REFERENCES

- Akcelrud, L. (2003) Electroluminescent polymers. Prog. Polym. Sci., 28, 875-962.
- Bjorklund, T.G., Lim, S., Bardeen, C.J. (2004) The optical spectroscopy of poly(pphenylene vinylene)/polyvinyl alcohol blends: from aggregates to isolated chromophores. <u>Synthetic Metals</u>, 142, 195–200.
- Camillo, E. C., Constantino, C. J. L., Teruya, M. Y., Alves, N., Mattoso, L. H. C., and Job, A. E. (2005) Dependence of the electrical conductivity and elastomeric properties on sample preparation of blends of polyaniline and natural rubber. Journal of applied polymer science, 97, 1498-1503.
- Cirpan, C, Kucokyavuz Z., and Kucukyavuz S. (2003) Synthesis, Characterization and Electrical Conductivity of poly(p-phenylene vinylene). <u>Turk J Chem</u>, 27, 135-143.
- Crenshaw, B.R., and Weder, C. (2003) Deformation-Induced Color Changes in Melt-Processed Photoluminescent Polymer Blends. <u>Chem. Mater</u>. 15, 4717-4724.
- Crenshaw, B.R. and Weder, C. (2005) Phase separarion of excimer-forming fluorescent dyes and amorphous polymer: a versatile mechanism for sensor applications. <u>Advanced materials</u>, 17,1471-1476.
- Friend, R.H. (2001) Conjugated polymers. <u>New materials for optoelectronic devices</u>, 73(3), 425-430.
- Gmeiner, J., Karg, S., Meier, M., Reib, W., Strohiegl, P. and Schwoerer, M. (1993) Acta Polymer, 44, 201-205.
- Hiberer, A., Hutten P.F., Wlideman J., and Hadziioannou, G. (1997) Poly (phenylenevinylene)-type conjugated alternating copolymers: synthesis and optical properties in solution. <u>Macromole.Chem. Phys.</u>, 198, 2211-2235.
- Joseph, B.S, Joseph, M.M, Glatkowski, P.J. and Frank, E.K. (1988) Chemical and Electrochemical doping in poly(p-phenylene vinylene) Blends. Journal of polymer_science, 26, 2247-2256.
- Kawanara, S., Kawazura, T., Sawada, T. and Isoho, Y. (2003) Preparation and characterization of natural rubber dispersed in nano-matrix. <u>Polymer</u>, 44, 4527-4531.

- Kinami, M., Crenshaw, B. R. and Weder, C. (2005) Polyesters with Built-in Threshold Temperature and Deformation Sensors. <u>Chem. Mater</u>, 18, 946-955.
- Leung, L.M., Liu, C.M., Wong, C.K. and Kwong, C.F. (2001) Short poly(phenylene vinylene) chains grafted poly(organophosphazene). <u>Polymer</u>, 43, 233-237.
- Lin, W., Bian, M., Yang, G. and Chem, Q. (2004) Strain-induced crystallization of natural rubber as studied by height-resolution solid-state ¹³C NMR spectroscopy. <u>Polymer</u>, 45, 4939-4943.
- Lowe, C. and Weder, C. (2002) Oligo(p-phenylene vinylene) excimers as molecular probes:deformation-induced color changes in photoluminescent polymer blends. <u>Adv. Mater.</u>,14(22), 1625-1629.
- Moroni, M., Hilberer; A. and Hndziioartnou, G. (1996) Synthesis of a functional polymer with pendent luminescent phenylenevinylene units through nitroxide-mediated freeradical polymerization. <u>Macromol. Rapid</u> <u>commun.</u>,1 7, 693-702.
- Nakason, C., Kaesaman, A., and Supasanthitikul, P. (2004) The grafting of maleic anhydride onto natural rubber. <u>Polymer Testing</u>, 23, 35-41.
- Nalwa, H. S. (1997) Conductive Polymer: Transport, Photophysics and Applications. <u>Handbook of Origanic Conductive Molecules and Polymer</u>, 4, 174-182.
- Oliveira, P.C., Guimaraes, A., Cavaille, J., Chazeau, L., Gilbert, R.G., Santos, A.M.
 (2005) Poly(dimethylaminoethyl methacrylate) grafted natural rubber from seeded emulsion polymerization. <u>Polymer</u>, 46, 1105–1111.
- Pucci, A., Bertoldo, M., and Bronco, S. (2005a) Luminescent bis(benzoxazolyl) stiben as a molecular prove for poly(propylene) films deformation. <u>Macromolecular rapid communications</u>, 26,1043-1048.
- Pucci, A., Biver, T., Ruggeri, G., Meza, L.I. and Pang, Y. (2005b) Green-blue luminescence dichroism of cyano-containing poly[(m-phenylene ethynylene)-alt-(p-phenylene ethynylene)] aggregates dispersed in oriented polyethylene. <u>Polymer</u>, 28, 11198-11205.
- Quan, S., Teng, F., Xu, Z., Qian, L., Zhang, T., Liu, D. Hou, Y., Wang, Y. and Xu, X. (2006) Temperature dependence of photoluminescence in MEH-PPV blend films. Journal of luminescence, 6, 245-251.

