ชิสเต็มมาติกระดับโมเลกุลของพืชสกุลปาหนันช้างและสกุลใกล้เคียง ในเอเชียตะวันออกเฉียงใต้

นางสาวมลิวรรณ นาคขุนทด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาวิทยาศาสตร์ชีวภาพ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-14-1762-4 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

MOLECULAR SYSTEMATICS OF THE GENUS GONIOTHALAMUS AND RELATED GENERA IN SOUTH-EAST ASIA

Miss Maliwan Nakkuntod

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Biological Sciences
Faculty of Science
Chulalongkorn University
Academic Year 2005
ISBN 974-14-1762-4

Thesis Title	Molecular Systematics of the Genus Goniothalamus and Related
	Genera in South-East Asia
Ву	Maliwan Nakkuntod
Filed of Study	Biological Sciences
Thesis Advisor	Tosak Seelanan, Ph.D.
Thesis Co-advisor	Associate Professor Richard M.K. Saunders, Ph.D.
Accepted by the	Faculty of Science, Chulalongkorn University in Partial Fulfillment
of the Requirements f	or the Doctor's Degree
	T. Vitidsont
	Deputy Dean for Administrative Affairs,
	Acting Dean, The Faculty of Science
	(Associate Professor Tharapong Vitidsant, Ph.D.)
THESIS COMMITTEE	Pongthann Lotrabul Chairman
	(Assistant Professor Pongtharin Lotrakul, Ph.D.)
	Thesis Advisor
	(Tosak Seelanan, Ph.D.)
	Thesis Co-advisor
	(Associate Professor Richard M.K. Saunders, Ph.D.)
	Chumpol Khunwari Member
	(Chumpol Khunwasi, Ph.D.)
	Member
	(Associate Professor Somsak Panha, Ph.D.)
	Piya Chalenylin Member
	(Piya Chalermglin, Ph.D.)
	S Saddee Member

(Somran Suddee, Ph.D.)

นางสาวมลิวรรณ นาคขุนทด : ซิสเต็มมาติกระดับโมเลกุลของพืชสกุลปาหนันช้างและสกุล ใกล้เคียงในเอเชียตะวันออกเฉียงใต้ (MOLECULAR SYSTEMATICS OF THE GENUS GONIOTHALAMUS AND RELATED GENERA IN SOUTH-EAST ASIA) อาจารย์ที่ปรึกษา : อาจารย์ ดร. ต่อศักดิ์ สีลานันท์ อาจารย์ที่ปรึกษาร่วม : Associate Professor Dr. Richard M.K. Saunders จำนวนหน้า 75 หน้า. ISBN 974-14-1762-4.

