DEOXYGENATION OF JATROPHA OIL FOR THE PRODUCTION OF HYDROGENATED BIODIESEL: EFFECT OF ACTIVE METALS

Teeralak Tharawut

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2011

I 28375026

Thesis Title:	Deoxygenation of Jatropha Oil for the Production of
	Hydrogenated Biodiesel: Effect of Active Metals
By:	Teeralak Tharawut
Program:	Petrochemical Technology
Thesis Advisors:	Asst. Prof. Siriporn Jongpatiwut
	Prof. Somchai Osuwan
	Prof. Daniel E. Resasco

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Siriporn Jongpatiwut)

Namel Nenso

(Prof. Daniel E. Resasco)

- 1hz A.Q

(Prof. Somchai Osuwan)

7. SrA

(Asst. Prof. Thammakoon Sreethawong)

the BK

(Dr. Suchada Butnark)

ABSTRACT

 5271037063: Petrochemical Technology Program Teeralak Tharawut: Deoxygenation of Jatropha Oil for the Production of Hydrogenated Biodiesel: Effect of Active Metals Thesis Advisors: Asst. Prof. Siriporn Jongpatiwut, Prof. Somchai Osuwan, and Prof. Daniel E. Resasco 71 pp.
Keywords: Hydrogenated Biodiesel/ Jatropha Oil/ Deoxygenation/ Decarbonylation

Hydrogenated biodiesel is referred to as diesel-like hydrocarbons that do not contain oxygen in their molecules. Its properties are much better than those of typical biodiesel such as higher heating value, higher cetane number, and lower corrosiveness. It can be produced via deoxygenation process. In this work, the production of hydrogenated biodiesel from jatropha oil was studied over catalysts containing different active metals. The studied catalysts are Pd/Al₂O₃, Pt/Al₂O₃, Cu/Al₂O₃, NiCu/Al₂O₃, NiMo/Al₂O₃, and CoMo/Al₂O₃. The reactions were carried out in a continuous flow packed-bed reactor at 325°C, 500 psig, H₂/feed molar ratio of 30 by varying liquid hourly space velocities (LHSV) (0.5, 1, 2, 3, and 4 h^{-1}). The results showed that Pt/Al₂O₃ catalyst gave the highest catalytic activity among the others at the same LHSV. The liquid products obtained over these catalysts are hydrocarbons in the range of diesel fuel. The different catalysts give different product distributions. The hydrocarbons obtained over Pd/Al₂O₃, Pt/Al₂O₃, and NiCu/Al₂O₃ catalysts are mainly n-heptadecane (n-C17). In contrast, Cu/Al₂O₃, NiMo/Al₂O₃, and CoMo/Al₂O₃ give n-octadecane (n-C18) as the main product. Moreover, the reaction intermediates which are stearic acid, palmitic acid, hexadecanol, octadecanol, monoglycerides, and fatty esters were also observed. The amount of intermediates increased with increasing LHSV.

บทคัดย่อ

ธราลักษณ์ ธราวุธ : การผลิตไฮโครจีเนตไบโอคีเซลจากน้ำมันสบู่คำ: ผลของโลหะบน ตัวเร่งปฏิกิริยา (Deoxygenation of Jatropha Oil for the Production of Hydrogenated Biodiesel: Effect of Active Metals) อ. ที่ปรึกษา: ผศ. คร. ศิริพร จงผาติวุฒิ ศ. คร. สมชาย โอสุวรรณ และ ศ. คร. แดเนียล อีรีซัสโก 71 หน้า