- Rippel, M. M., Lee, L., Leite, C.A.P. and Galembeck, F. (2003) Skill and cream natural rubber particles: colloidal properties, coalescence and film formation. <u>Journal of colloid and interface science</u>, 268, 330-340.
- Sckizaki, H., Itoh, K., Toyata, E. and Tanzawa, K. (2003) A facile synthesis of benzofuran derivatives: A useful synthon for preparation of trypsin inhibitor. <u>Heterocycles</u>, 59, 237-243.
- Sharma, S.N. (2006) Photophysics and photochemistry of colloidal Poly(p-Phenylene Vinylene)(PPV) blends. <u>Materials chemistry and physics</u>, 11, 1-6.
- Tikhoplav, R.K., and Hess, B.R. (1999) Effect of pressure on photoluminescence and optical absorption in MEH-PPV. <u>Synthetic Metals</u>, 101, 236-237.
- Weder, C., Sarwa, C., Bastiaansen, C., and Smith, P. (1997) Hightly polarized luminescence from oriented conjugated polymer/polyethylene blend films. <u>Advance materials</u>, 9(13), 1035-1039.
- Yan, L. and Yang, F. (2005) Prediction and phase segregation in thin-film of conjugated polymer blends. <u>Journal of polymer Science</u>, 43, 1382-1391.
- Yang, G., Li, Y., White, J. O. and Drickamer, H. G. (1999) Fluorescence of Poly[2methoxy-5-(2-ethylhexoxy)-p-phenylene vinylene]. Effect of Pressure in a Variety of Solid Polymeric Media. J. Phys. Chem. B, 103, 7853-7859.
- Zeng, Q. G., Ding, Z.J., Ju, X. and Zhang, Z.M. (2005a) The influence of PPV chain aggregated structure on optical properties. <u>European polymer journal</u>, 41, 743-746.
- Zeng, Q. G., Ding, Z.J., Tang, X.D. and Zhang, Z.M. (2005b) Pressure effect on photoluminescence and Raman spectra of PPV. <u>Journal of Luminescence</u>, 115, 32-38.

APPENDICES

Figure A1 Calibration curve of GPC.

Table A1 Calibration curve of GPC

Time (min)	Log (M.W.)
8.8	6.51
9	6.3
9.2	6.1
10.3	5.73
11.9	5.3
14.1	4.7
15	4.5

Appendix B¹H NMR Results of OPV

Figure B1 ¹H NMR of OPV.

i

.

Appendix C Characterization of Natural Rubber

Figure C1 FT-IR of natural rubber.