พืชสกุลปาหนันช้าง (Goniothalamus Hook. f. & Thomson) เป็นสกุลใหญ่ที่สุดสกุลหนึ่งของ พืชในวงศ์กระดังงา (Annonaceae) มีการกระจายพันธุ์อยู่ในเขตร้อนและกึ่งเขตร้อนในทวีปเอเชีย ที่ ผ่านมาการศึกษาความสัมพันธ์ทางวิวัฒนาการของพืชสกุลนี้มีเพียงเล็กน้อย ดังนั้นเพื่อศึกษาประวัติ การวิวัฒนาการและความสัมพันธ์ระหว่างสมาชิกในสกุลนี้ และเข้าใจถึงวิวัฒนาการของลักษณะ สัณฐานบางประการ จึงใช้ลำดับเบสในคลอโรพลาสต์ คือ ลำดับเบสระหว่างยืน trnL-F และใน นิวเคลียส คือ ส่วนของ ITS มาทำการวิเคราะห์ความสัมพันธ์ทางสายวิวัฒนาการ จากผลการวิเคราะห์ สายวิวัฒนาการพบว่าพืชสกุลปาหนันซ้างเป็นวงศ์วานเดี่ยว (monophyletic group) โดยมีสาย วิวัฒนาการข้าวหลาม (G. tamirensis) และปาหนันจิ๋ว (G. elegans) เป็นสายวิวัฒนาการสายแรกที่ แยกออกมา ส่วนชนิดอื่นที่เหลือในสกุลนี้ต่อมาจึงแยกย่อยและมีสายวิวัฒนาการใหญ่ๆ การศึกษาวิวัฒนาการของลักษณะทางสัณฐานวิทยาจำนวน 43 ลักษณะ พบว่าลักษณะส่วนใหญ่เป็น ลักษณะที่เกิดขึ้นในหลายสายวิวัฒนาการที่ไม่เกี่ยวข้องกัน (homoplastic) แต่อย่างไรก็ตามใน 43 ลักษณะนี้มี 9 ลักษณะที่อาจเป็นประโยชน์ต่อการจัดหมวดหมู่ โดยอาจจะเป็นลักษณะก้าวหน้าร่วม (synapomorphic) ในสายวิวัฒนาการบางสาย ผลการวิเคราะห์ความสัมพันธ์ทางวิวัฒนาการมีความ แตกต่างกับการจัดหมวดหมู่ในระดับต่ำกว่าสกุลของ Bân อย่างมาก ดังนั้นจึงควรมีการจัดหมวดหมู่พืช ในสกุลนี้ใหม่โดยใช้ผลการวิเคราะห์ข้อมูลทางโมเลกุลและทางสัณฐานวิทยาร่วมกัน

สาขาวิชาวิทยาศาสตร์ชีวภาพ	.ลายมือชื่อนิสิต	Dopu Kan
ปีการศึกษา2548	.ลายมือชื่ออาจารย์ที่ปรึกษ	, lus Sow
	ลายมือชื่ออาจารย์ที่ปรึกษ	red rated 180 is

4473827223 : BIOLOGICAL SCIENCES

KEY WORDS: Goniothalamus / molecular systematics / phylogenetic analysis / trnL-F

intergenic spacer /internal transcribed spacer/ Annonaceae

MALIWAN NAKKUNTOD: MOLECULAR SYSTEMATICS OF THE GENUS

GONIOTHALAMUS AND RELATED GENERA IN SOUTH-EAST ASIA.

THESIS ADVISOR: TOSAK SEELANAN, Ph.D., THESIS CO-ADVISOR: RICHARD

M.K. SAUNDERS, Ph.D. 75 pp. ISBN 974-14-1762-4.

The genus *Goniothalamus* Hook. f. & Thomson is one of the largest genera of the family Annonaceae. Its members are widespread in tropical and subtropical Asia. Little is known of the phylogenetic relationships within the genus. Thus, to evaluate evolutionary history and relationships among its members and to understand the evolution of selected morphological character, the *trnL-F* intergenic spacer and nuclear ITS region markers were employed. The results suggested that *Goniothalamus* is likely to be monophyletic, with the *G. tamirensis-G. elegans* clade sister to the rest of the genus. The larger clade was divided into four recognizable subclades. Almost 43 morphological characters when evaluated on the molecular tree were homoplastic. However, as many as 9 characters were partial informative as these are synapomorphic for some clades. The phylogeny was highly incongruent with Bân's classification; thus a new classification scheme should be proposed based on new evidence of molecular and morphological analyses.

Field of StudyBiological Sciences	Student's signature	Nakkuni	0d11.
Field of StudyBiological Sciences Academic year2005	Advisor's signature	July W	

Co-advisor's signature.

N/11...+ 1M

Acknowledgements

I would like to thank my advisor, Dr. Tosak Seelanan, and Associate Professor Dr. Richard M.K. Saunders, who have been admirable colleagues and mentors. Their expertise and accurate judgment has been invaluable for my work. Their kind support and encouragement has been appreciative. Acknowledgements are extended to my committee, Assistant Professor Dr. Pongtharin Lotrakul, Dr. Chumpol Khunwasi, Associate Professor Dr. Somsak Panha, Dr. Piya Chalermglin, and Dr. Somran Suddee, for their valuable comments and suggestions, which considerably improved this dissertation.

