REFERENCES

- Abdelmouleh, M. (2005) Modification of cellulose fibers with functionalized silanes: Effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites. <u>Journal of Applied Polymer_Science</u>, 98(3), 974-984.
- Achabya, M.E., Arrakhiza, F.Z., Vaudreuila,S., Essassia, E.M., and Qaissa, A. (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide - PVDF nanocomposite films. <u>Applied Surface Science</u>, 258 7668-7677.
- Adnan, S., Radiah, D., and Biak, A. (2012) The effect of acetylation on the crystallinity of BC/CNTs nanocomposite. <u>Journal of Chemical Technology</u> <u>and Biotechnology</u>, 87, 431-435.
- Aksoy, E.A., Akata, B., Bac, N. and Hasirci, N. (2007) Preparation and characterization of zeolite beta-polyurethane composite membranes. <u>Journal</u> <u>of Applied Polymer Science</u>, 104, 3378-3387.
- Auad, M.L., Contos, V.S., Nutt, S., Aranguren, M.I., and Marcovich, N.E. (2008) Characterization of nanocellulose-reinforced shape memory polyurethanes. <u>Polymer International</u>, 57, 651–659.
- Bae, S. and Shoda, M. (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. <u>Biotechnology Progress</u>, 20(5), 1366-1371.
- Bledzki, A.K., Reihmane, S., and Gassan, J. (1996) Properties and modification methods for vegetable fibers for natural fiber composites. <u>Journal of</u> <u>Applied Surface Science</u>, 59(8), 1329-1336.
- Bledzki, A.K. and Gassan. J. (1999) Composites reinforced with cellulose based fibres. <u>Progress in Polymer Science</u>, 24(2), 221-274.
- Borzani, W. and Souza, S.J. (1995) Mechanism of the film thickness increasing during the bacterail production of cellulose on non-agitated liquid-media. <u>Biotechnology Letters</u>, 17(11), 1271-1272.
- Brown, A. (1886) XLIII- On an aceti ferment which forms cellulose. Journal of the <u>Chemical Society</u>, 49, 432-439.

- Brown, A. (1886) XIX- The chemical action of pure cultivations of bacterium aceti. Journal of the Chemical Society, 49, 172-187.
- Cannon, R.E. and Anderson, S.M. (1991) Biogenesis of bacterial cellulose. <u>Critical</u> reviews in Microbiology, 17(6), 435-447.
- Chao, Y. (2000) Bacterial cellulose production by Acetobacter Xylinum in a 50-L internal loop airlift reactor. <u>Biotechnology and Bioengineering</u>, 68(3), 345-352.
- Ciechanska, D. (2004) Multifunctional bacterial cellulose/chitosan composite materials for medical applications. <u>Fibers and Textiles in Eastern Europe</u>, 12(4), 69-72.
- Chanmal, C.V. and Jog, J.P. (2008) Dielectric relaxations in PVDF/BaTiO3 nanocomposites. <u>Polymer Letters</u>, 2(4), 294–301.
- Chiciudean, T.G. (2011) Production methods and characteristics of bacterial cellulose composites, in Faculty of Applied Chemistry and Materials Science, Department of Chemical Engineering, University of Bucharest: Bucharest.
- Czaja, W., Romanovicz, D., and Brown, J.R.M. (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. <u>Cellulose</u>, 11(3-4), 403-411.
- El-Saied, H., Basta, A.H. and Gobran, R.H. (2004) Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). <u>Polymer-Plastics Technology and Engineering</u>. 43(3). 797-820.
- Fiedler, S., Fussel, M. and Sattler, K. (1989) Production and application of bacterial cellulose I a survey on state of research and investigations concerning fermentation kinetics. <u>Zentralblatt Fur Mikrobiologie</u>, 144(7), 473-484.
- Fukada, E. (1968) Piezoelectricity as a Fundamental Property of Wood. <u>Wood</u> <u>Science and Technology</u>, 2, 299-307.
- Furukawa, T. (1989) Piezoelectricity and Pyroelectricity in Polymers. <u>IEEE</u> <u>Transactions on Electrical Insulation</u>, 24(3), 375-393.