ไฮโครจีเนตไบโอคีเซลคือน้ำมันคีเซลที่มีองค์ประกอบเป็นสารไฮโครคาร์บอนซึ่งไม่มี ้ออกซิเจนอยู่ในโครงสร้างโมเลกุลทำให้มีสมบัติที่ดีกว่าไบโอดีเซลทั่วไป เช่น ค่าพลังงานความ ้ร้อนเมื่อเผาใหม้และค่าซีเทนที่สูงกว่า อีกทั้งมีคุณสมบัติในการกัดกร่อนต่ำ การสังเคราะห์ไฮโครจี เนตไบโอคีเซลจากน้ำมันพืชทำได้โดยผ่านกระบวนการคืออกซิจิเนชัน ในงานวิจัยนี้ทำการศึกษา การผลิตไฮโครจีเนตไบโอคีเซลจากน้ำมันสบุ่คำโดยใช้ตัวเร่งปฏิกิริยาที่มีโลหะต่างชนิคกัน ได้แก่ Pd/Al2O3, Pt/Al2O3, Cu/Al2O3, NiCu/Al2O3, NiMo/Al2O3, และ CoMo/Al2O3 โดยได้ ทำการศึกษาภายใต้เครื่องปฏิกรณ์แบบไหลต่อเนื่องชนิดเบดนิ่งที่สภาวะอุณหภูมิ 325°C, ความ ้ดัน 500 psig. สัดส่วนโดยโมลไฮโครเงนต่อน้ำมันสบู่ดำเท่ากับ 30 โดยแปรผันระยะเวลาของ สารที่อยู่ในเครื่องปฏิกรณ์ (LHSV) 0.5, 1, 2, 3, และ 4 h⁻¹ จากผลการทดลองพบว่า Pt/Al₂O₃ ้มีประสิทธิภาพในการเร่งปฏิกิริยาสูงสุดเมื่อเทียบกับตัวเร่งปฏิกิริยาชนิดอื่นที่ LHSV เท่ากัน สาร ้ผลิตภัณฑ์ของเหลวที่ได้จากตัวเร่งปฏิกิริยาทุกชนิดเป็นไฮโดรการ์บอนในช่วงน้ำมันดีเซล โดย ตัวเร่งปฏิกิริยาต่างชนิดกันจะให้การกระจายตัวของสารผลิตภัณฑ์ที่ต่างกัน ปฏิกิริยาบน Pd/Al₂O₃, Pt/Al₂O₃, และ NiCu/Al₂O₃ จะได้เฮปตะเดคเคนเป็นผลิตภัณฑ์หลัก ในขณะที่ Cu/Al₂O₃, NiMo/Al₂O₃, และ CoMo/Al₂O₃ ให้ผลิตภัณฑ์หลักเป็นออกตะเคคเคน นอกจากนี้ ้ยังพบสารมัธยันต์ได้แก่ กรดสเตียริก, กรดปาล์มมิติก, เฮกซะเดคานอล, ออกตะเดคานอล, โมโน กลีเซอไรด์, และเอสเตอร์ปนอยู่ในสารผลิตภัณฑ์ โดยปริมาณของสารตัวกลางจะเพิ่มขึ้นเมื่อ LHSV สูงขึ้น

ACKNOWLEDGEMENTS

This thesis could not be accomplished without the assistance of many people and support of my advisor, co-advisor, colleagues and my family.

First, I gratefully appreciate Asst. Prof. Siriporn Jongpatiwut, my advisor. She provided superb guidance, encouragement, and creative suggestion. My thanks are also for her kindness, for being patient in listening to my opinion and in proofing my writing.

I would also thank Prof. Somchai Osuwan, Prof. Daniel E. Resasco, my coadvisor, Dr. Suchada Butnark, and Asst. Prof. Thammanoon Sreethawong, my thesis committee for several enlighten suggestions, discussions and comments are greatly acknowledged. This thesis would never have been completed without their consistent help.

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College, the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, and by PTT Public Company Limited.

Finally, I would like to thank all of my friends for their friendly cheerful and useful assistance. Also, I would like to take this opportunity to thank my parents for their encouragement, understanding, and love.

