF and PVDF/BC blend films	49
5.1	β -phase contents, F(β) (%), of PVDF ₉₀ BC ₁₀ with various	
	MWCNT (phr) loading	56
5.2	DSC parameters of PVDF90BC10 at various MWCNT (phr)	
	loading	59
5.3	The analysis of dielectric loss relaxation process by the	
	Arrhenius relationship of $PVDF_{90}BC_{10}$ and $PVDF_{90}BC_{10}$ -	
	MWCNT blend films	68
5.4	The polarization profile of $PVDF_{90}BC_{10}$ and $PVDF_{90}BC_{10}$ -	
	MWCNT blend films	71
5.5	Piezoelectric coefficient, d_{33} (pC/N) of PVDF and its blends	72
Al	β -phase contents, F(β) (%) of PVDF and PVDF/BC blends	83

TABLE

A2	DSC parameters of PVDF and PVDF/BC blends	84
A3	Dielectric constant and dissipation factor of neat PVDF film	
	at different temperature and frequency	85
A4	Dielectric constant and dissipation factor of neat PVDF and	
	PVDF/BC blend films as function of temperature at	
	frequency of 10 MHz	86
A5	Dielectric constant and dissipation factor of neat PVDF and	
	PVDF/BC blend films as function of frequency at	
	temperature of 20°C	87
A6	The P-E hysteresis loop parameters of PVDF and PVDF/BC	
	blend films	87
Bl	β -phase contents, F(β) (%), of PVDF ₉₀ BC ₁₀ with various	
	MWCNT (phr) loading	88
B2	DSC parameters of PVDF90BC10 at various MWCNT (phr)	
	loading	88
B3	The P-E hysteresis loop parameter of $PVDF_{90}BC_{10}$ and	
	PVDF ₉₀ BC ₁₀ -MWCNT blend films	92

LIST OF FIGURES

FIGURE		PAGE
2.1	Definition of piezoelectric and pyroelectric constants.	3
2.2	Beta-phase structure of PVDF with orthorhombic unit	
	cell.	7
2.3	Stretching and electrical poling to induced β -phase of	
	PVDF.	8
2.4	P-E hysteresis loop for PVDF.	9
2.5	Molecular structure of cellulose.	11
2.6	Intra- and intermolecular hydrogen bonding of cellulose	
	chain.	12
2.7	Monoclinic sphenodic structure of cellulose.	13
2.8	Correlation between structure, process, component and	
	Young's modulus.	14
2.9	Statistics publication of bacterial cellulose related	
	articles.	16
2.10	Piezoelectric modulus vs. angle between pressure	
	direction and fiber direction for Oregon pine.	18
2.10	The orientation of cellulose film.	19
2.12	The depolarized current of aligned cellulose composite at	
	various applied poling electric field by TSC	
	measurement.	20
3.1	Bacterial cellulose extraction and purification from nata	
	de coco.	22
4.1	X-Ray diffractogram of bacterial cellulose from nata de	
	coco.	29
4.2	SEM image of dried BC film (a) and TEM image of	
	purified BC (b).	30

FIGURE		PAGE
4.3	SEM images of casted PVDF90BC10 films at (a) 1k and	
	(b) 10k.	32
4.4	SEM images of PVDF/BC blends at different weight	
	compositions.	32
4.5	FTIR spectra of compressed neat PVDF and PVDF/BC	
	blend films.	33
4.6	X-ray diffraction patterns of PVDF and PVDF/BC	
	blends films.	35
4.7	DSC second-heating curves of PVDF and PVDF/BC	
	blends films.	37
4.8	TG-DTA thermograms of PVDF and PVDF/BC blends	
	films.	38
4.9	Storage tensile modulus, E' vs. temperature of PVDF and	
	PVDF ₈₀ BC ₂₀ via solvent-cast and compression technique.	40
4.10	Dissipation factor (E''/E') vs. temperature of PVDF and	
	$PVDF_{80}BC_{20}$ via solvent-cast and compression technique.	40
4.11	Storage tensile modulus, E' vs. temperature of	
	compressed PVDF and 2.5, 5 and 20 wt% BC loading.	41
4.12	Dissipation factor (E"/E') vs. temperature of compressed	
	PVDF and 2.5, 5 and 20 wt% BC loading.	41
4.13	Dielectric constant (a) and dissipation factor (b) of neat	
	PVDF film as function of temperature (°C).	44
4.14	Dielectric constant (a) and dissipation factor (b) of	
	PVDF and BC/PVDF blend films at temperature -50°C -	
	100°C.	45
4.15	Dielectric constant (a) and dissipation factor (b) of PVDF	
	and BC/PVDF blend films as a function of frequency at	
	20°C.	46