- Fontana, J.D, (1991) Nature of plant stimulators in the production of Acetobacterxylinum (tea fungus) biofilm used in skin therapy. <u>Applied Biochemistry</u> <u>and Biotechnology</u>, 28(9), 341-351.
- Gindl, W. and Keckes, J. (2005) All-cellulose nanocomposite. Polymer, 46, 10221-10225.
- Gregorio, R.Jr. and UENO, E.M. (1999) Effect of crystalline phase, orientation and temperature on the dielectric properties of poly(vinylidene fluoride) (PVDF). Journal of Materials Science, 34(18) 4489 – 4500.
- Guo, H.F., Li, Z.S., Dong, S.W., Chen, W.J., Deng, L., Wang, Y.F., and Ying, D.J.
 (2012) Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. <u>Colloids and Surfaces B: Biointerfaces</u>, 96, 29-36.
- Harrison, J.S. and Ounaies, Z. (2001) <u>Piezoelectric Polymers</u>. 211422 ICASE Report No. 2001-43, National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia.
- He, F., Lau, S., Chan, H.L., and Fan, J. (2009) High dielectric oermittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. <u>Advanced. Materials</u>, 21, 710–715.
- Heinze, T. and Liebert, T. (2001) Unconventional methods in cellulose functionalization. <u>Progress in Polymer Science</u>, 26(9), 1689-1762.
- Hikawa, S. (1996). Manufacture of bacterial cellulose by addition of cellulose formation stimulators. Japan.
- Hilczer, B., Kułek, J., Markiewicz, E., Kosec, M., and Mali, B. (2002) Dielectric relaxation in ferroelectric PZT-PVDF nanocomposites. <u>Journal of Non-Crystalline Solids</u>, 305, 167–173.
- Hsieh, Y.C. (2008) An estimation of the Young's modulus of bacterial cellulose filaments. <u>Cellulose</u>, 15, 507-513.
- Iguchi, M., Yamanaka, S., and Budhiono, A. (2000) Bacterial cellulose- a masterpiece of nature's arts. Journal of Materials Science, 35(2), 261-270.
- Jacob, J.M. and Thomas, S. (2010) Cellulosic fibril–rubber nanocomposites. <u>Rubber</u> <u>Nanocomposites</u>, John Wiley & Sons, Ltd: 197-208.
- Jonas, R. and Farah, L.F. (1998) Production and application of microbial cellulose. <u>Polymer Degradation and Stability</u>, 59(1-3), 101-106.

- Khalil, A., Bhat, A.H., and Yusra, I.A.F. (2012) Green composites from sustainable cellulose nanofibrils: A review. <u>Carbohydrate Polymers</u>, 87, 963-979.
- Kim, H.S., Li, Y., and Kim, J. (2008) Electro-mechanical behavior and direct piezoelectricity of cellulose electro-active paper. <u>Sensors and Actuators A</u>, 147, 304–309.
- Kim, J. and Yun, S. (2006) Discovery of Cellulose as a Smart Material. <u>Macromolecules</u>, 39, 4202-4206.
- Marcovich, N.E., Auad, M.L., Bellesi, N.E., Nutt, S.R., and Aranguren, M.I. (2006) Cellulose micro/nanocrystals reinforced plyurethane. Journal of Materials <u>Research</u>, 21(4), 870-881.
- Masaoka, S., Ohe, T., and Sakota, N. (1993) Production of cellulose from glucose by Acetobactor-xylimun. <u>Journal of Fermentation and Bioengineering</u>, 75(1), 18-22.
- Masaoka, S. (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp sucrofermentans. <u>Bioscience, Biotechnonology</u> <u>and Biochemistry</u>, 60(4), 575-579.
- Nishino, T., Matsuda, I. and Hirao, K. (2004) All-cellulose composite. Macromolecules, 37(20), 7683-7687.
- Park, W., Kang, M., Kim, H., and Jin, H. (2007) Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers. <u>Macromolecular Symposia</u>, 249-250(1), 289-294.
- Patro, T.U., Mhalgi, M.V., Khakhar, D.V., and Misra, A. (2008) Studies on poly(vinylidene fluoride)-clay nanocomposites: Effect of different clay modifiers. <u>Polymer</u>, 49, 3486-3499.
- Ratanakamnuana, U., Atong, D., and Aht-Ong, D. (2012) Cellulose Esters from Waste Cotton Fabric via Conventional and Microwave Heating. <u>Carbohydrate Polymers</u>, 87, 84–94.
- Rao, V., Ashokan, P.V., and Amar, J.V. (2002) Studies on Dielectric Relaxation and Ac Conductivity of Cellulose Acetate Hydrogen Phthalate–Poly (vinyl pyrrolidone) Blend. Journal of Applied Polymer Science, 86, 1702–1708.