Wavenumber (cm ⁻¹)	Assignment			
Isoprene				
3033	=CH stretching			
2962	C-H stretching of CH ₃			
2927	C-H stretching of CH ₂			
2855	C-H stretching of CH ₂ and CH ₃			
1664	C=C stretching			
1450	C-H bending of CH ₂			
1375	C-H bending of CH ₃			
1127	C-H bending			
837	C=CH wagging			
Protein/phospholipids	-			
3440	-OH stretching			
3280	N-H stretching			
1737	C=O stretching			
1548	N-H bending			
1080	C-0			
1041	-0-0-			

Table C1 FT-IR peak assignments for the IR absorption band

.

Figure C2 Thermal gravimetric analysis curve of natural rubber.

Figure C3 DSC thermogram of natural rubber. The thermogram was obtained from the scan rate was 10°C.

Figure C4 SEM micrograph of the surface of natural rubber.

Figure C5 Stress-Strain curve of natural rubber.

Figure C6 UV-Vis absorption spectrum of natural rubber film.

Figure C7 PL spectra of natural rubber film, λ_{ex} = 520 nm.

Figure C8 PL spectra of natural rubber film, λ_{ex} = 480 nm

Appendix D¹H NMR Results of PPV-g-NR

Appendix E ¹H NMR Results of OPV-g-NR

...

Appendix F DSC Results of Copolymers

. .

The thermal properties of copolymers that have natural rubber in the composition have to use DSC to find the effect of dye molecules.

Figure F1 DSC spectra of (a) NR, NR-g-PPV (b) 0.5%, (c) 1 %, (d) 2%, (e) 3%, (f) 4 wt%, and (g) PPV.

Figure F2 DSC spectra of natural rubber filled with OPV (a) 0%, (b) 0.5%, (c) 1 %, (d) 2%, (e) 3%, and (f) 4 wt%, and (g) OPV powder.

Appendix G Molecular Weight of Products

Molecular weights of PPV, OPV, Natural rubber, and copolymers can be estimated by using GPC. The results are shown in the bottom tables.

,	Peak No.1	Peak No.2	Peak No.3	Peak No.4	Average
Mn	111,299	1,255			1,495
Mw	530,006	2,960			88,288
Mz	2.05867E+06	8,828			2.00107E+06
Mzl	3.77093E+06	16,508			3.77047E+06
Mw/Mn	4.76201	2.35823			59.07354
Mv/Mn	0.00000	0.00000			0.00000
Mz/Mw	3.98224	2.98224			22.66520

 Table G1
 Molecular weight test of natural rubber

-

Table G2 Molecular weight test of natural rubber filled with PPV 0.5 wt%

	Peak No.1	Peak No.2	Peak No.3	Peak No.4	Average
Mn	116,624	2,804	1.447	358	1,037
Mw	561,933	3,851	1,176	476	171,174
Mz	1.42182E+06	6,005	1,204	570	1.40978E+06
Mz1	2.05283E+06	9,026	1,231	635	2.05277E+06
Mw/Mn	4.81832	1.37372	1.02457	1.33103	165.11750
Mv/Mn	0.00000	0.00000	0.00000	0.00000	0.00000
Mz/Mw	2.53023	1,55926	1.02394	1.19701	8.23595

	Peak No.1	Peak No.2	Peak No.3	Peak No.4	Average
Mn	103,290	1,799	370		827
Mw	337,828	2,754	439		80,877
Mz	700,410	5,155	522		688,579
Mzl	983,361	8,887	580		983,248
Mw/Mn	3.27068	1.53090	1.33178		97.80661
Mv/Mn	0.00000	0.00000	0.00000		0.00000
Mz/Mw	2.07327	1.87197	1.18934		8.51388

Table G3 Molecular weight test of natural rubber filled with PPV 1 wt\%

Table G4	Molecular	weight test	of natural	rubber fil	led with	PPV 2	2 wt%
----------	-----------	-------------	------------	------------	----------	-------	-------