TABLE OF CONTENTS

		PAGE
Titl	e Page	i
Abs	Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables List of Figures HAPTER I INTRODUCTION I LITERATURE REVIEW 2.1 Theoretical Background 2.1.1 Petroleum-based Diesel 2.1.2 Biodiesel 2.1.2 Biodiesel 2.1.2 Biodiesel Feedstock 2.1.2.1 Biodiesel Fredstock 2.1.2.2 Biodiesel Production 2.1.3 Hydrogenated Biodiesel 2.1.3 Hydrogenated Biodiesel 2.1.3.1 Hydrogenated Biodiesel 2.1.3.1 Hydrogenated Biodiesel and Hydrogenated Biodiesel 2.2 Literature Reviews 2.1 Deoxygenation Process over Conventional Hydrotreating Catalysts 2.2.2 Development of New Catalysts for	iii
Abs		iv
Ack		v
Tab	ole of Contents	vi
List	t of Tables	ix
List	t of Figures	х
CHAPTI		- 0 -
1		1
		2
11		3
	2.1 Theoretical Background	3
	2.1.1 Petroleum-based Diesel	4
	2.1.2 Biodiesel	3
	2.1.2.1 Biodiesel Feedstock	4
	2.1.2.2 Biodiesel Production	5
	2.1.2.3 Drawbacks of Biodiesel	6
	2.1.3 Hydrogenated Biodiesel	7
	2.1.3.1 Hydrogenated Biodiesel Production	7
	2.1.3.2 Comparison of Biodiesel and	
	Hydrogenated Biodiesel	8
	2.2 Literature Reviews	10
	2.2.1 Deoxygenation Process over Conventional	
	Hydrotreating Catalysts	10
	2.2.2 Development of New Catalysts for	
	Deoxygenation Reaction	16

III	EXPERIMENTAL	24
	3.1 Materials	24
	3.1.1 Feedstock	24
	3.1.2 Catalyst Support and Metal Precursors	24
	3.1.3 Standard Chemicals	24
	3.1.4 Other Chemicals	25
	3.1.5 Gases	25
	3.2 Equipment	25
	3.3 Methodology	26
	3.3.1 Catalyst Preparation	26
	3.3.2 Catalyst Characterization	27
	3.3.3 Hydrodeoxygenation Experiments	28
	3.3.4 Product Analysis	30
IV	RESULTS AND DISCUSSION	34
	4.1 Catalyst Characterization	34
	4.1.1 Thermal Gravimetric Analysis (TGA)	34
	4.1.2 Temperature Programmed Reduction (TPR)	35
	4.1.3 X-ray Diffraction (XRD)	38
	4.1.4 Brunauer-Emmett-Tellet Method (BET)	38
	4.1.5 Temperature Program Oxidation (TPO)	40
	4.2 Production of Hydrogenated Biodiesel from Jatropha Oil	41
	4.2.1 Feed and Standard Analysis	41
	4.2.2 Conversion of Jatropha Oil	45
	4.2.3 Overall Product Distribution	49
	4.2.4 Product Distribution of Oxygenates	51
	4.2.5 Product Distribution of Liquid-phase Hydrocarbons	53
	4.2.6 Gas-phase Product Distribution	55
	4.2.7 Proposed Mechanism of Deoxygenation Reaction	
	of Triglycerides	58

CHAPTER			PAGE
	4.2.8 Sta	bility Testing of Pt/Al_2O_3 and $NiCu/Al_2O_3$	
	on	the Deoxygenation of Jatropha Oil	59
V	CONCLUSI	ONS AND RECOMMENDATIONS	61
	REFERENC	ES	63
	APPENDIX	· .	67
	Appendix A	Mass balance of deoxygenation reaction of	
		jatropha oil	67
	CURRICUL	UM VITAE	- 71

LIST OF TABLES

TABLE		PAGE
2.1	Comparison of petrodiesel, biodiesel, and green diesel	
	properties	9
2.2	Comparison of biodiesel and green diesel production	
	processes	10
3.1	The metal precursors and the metal content of prepared	
	catalysts	26
3.2	Description of flow diagram	30
3.3	The reaction condition for deoxygenation of crude	
	jatropha oil	30
3.4	The chromatographic temperature program for liquid	
	product analysis	31
3.5	The chromatographic temperature program for gas-phase	
	product analysis	33
4.1	The suitable calcination temperature of prepared catalysts	35
4.2	TPR maximum temperatures (T_{max}) of H_2 consumption	
	peaks of the studied catalysts	37
4.3	The suitable reduction temperature for each catalyst	38
4.4	The textual properties of the studied catalysts	39
4.5	Amount of carbon deposited on the spent catalysts	40
4.6	Retention times and response factors of standard	
	chemicals	44
4.7	Relative pseudo-first order rate constants for triglycerides	
	conversion at 325 °C	48