-

- Rekik, H., Ghallabi, Z., Royaud, I., Arous, M., Seytre, G., Boiteux, G., and Kallel, A. (2013) Dielectric relaxation behaviour in semi-crystalline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites. <u>Composites: Part B</u>, 45, 1199–1206.
- Romano, M., et al. (1989) Study of the production of cellulose gel and cellulose by Acetobacter-xylinum. <u>Cellulose chemistry and technology</u>, 23(3), 217-223.
- Ross, P., Mayer, R. and Benziman, M. (1991) Cellulose biosynthesis and function in bacteria. <u>Microbiological Reviews</u>, 55(1), 35-58.
- Salimi, A. and Yousefi, A.A. (2003) FTIR studies of b-phase crystal formation in stretched PVDF films. Polymer Testing, 22, 699–704.
- Sattler, K. and Fiedler, S. (1990) Production and application of bacterial cellulose 2 cultivation in a rotating drum fermentor. <u>Zentralblatt Fur Mikrobiologie</u>, 145(4), 247-252.
- Seydibeyoglu, M.O. and Oksman, K. (2008) Novel Nanocomposites Based on Polyurethane and Micro-fibrillated Cellulose. <u>Composites Science and Technology</u>, 68, 908–914.
- Siró, I. and Plackett, D. (2010) Microfibrillated cellulose and new nanocomposite materials: a review. <u>Cellulose</u>, 17(3), 459-494.
- Sodsong, T. (2008) <u>Piezoelectric Polymer for Mechanical Sensors in Smart</u> <u>Card Applications</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Shuford, R.J., Wilde, A.F., Ricca, J.J., and Thomas, G.R. (1977) <u>Piezoelectric</u> <u>Polymer Films for Application in Monitoring Devices.</u> Army Materials and Mechanics Research Center. Watertown, Massachusetts.
- Tang, C. and Liu, H. (2008) Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. <u>Composites: Part A</u>, 39, 1638–1643.
- Tobushi, H., Hara, H., Yamada, E., and Hayashi, S. (1996) Thermomechanical properties in a thin film of shapememory polymer of polyurethane series. <u>Smart Mater Structure</u>, (5). 483–491

- Uehara, Y., Fukumoto, T., Kamimura, Y., Kuroda, S., Kimura1, T., Date, M., Fukada, E., and Tajitsu, Y. (2011) Piezoelectric Characteristics of Poly(γbenzyl-L-glutamate) Film Oriented under Strong Magnetic Field. Japanese Journal of Applied Physics, 50(9),
- Ummartyotin, S., J. Juntaro, et al. (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. <u>Industrial Crops and Products</u>, 35(1), 92-97.
- Wanatabe, K. (1998) Structural features and properties of bacterial cellulose produced in agitated culture. <u>Cellulose</u>, 5(3), 187-200.
- Wanatabe, K. and Yamanaka, S. (1995) Effects of oxygen-tension in the gaseous phase on production and physical properties of bacterial cellulose formed inder static culture conditions. <u>Bioscience</u>, <u>Biotechnonology</u> and <u>Biochemistry</u>, 59(1), 65-68.
- Yun, S. and Kim, J. (2010) Mechanical, electrical, piezoelectric and electro-active behavior of aligned multi-walled carbon nanotube/cellulose <u>Composites.</u> <u>arbon</u>, 49, 518-527.
- Zhu, G.D., Zeng, Z.G., Zhang, L., and Yan, X.J. (2008) Piezoelectricity in β-phase PVDF crystals: A molecular simulation study. <u>Computational Materials</u> <u>Science</u>, 44, 224-229.

APPENDICES

Appendix A PVDF/BC Blend Analysis

The fraction of β phase, F(β), of the samples can be calculated using the followed equation;

$$F(\beta) = \frac{A_{\beta}}{1.26 A_{\alpha} + A_{\beta}}$$
(3.1)

Where A_{α} and A_{β} are absorbance of α and β phase in FTIR spectrum corresponding to wave number of 763 and 840 cm⁻¹, respectively.