I would like to acknowledge these sources of plant materials, namely Dr. Piya Chalermglin, Dr. Shumpei Kitamura, Ms. Siriwan Nakkuntod, Hornbill Thailand Project, The University of Hong Kong, Nationaal Herbarium Nederland, Leiden branch and The Arnold Arboretum, Harvard University Herbaria. I appreciate for the research facilities at Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, and Department of Ecology and Biodiversity, The University of Hong Kong, China. This study has been supported by the TRF/BIOTEC Special Program for Biodiversity Research and Training grant T_147016; Center of Excellence in Biodiversity, Faculty of Science, Chulalongkorn University (CEB_D_2_2005) and Graduate School; Commission on Higher Education, Ministry of Education, Thailand, and Biological Science Ph.D. Program, Faculty of Science, Chulalongkorn University. I am grateful for their support. The Department of Biology, Faculty of Science, Naresuan University, permitted the author to pursue Ph.D. study with no hesitation, which I am thankful.

I am deeply in debt to the assistance and kind supports of Yvonne Su, Zhou Lin Lin, Wang Jing and Heidi Kong, The University of Hong Kong. Acknowledgements are extended to Associate Professor Dr. Kumthorn Thirakhupt, Associate Professor Dr. Surin Piyachoknakul, Mrs. Nitaya Homchan, Mr. Nakarin Sukwatnangkul, all friends and staff in Department of Botany; also to colleagues in the Biological Science Ph.D. Program, Chulalongkorn University, and all mentors in Department of Biology, Faculty of Science, Naresuan University, Phitsanulok.

Last, but not least, family members of the Nakkuntods owed my gratefulness. They all, especially Mr. Chan and Mrs. Suwannee Nakkuntod, parents; Mrs. Bubpapan Wongphu-gna and Ms. Siriwan Nakkuntod, sisters; have been so helpful in completing this degree. Without whose endless patience and encouragement, I could not have been able to start nor finish this work. I would like to express my deep gratitude and dedicate this degree to them.

Table of Contents

	Page
Thai Abstract	iv
English Abstract	٧
Acknowledgement	vi
Table of Contents	vii
List of Tables	ix
List of Figures	X
CHAPTER I GENERAL INTRODUCTION	1
CHAPTER II THE OVERVIEW OF THE FAMILY ANNONACEAE AND	
GENUS GONIOTHALAMUS	3
CHAPTER III ANALYSIS OF MOLECULAR DATA IN THE GENUS	
GONIOTHALAMUS USING NUCLEAR DNA AND	
CHLOROPLAST DNA MARKERS	9
3.1 INTRODUCTION	9
3.1.1 The chloroplast encoded <i>trnL-F</i> region	9
3.1.2 Internal Transcribed Spacer (ITS) Region	10
3.1.3 Systematic Studies of Annonaceae	10
3.2 MATERIALS AND METHODS	12
3.2.1 Taxon Sampling	12
3.2.2 DNA Extraction	13
3.2.3 PCR Amplification and sequencing	13
3.2.4 Data Analysis	17
3.3 RESULTS	18
3.3.1 trnL-F intergenic spacer analysis	
(full data: 44 ingroup + 10 outgroup)	18
3.3.2 ITS analysis	21
3 3 3 Combined data analysis	23