xiii

FIGURE

4.16	Dielectric constant (a) and dissipation factor (b) as a	
	function of BC content for PVDF/BC composite sheets at	
	10 MHz, 100 MHz, and 1 GHz (20°C).	47
4.17	P-E hysteresis loop of PVDF/BC blend films at room	
	temperature.	49
5.1	FTIR spectra of PVDF ₉₀ BC ₁₀ and PVDF ₉₀ BC ₁₀ -MWCNT	
	blend films.	57
5.2	XRD diffractograms of PVDF90BC10 and PVDF90BC10-	
	MWCNT blend films at 1, 3 and 5 phr.	57
5.3	DSC second-heating curves of PVDF ₉₀ BC ₁₀ at various	
	MWCNT (phr) loading.	59
5.4	TG-DTA thermograms of PVDF ₉₀ BC ₁₀ at various	
	MWCNT (phr)	60
5.5	Storage tensile modulus, E' vs. temperature of	
	PVDF ₉₀ BC ₁₀ film with various MWCNT loading.	62
5.6	Dissipation factor (E"/E') vs. temperature of $PVDF_{90}BC_{10}$	
	film with various MWCNT loading.	62
5.7	Dielectric constant (a) and dissipation factor (b) of	
	various MWCNT (phr) loading to PVDF90BC10 matrix	
	measured at $10MHz$ and temperature (20, 50 and $80^{\circ}C$).	64
5.8	Dielectric constant (a) and dissipation factor (b) of neat	
	PVDF, $PVDF_{90}BC_{10}$ and $PVDF_{90}BC_{10}$ -MWCNT 5phr	
	films as a function of temperature (°C) at 10 MHz	65
5.9	Dielectric loss (ϵ ") curves of PVDF ₉₀ BC ₁₀ films at	
	temperature -50°C - 130°C.	67
5.10	Dielectric loss (ϵ ") curves of PVDF ₉₀ BC ₁₀ -MWCNT 4	
	phr films at temperature -50°C - 100°C.	67

PAGE

FIGURE

5.11	Arrhenius plot, logarithum of relaxation time versus	
	reciprocal temperature of dielectric loss of PVDF90BC10	
	and $PVDF_{90}BC_{10}$ -MWCNT blend films showing the	
	Arrhenius relationship	68
5.12	P-E hysteresis loop of neat PVDF films at rooth	
	temperature.	69
5.13	P-E hysteresis loop of PVDF90BC10films at room	
	temperature.	70
5.14	P-E hysteresis loop of $PVDF_{90}BC_{10}$ with various amount	
	of MWCNT at room temperature.	71
B1	The frequency maximum versus reciprocal of temperature	89
	for $PVDF_{90}BC_{10}$ film.	
B2	The frequency maximum versus reciprocal of temperature	90
	for PVDF ₉₀ BC ₁₀ -MWCNT 1 phr film.	
B3	The frequency maximum versus reciprocal of temperature	90
	for PVDF ₉₀ BC ₁₀ -MWCNT 2 phr film.	
B4	The frequency maximum versus reciprocal of temperature	91
	for PVDF ₉₀ BC ₁₀ -MWCNT 3 phr film.	
B5	The frequency maximum versus reciprocal of temperature	91
	for PVDF ₉₀ BC ₁₀ -MWCNT 4 phr film.	