Table A1 β -phase contents, F(β) (%) of PVDF and PVDF/BC blends

PVDF/BC	$A_{\alpha} (763 \text{ cm}^{-1})$	$A_{\beta} (840 \text{ cm}^{-1})$	F(β) (%)
100/0	0.05321	0.16754	71.42
97.5/2.5	0.06774	0.17037	63.11
95/5	0.1165	0.26824	65.02
90/10	0.04606	0.09987	63.25
80/20	0.11269	0.22622	61.44
60/40	0.12514	0.16695	51.43

The crystallity of nanocomposite (X_c) was calculated by:

$$X_{c} = \Delta H_{m} \qquad (3.4)$$
$$\overline{\Delta H_{o}(1-\alpha)}$$

Where α is fiber weight content, ΔH_o is the melt enthalpy for 100% crystalline PVDF (102.7 J/g).

Sample	$\Delta H_m(J/g)$	T _g (°C)	T _m (°C)	X _c (%)
PVDF	41.65	-38.96	161.51	40.56
PVDF _{97 5} BC _{2 5}	40.09	-40.25	160.88	40.04
PVDF ₉₅ BC ₅	37.38	-39.95	161.78	38.31
PVDF ₉₀ BC ₁₀	33.10	-40.02	162.01	35.8
PVDF ₈₀ BC ₂₀	33.87	-39.18	162.64	41.22
PVDF ₆₀ BC ₄₀	29.03	-38.57	159.88	47.55

 Table A2
 DSC parameters of PVDF and PVDF/BC blends

	Frequency (MHz)								
Tomporature (%C)	Dielect	ric Cons	tant (ε')	Dissipation Factor					
remperature (C)					(Tanð)				
	10	100	1000	10	100	1000			
-50	3.4270	3.2266	3.1628	.0355	.0161	0.083			
-40	3.5271	3.2825	3.1861	.0489	.0238	.0129			
-30	3.6967	3.3601	3.2173	.0676	.0356	.0192			
-20	3.8750	3.4389	3.2484	.0878	.0484	.0263			
-10	4.0963	3.5263	3.2800	.1163	.0627	.0334			
0	4.5194	3.6821	3.3321	.1613	.0897	.0467			
10	5.0787	3.8762	3.3876	.1956	.1226	.0625			
20	5.8449	4.1463	3.4654	.2109	.1608	.0830			
30	6.6026	4.4679	3.5525	.1993	.1955	.1056			
40	7.2517	4.8617	3.6559	.1677	.2228	.1310			
50	7.6544	5.2750	3.7670	.1312	.2355	.1564			
60	7.9014	5.7194	3.8939	.1033	.2351	.1832			
70	7.9780	6.0244	3.9936	.0864	.2279	.2011			
80	8.0268	6.2745	4.0869	.0769	.2186	.2156			
90	8.1037	6.4214	4.1496	.0714	.2130	.2242			
100	8.0846	6.2943	4.0989	.0790	.2197	.2175			

 Table A3 Dielectric constant and dissipation factor of neat PVDF film at different

 temperature and frequency

Temp		PVDF/BC by weight								
(°C)	100/0	97.5/	95/5	90/10	80/20	100/0	97.5/	95/5	90/10	80/20
		2.5					2.5			
		Dielect	ric Cons	stant (ɛ')	1	1	Dissipat	ion Fac	tor (Tand	š)
-50	3.427	3.314	3.400	3.970	3.078	.0355	.0157	.0333	.0357	.0301
-40	3.527	3.458	3.500	4.101	3.155	.0489	.0320	.0419	.0442	.0424
-30	3.697	3.548	3.247	4.283	3.281	.0676	.0445	.0594	.0626	.0597
-20	3.875	3.786	3.877	4.531	3.440	.0878	.0727	.0901	.0835	.0813
-10	4.096	3.954	4.092	4.893	3.689	.1163	.0910	.1157	.1197	.1160
()	4.520	4.378	4.537	5.330	4.056	.1613	.1303	.1580	.1634	.1528
10	5.079	4.937	5.097	6.023	4.423	.1956	.1716	.1923	.1986	.1761
20	5.845	5.671	5.923	6.917	4.979	.2109	.1881	.2101	.2162	.1892
30	6.603	6.407	6.608	7.813	5.520	.1993	.1877	.2002	.2108	.1760
40	7.252	7.042	7.301	8.694	5.925	.1677	.1580	.1720	.1809	.1512
50	7.654	7.547	7.860	9.375	6.209	.1312	.1279	.1278	.1371	.1236
60	7.901	7.863	8.144	9.746	6.384	.1033	.0987	.0999	.1034	.0996
70	7.978	7.823	8.264	9.895	6.486	.0864	.0865	.0803	.0850	.0819
80	8.027	8.116	8.324	9.984	6.568	.0769	.0773	.0721	.0737	.0723
90	8.104	8.297	8.384	10.09	6.612	.0714	.0572	.0643	.0743	.0714
100	8.085	8.315	8.453	10.05	6.611	.0790	.0633	.0634	.0674	.0797