LIST OF FIGURES

FIGURE		PAGE
2.1	A chemical structure of triglyceride	4
2.2	Chemical reaction of biodiesel production via	
	transesterification of triglyceride	5
2.3	Three consecutive steps of tranesterification reaction	6
2.4	The proposed reaction pathway for conversion of	
	triglycerides to renewable diesel	8
2.5	The hydrodeoxygenation reaction scheme of aliphatic	
	methyl esters (n=6 for methyl heptanoate and n=5 for	
	methyl hexanoate)	12
2.6	The reaction pathways involved in conversion of	
	triglycerides into hydrocarbons	15
2.7	Chemical structures of the unsaturated model compounds,	
	oleic acid, linoleic acid and methyl oleate	19
2.8	A series of consecutive reactions of hydroconversion of	
	triglycerides	21
3.1	Schematic of reactor system	29
4.1	TGA profiles of prepared catalysts; $dTG(-)$, $TG(-)$	34
4.2	TPR profiles of the studied catalysts	37
4.3	The XRD patterns of the studied catalysts. (*) PdO, (°)	
	CuO, (Δ) NiO, (\Box) MoO ₃	39
4.4	TPO Profile of the spent catalysts	40
4.5	Chromatogram of 10 wt.% jatropha oil in n-dodecane	41

FIGURE

4.6	Chromatograms of standard chemicals, (a) triolein,	
	trilinolein, tristearin, tripalmitin, (b) diolein, dilinolein,	
	distearin. dipalmitin. (c) monoolein. monolinolein,	
	monostearin, monopalmitin, (d) hexadecanol,	
	octadecanol, palmitic acid, stearic acid, oleic acid (e)	
	n-pentadecane, n-hexadecane, n-heptadecane,	
	n-octadecane	42
4.7	Chromatogram of the standard gases; CO, CO ₂ , CH ₄ ,	
	C_2H_6 , and C_3H_8	45
4.8	Chromatograms of liquid products at LHSV of (A) 0.5 h ⁻¹	
	and (B) 2 h ⁻¹ (catalyst: Cu/Al ₂ O ₃ , feed: CJO, reaction	
	condition: temperature: 325 °C. pressure: 500 psig,	
	H_2 /feed molar ratio: 30, and TOS: 6 h)	46
4.9	Conversion of jatropha oil over Pd (▲), Pt (■), Cu	
	(Δ), NiCu ($ullet$), NiMo ($ullet$), and CoMo (\Box) catalysts.	
	Solid points = experimental data, solid lines = conversion	
	based on the pseudo-first-order kinetics approximation of	
	experimental data	48
4.10	Selectivity to (A) hydrocarbons and (B) oxygenates as a	
	function of conversion for Pd (\blacktriangle), Pt (\blacksquare), Cu (\bigtriangleup), NiCu	
	(\bullet), NiMo (\circ), and CoMo (\Box) catalysts.	50
4.11	Selectivity to (A) fatty acids, (B) fatty alcohols, and (C)	
	fatty esters as a function of conversion of triglycerides for	
	Pd (\blacktriangle), Pt (\blacksquare), Cu (\bigtriangleup), NiCu (\blacklozenge), NiMo (\heartsuit), and	
	CoMo () catalysts	52
4.12	Selectivity to (A) n-hexatadecane and n-octadecane, and	
	(B) n-pentadecane and n-heptadecane for Pd (\blacktriangle). Pt	
	(■), Cu (△), NiCu (●), NiMo (^O), amd CoMo	
	(🗖) catalysts	54

PAGE

FIGURE

4.13	Concentrations of (A) carbon dioxide, (B) carbon	
	monoxide, (C) methane, and (D) propane in hydrogen as a	
	function of conversion for Pd (▲). Pt (■), Cu	
	(Δ), NiCu ($ullet$), NiMo ($ullet$), amd CoMo (\Box) catalysts	56
4.14	Proposed reaction pathways for the deoxygenation of	
	vegetable oils under H ₂ atmosphere	58
4.15	Long term stability testing of the Pt/Al ₂ O ₃ and	
	$NiCu/Al_2O_3$ catalysts on the deoxygenation of jatropha oil.	59

PAGE