	Peak No. I	Peak No.2	Peak No.3	Peak	Average
				No.4	
Mn	3.91230E+08	1.44777E+07	415,570	1,028	1,553
Mw	5.88236E+08	3.39815E+07	1.17054E+06	4,514	8.78326E+07
Mz	8.00310E+08	6.13631E+07	2.19915E+06	26,665	7.73321E+08
Mz1	9.87522E+08	7.87676E+07	2.86068E+06	55,531	9.84995E+08
Mw/Mn	1.50356	2.34716	2.81670	4.39197	56,563.25722
Mv/Mn	0.00000	0.00000	0.00000	0.00000	0.00000
Mz/Mw	1.36053	1.80578	1.87875	5.90762	8.80449

	Peak No.1	Peak No.2	Peak No.3	Peak No.4	Average
Mn	142,883	1,854	318		955
Mw	370,500	3,530	418		56,310
Mz	760,977	9,302	487		730,053
Mzl	1.11105E+06	18,042	534		1.1105E+06
Mw/Mn	2.59303	1.90388	1.31262		58.97725
Mv/Mn	0.00000	0.00000	0.00000		0.00000
Mz/Mw	2.05392	2.63502	1.16691		12.96494

Table G5 Molecular weight test of natural rubber filled with PPV 3 wt%

Table G6 Molecular weight test of natural rubber filled with PPV 4 wt%

	Peak No.1	Peak No.2	Peak No.3	Peak No.4	Average
Mn	139,408	926			1,088
Mw	372,335	2,824			58,309
Mz	734,173	8,075			704,288
Mzl	1.00515E+06	16,072			1.00468E+06
Mw/Mn	2.67082	3.05094			53.59866
Mv/Mn	0.00000	0.00000			0.00000
Mz/Mw	1.97181	2.85943			12.07848

	Peak No.1	Peak No.2	Peak No.3	Peak No.4	Average
Mn	117,904	768			970
Mw	515,464	1,339			109,155
Mz	1.25155E+06	2,313			1.23946E+06
Mzl	2.07568E+06	3,966			2.06565E+06
Mw/Mn	4.37189	1.73942			112.47996
Mv/Mn	0.00000	0.00000			0.00000
Mz/Mw	2.42801	1.73064			11.35512

Table G7 Molecular weight test of natural rubber filled with OPV 0.5 wt%

Table G8	Molecular	weight t	test of natur	al rubber	filled	with	OPV	l wt%
----------	-----------	----------	---------------	-----------	--------	------	-----	-------

	Peak No.1	Peak No.2	Peak No.3	Peak No.4	Average
Mn	54,013	959			2,247
Mw	1.29535E+06	2,578			756,774
Mz	6.82408E+06	4,440			6.81440E+06
Mz1	1.10946E+06	5,848			1.10946E+07
Mw/Mn	23.98234	2.68748			336.80918
Mv/Mn	0.00000	0.00000	0.00000	0.00000	0.00000
Mz/Mw	5.26815	1.72206			9.00454

	Peak No.1	Peak No.2	Peak No.3	Peak No.4	Average
Mn	2.16869E+06	72,634	2,294	316	515
Mw	2.34512E+06	253,159	3,580	519	66,733
Mz	2.53898E+06	642,745	6,987	720	1.82402E+06
Mzl	2.73864E+06	896,531	11,610	859	2.51251E+06
Mw/Mn	1.08135	3.48540	1.56063	1.64326	129.70183
Mv/Mn	0.00000	0.00000	0.00000	0.0000	0.00000
Mz/Mw	1.08267	2.53890	1.95153	1.38895	27.33322

Table G9 Molecular weight test of natural rubber filled with OPV 2 wt%

Table G10	Molecular	weight tes	t of natural	l rubber filled	with	OPV 3	wt%
-----------	-----------	------------	--------------	-----------------	------	-------	-----