	viii
	Page
3.4 DISCUSSION	25
3.4.1 Comparison among trnL-F/ITS/combined data trees	25
3.4.2 Infra-generic relationships within Goniothalamus	26
CHAPTER IV CHARACTER EVOLUTION IN THE GENUS GONIOTHALAMUS	29
4.1 INTRODUCTION	29
4.2 MATERIALS AND METHODS	30
4.2.1 Phylogenetic framework	30
4.2.2 Morphological characters	30
4.2.3 Character Evolution	30
4.3 RESULTS AND DISCUSSION	31
4.3.1 Habit and vegetative characters	31
4.3.2 Flowers	34
4.3.3 Sepals	34
4.3.4 Outer and inner petals	37
4.3.5 Stamens and stamen connectives	40
4.3.6 Carpels and pistils	40
4.3.7 Monocarps and seeds	43
CHAPTER V CONCLUSION	49
REFERENCES	50
APPENDICES	59
APPENDIX A PROTOCOL FOR DNA EXTRACTION OF HERBARIUM	
SPECIMENS	60
APPENDIX B CHARACTER SCORING FOR MORPHOLOGICAL	
DATA MATRIX	62
BIOGRAPHY	64

List of Tables

Table	Page
3.1 List of taxa used for phylogenetic analyses. Herbarium abbreviation was	
followed Index Herbariorum I (Holmgren, Keuken and Schofield, 1981)	14
3.2 Results from the maximum parsimony analyses of trnL-F intergenic spacer,	
ITS and combined data	19

List of Figures

Fig	ures	Pag
2.1	The distribution of Goniothalamus	5
3.1	The two topologies of the consensus trees of Goniothalamus from	
	the full trnL-F data set. The clade indicated by "O" was an outgroup.	
	A, B, C, D, E, F, G and H were groups for discussion. Number in	
	front of slash was branch length and number after slash was	
	bootstrap value from 100 replicates. Hyphen indicated bootstrap	
	value below 50%	20
3.2	The strict consensus tree of Goniothalamus ITS sequence data with	
	uninformative characters excluded. The clade indicated by "O"	
	was an outgroup. A, B, C, E, H and I were groups for discussion.	
	Number in front of slash was branch length and number after slash	
	was bootstrap value from 100 replicates	22
3.3	The most parsimonious tree from combined trnL-F and ITS data	
	sets. The clade indicated by "O" was an outgroup. A, B, C, E, H,	
	I and J were clades for discussion. Number in front of slash was	
	branch length and number after slash was bootstrap value from	
	100 replicates. Hyphen indicated bootstrap value below 50%	24
4.1	Trees showing inferred evolution of habit (A), indument of young	
	primary shoots (B) and glossiness of leaf lamina (adaxially) (C) in	
	Goniothalamus	32
4.2	Trees showing inferred evolution of prominence of secondary veins	
	(adaxially) (A), tertiary vein arrangement (B) and flower position (C)	
	in Goniothalamus	33
4.3	Trees showing inferred evolution of flower position (A), flower	
	pedicle length (B) and sepal fusion (C) in Goniothalamus	35
4.4	Trees showing inferred evolution of sepal venation (A), sepal reflexion (B)	
	and outer netal length (C) in Goniothalamus	36

Figures	Page
4.5 Trees showing inferred evolution of shape of outer petal base (A),	
indument of basal adaxial region of outer petals (B) and shape of	
inner petals (C) in Goniothalamus	38
4.6 Trees showing inferred evolution of indumenta of inner petal	
(adaxially) (A), presence of glabrous basal flanges on inner petal claw (B)	
and staminal connective shape (C) in Goniothalamus	39
4.7 Trees showing inferred evolution of ovary indument (A), style indument (B)	
and stigma shape (C) in Goniothalamus	41
4.8 Trees showing inferred evolution of stigma indument (A), sepal	
persistence in fruit (B) and monocarp shape (C) in Goniothalamus	42
4.9 Trees showing inferred evolution of monocarp width (A),	
occurrence of longitudinal ridge on monocarp (B) and	
pericarp thickness (C) in Goniothalamus	44
4.10 Trees showing inferred evolution of seed number per monocarp (A)	
and indument of seed testa (B) in Goniothalamus	46
4.11Trees showing inferred evolution of seed micropylar plug (A) and	
mucilage around seeds (B) in Goniothalamus	47