Table A4 Dielectric constant and dissipation factor of neat PVDF and PVDF/BCblend films as function of temperature at frequency of 10 MHz

		PVDF/RC	Frequency (MHz)							
		I V DI I DC	10	20	50	100	200	500	1000	
		100/0	5.8449	5.1161	4.5005	4.1463	3.8737	3.6088	3.4654	
ric t (ɛ')	97.502.5	5.6707	4.9937	4.4096	4.0634	3.7865	3.5300	3.4044		
electi	stant	95/5	5.8671	5.2420	4.5091	4.1479	3.8941	3.6952	3.6440	
Die Cons	Cons	90/10	6.9169	6.0100	5.2874	4.8496	4.5671	4.3514	4.3229	
		80/20	4.9794	4.3942	3.9242	3.6447	3.4255	3.2147	3.0962	
		100/0	.2109	.2032	.1892	.1608	.1383	.1042	.0830	
ion	anð	97.502.5	.1881	.1906	.1711	.1496	.1263	.0957	.0787	
ipat	r (T	95/5	.2101	.1995	.1853	.1491	.1172	.0730	.0527	
Diss	acto	90/10	.2162	.2046	.1872	.1485	.1132	.0654	.0435	
	H	80/20	.1892	.1797	.1697	.1441	.1239	.0942	.0751	

Table A5 Dielectric constant and dissipation factor of neat PVDF and PVDF/BCblend films as function of frequency at temperature of 20°C

Table A6 The P-E hysteresis loop parameters of PVDF and PVDF/BC blend films

Value	PVDF/BC (wt %)							
	100/0	97.5/2.5	95/5	90/10	80/20	60/40		
P_{Max} (μ C/cm ²)	0.0671	0.0789	0.0660	0.0778	0.06624	0.05244		
$P_r (\mu C/cm^2)$	0.0024	0.0048	-0.0002	0.0041	0.00342	0.00119		
$-P_r (\mu C/cm^2)$	-0.0064	-0.0086	0.0012	-0.0098	-0.00645	-0.0029		
V _c (V/m)	73.6429	233.9358	-92.1962	93.5028	84.2390	0		
$-V_{c}(V/m)$	-117.436	-176.247	5.3362	-146.95	-91.5324	-52.1359		
C _{Max} -Eff (nF)	0.0355	0.02048	0.0244	0.0210	0.06294	0.0389		
Offset (µC/cm ²)	0.0015	0.00642	-0.0015	0.00306	0.003084	-0.00132		

Appendix B PVDF₉₀BC₁₀-MWCNT Blend Analysis

Table B1 β -phase contents, F(β) (%), of PVDF₉₀BC₁₀ with various MWCNT (phr) loading

MWCNT (phr)	A_{α} (763 cm ⁻¹)	$A_{\beta} (840 \text{ cm}^{-1})$	F(β) (%)
0	0.04606	0.09987	63.25
1	0.14154	0.30213	60.58
2	0.27173	0.2884	45.71
3	0.15779	0.23521	54.19
4	0.08121	0.09565	48.31
5	0.16201	0.26793	56.76

Table B2 DSC parameters of $PVDF_{90}BC_{10}$ at various MWCNT (phr) loading

MWCNT (phr)	$\Delta H_m(J/g)$	T _g (°C)	T _m (°C)	X_{c} (%)
0	33.10	-40.02	162.01	35.8
1	32.72	-38.55	160.70	35.4
2	30.86	-38.90	159.18	33.4
3	31.59	-39.13	158.92	34.2
4	34.17	-36.39	162.00	37.0
5	32.86	-37.90	161.95	35.6

*Heat of fusion value for 100% crystalline PVDF, $\Delta H_0 = 102.7 \text{ J/g}$