	Peak No.1	Peak No.2	Peak No.3	Peak No.4	Average
Mn	1.73087E+06	62,124	557		624
Mw	1,94864E+06	211,511	1,180		49,536
Mz	2.22590E+06	499,608	3,038		1.48437E+06
Mzl	2.53763+06	695,260	6,411		2.28811E+06
Mw/Mn	1.12582	3.46035	2.11944		79.35951
Mv/Mn	0.00000	0.00000	0.00000	0.00000	0.00000
Mz/Mw	1.14228	2.36209	2.57472		29.96573

	Peak No.1	Peak No.2	Peak No.3	Peak No.4	Average
Mn	1.94146E+06	61,985	934		1,115
Mw	2.10079E+06	211,926	1,611		62,436
Mz	2.28214E+06	481,807	2,538		1.31206E+06
Mz1	2.47813E+06	708,954	3,921		2.14570E+06
Mw/Mn	1.08206	3.41900	1.72466		55.97865
Mv/Mn	0.00000	0.00000	0.00000	0.00000	0.00000
Mz/Mw	1.08633	2.27347	1.57478		21.01453

Table G11 Molecular weight test of natural rubber filled with OPV 4 wt%

Appendix H Optical Microscope Picture of Copolymers

The copolymer film was fabricated by dropping copolymer solution on glass substrates and drying in air for 12 hours. Those films were observed by optical microscope. It is used for microscopic observations and to obtain optical micrographs of the surfaces. The used magnification level (combined with eye-piece magnification) is 50X. Its magnification can be further enhanced by taking a digital image and zooming it with image software.

Figure H1 Optical microscope picture of natural rubber.

Figure H2 Optical microscope picture of natural rubber filled with PPV 0.5 wt%.

Figure H3 Optical microscope picture of natural rubber filled with PPV 1 wt%.

Figure H4 Optical microscope picture of natural rubber filled with PPV 2 wt%.

Figure H5 Optical microscope picture of natural rubber filled with PPV 3 wt%.

Figure H6 Optical microscope picture of natural rubber filled with PPV 4 wt%.

Figure H7 Optical microscope picture of natural rubber filled with OPV 0.5 wt%.

Figure H8 Optical microscope picture of natural rubber filled with OPV 1wt%.

Figure H9 Optical microscope picture of natural rubber filled with OPV 2 wt%.

Figure H10 Optical microscope picture of natural rubber filled with OPV 3 wt%.

Figure H11 Optical microscope picture of natural rubber filled with OPV 4 wt%

.

Appendix I SEM Micrograph of Copolymers

The scanning electron microscope was employed to investigate the fracture surface of the samples.

Figure I1 SEM micrograph of the tensile fracture surface of natural rubber filled with PPV 0.5 wt%.

Figure 12 SEM micrograph of the tensile fracture surface of natural rubber filled with PPV 1 wt%.

Figure 13 SEM micrograph of the tensile fracture surface of natural rubber filled with PPV 2 wt%.

Figure I4 SEM micrograph of the tensile fracture surface of natural rubber filled with PPV 3 wt%.

Figure 15 SEM micrograph of the tensile fracture surface of natural rubber filled with PPV 4 wt%.

Figure I6 SEM micrograph of the tensile fracture surface of natural rubber filled with OPV 0.5 wt%.

Figure 17 SEM micrograph of the tensile fracture surface of natural rubber filled with OPV 1 wt%.

Figure I8 SEM micrograph of the tensile fracture surface of natural rubber filled with OPV 2 wt%.

Figure I9 SEM micrograph of the tensile fracture surface of natural rubber filled with OPV wt%.

Figure I10 SEM micrograph of the tensile fracture surface of natural rubber filled with OPV 4 wt%.

.

CURRICUM VITAE

Name: Ms. Ketsuda Anuchai

÷

Date of Birth: August 20, 1982

Nationality: Thai

University Education:

~

2000-2004 Bachelor Degree of Science, Faculty of Industrial Chemistry, Chiang Mai University, Chiang Mai, Thailand