The crystalline relaxation process on dielectric behaviour can be described using Arrhenius law as following equation;

$$\tau = \tau_{o} \exp\left(\frac{E_{a}}{kT}\right)$$

Where k is the Boltzmann's constant (8.314 x 10^{-15} eV/K), T is the maximum relaxation temperature, τ_0 is the time constant.

$$\ln \tau = \ln \tau_{o} + (\underline{E_{a}}) \frac{1}{kT}$$

The E_a can be calculated from the slope of ln τ vs. 1/T and τ_o is an intersect with the vertical axis

Figure B1 The frequency maximum versus reciprocal of temperature for PVDF₉₀BC₁₀ film.

Figure B2 The frequency maximum versus reciprocal of temperature for PVDF₉₀BC₁₀-MWCNT 1 phr film.

Figure B3 The frequency maximum versus reciprocal of temperature for PVDF₉₀BC₁₀-MWCNT 2 phr film.

Figure B4 The frequency maximum versus reciprocal of temperature for PVDF₉₀BC₁₀-MWCNT 3 phr film.

Figure B5 The frequency maximum versus reciprocal of temperature for PVDF₉₀BC₁₀-MWCNT 4 phr film.

Value	MWCNT (phr)							
, and c	0	1	2	3	4	5		
P_{Max} (μ C/cm ²)	0.0671	0.0789	0.0660	0.0778	0.06624	0.05244		
$P_r (\mu C/cm^2)$	0.0024	0.0048	-0.0002	0.0041	0.00342	0.00119		
$-P_r (\mu C/cm^2)$	-0.0064	-0.0086	0.0012	-0.0098	-0.00645	-0.0029		
$E_{c}(V/m)$	73.6429	233.9358	-92.1962	93.5028	84.2390	0		
$-\mathbf{E}_{c}(\mathbf{V}/\mathbf{m})$	-117.436	-176.247	5.3362	-146.95	-91.5324	-52.1359		
C _{Max} -Eff (nF)	0.0355	0.02048	0.0244	0.0210	0.06294	0.0389		
Offset (µC/cm ²)	0.0015	0.00642	-0.0015	0.00306	0.003084	-0.00132		

Table B3 The P-E hysteresis loop parameter of $PVDF_{90}BC_{10}$ and $PVDF_{90}BC_{10}$ -MWCNT blend films

CURRICULUM VITAE

Name: Ms. Kamonchanok O-Rak

Date of Birth: August 28, 1989

Nationality: Thai

University Education:

2007–2011 Bachelor Degree of Science in Material Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

Proceeding:

 O-Rak, K.; Ummartyotin, S.; Sain, M.; and Manuspiya, H. (2013, April 24) Dielectric Behavior of Carboxyl Multi-walled Carbon Nanotube Filled Poly(vinylidene fluoride)/Bacterial Cellulose Blends. <u>Proceeding of The 4th</u> <u>Research Symposium on Petrochemical and Materials Technology and The 19th</u> <u>PPC Symposium on Petroleum, Petrochemicals, and Polymers</u>, Bangkok, Thailand.

Presentations:

- O-Rak, K.; Ummartyotin, S.; Sain, M.; and Manuspiya, H. (2012, December 9-14) Direct Piezoelectricity of Multi-walled Carbon Nanotubes Filled Bacterial Cellulose Based Nanocomposites. Paper presented at <u>The 8th Asian Meeting on</u> <u>Ferroelectrics (AMF-8)</u>. Pattaya, Thailand.
- O-Rak, K.; Ummartyotin, S.; Sain, M.; and Manuspiya, H. (2013, April 24) Dielectric Behavior of Carboxyl Multi-walled Carbon Nanotube Filled Poly(vinylidene fluoride)/Bacterial Cellulose Blends. Paper presented at <u>The 4th</u> <u>Research Symposium on Petrochemical and Materials Technology and The 19th</u> <u>PPC Symposium on Petroleum, Petrochemicals, and Polymer</u>, Bangkok, Thailand.
- O-Rak, K.; Ummartyotin, S.; Sain, M.; and Manuspiya, H. (2013, May 21-23) Preparation and Characterization of Transparent Nanocomposite Films of Bacterial Cellulose/Acrylic Resin. Paper presented at <u>The 3rd International</u> <u>Symposium - Frontiers in Polymer Science 2013</u>, Sitges, Spain.