0-3 CONNECTIVITY OF PVDF/BST PIEZOELECTRIC COMPOSITES

Kittikun Kohpaiboon

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2007

.....

\$Q2032

Thesis Title:0-3 Connectivity of PVDF/BST Piezoelectric CompositesBy:Kittikun KohpaiboonProgram:Polymer ScienceThesis Advisors:Dr. Hathaikarn ManuspiyaDr. Pitak Laoratanakul

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantayor Janunet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

. .

Kothailian M.

(Dr. Hathaikarn Manuspiya)

Lina Indisongs

(Dr. Pitak Laoratanakul)

R. Mayn

(Assoc.Prof. Rathanawan Magaraphan)

M. Oppinibusit

(Dr. Mantana Opaprakasit)

ABSTRACT

4872008063:	Polymer Science Program
	Kittikun Kohpaiboon: 0-3 Connectivity of PVDF/BST
	Piezoelectric Composites.
	Thesis Advisors: Dr. Hathaikarn Manuspiya and Dr. Pitak
	Laoratanakul. 93 pp.
Keywords:	Polyvinylidene Fluoride/ Barium Strontium Titanate/
	Nanocomposite /Dielectric Constant / Film Sensor

Film mechanical sensors, one of the piezoelectric applications, which are focused on this research, are used to measure or detect various mechanical quantities. This work extended the range of material properties by fabricating PVDF/ $Ba_{0.7}Sr_{0.3}TiO_3$ composite film. The $Ba_{0.7}Sr_{0.3}TiO_3$ as piezoelectric ceramic is induced in composite to increase the dielectric constant and piezoelectric properties. A certain weight fraction of 0.3, 0.5 and 0.7 of barium strontium titanate ($Ba_{0.7}Sr_{0.3}TiO_3$) powder at different calcine temperature was embedded in a matrix of poly vinylidene fluoride (PVDF) before compression molding into 100-200 µm thick sheets. The crystal phase of PVDF, $Ba_{0.7}Sr_{0.3}TiO_3$ and composite is investigated. Subsequently, thermal properties at differential %wt of the ceramic were studied. The microstructure of the composite was observed using scanning electron microscopy (SEM).The dielectric constant and the loss tangent of composites at different %wt and different calcining temperature of ceramic were also investigated.

บทคัดย่อ

กิตติกุณ เกาะ ไพบูลย์ : เพียโซอิเล็กตริกคอมพอสิตชนิด 0-3 ของโพลิไวนิลลิดีน ฟลูออไรด์และแบเรียมสตอนเทียมไททาเนต (0-3 Connectivity of PVDF/BST Piezoelectric Composites) อ. ที่ปรึกษา : คร.หทัยกานต์ มนัสปิยะ และ คร.พิทักษ์ เหล่ารัตนกุล 93 หน้า

ฟิล์ม ตรวจ จับ เป็นหนึ่งใน การใช้งานทาง เพียโซอิเล็กทริก ซึ่งเราสนใจในงานวิจัยนี้ เป็นการใช้วัค หรือ ตรวจจับ ปริมาณ ของแรงกลต่างๆ ในงานนี้ ได้ใช้ โพลิไวนิลลิดีนฟลูออไรด์ (PVDF) และแบเรียมสตอนเซียมไททาเนตในสัคส่วนแบเรียมต่อ สตอนเซียม 0.7:0.3 (Ba_{0.7}Sr_{0.3}TiO_{.3}) มาสังเคราะห์สารคอมพอสิตฟิล์ม แบเรียมสตอนเซียมไททาเนต เป็นเซรามิกเพีย โซอิเล็กทริก ถูกนำมาใช้ในสารคอมพอสิตเพื่อ เพิ่ม ค่าใดอิเล็กทริก และคุณสมบัติทาง เพียโซ อิเล็กทริก สัดส่วนน้ำหนักที่แน่นอน คือ 0.3 0.5 และ 0.7 ของ ผงแบเรียมสตอนเซียมไททาเนต ที่ อุณหภูมิของการ แกลไซด์ ต่างๆกันและนำมาใส่ในสารหลัก โพลิไวนิลลิดีนฟลูออไรด์ ก่อนอัด ให้ได้ฟิลม์หนา 100-200 ไมครอน ได้ทำการ ศึกษาผลึกของโพลิไวนิลลิดีนฟลูออไรด์, แบเรียม สตอนเซียมไททาเนต และกอมพอสิคตามด้วยการศึกษาสมบัติทางความร้อนของสารประกอบที่ สักส่วนค่างๆจุลโครงสร้างของคอมพอสิคถูกวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่อง กราด (SEM) สำหรับ ก่าไดอิเล็กทริกและก่าการสูญเสียทางไดอิเล็กทริก ที่ สัดส่วนต่างๆ และ แกลไซด์ ด่างๆกัน ของผงแบเรียมสตอนเซียมไททาเนได้ทำการวิเคราะห์เช่นกัน

ACKNOWLEDGEMENTS

This thesis work is funded by the Petroleum and Petrochemical College, Polymer Processing and Polymer Nanomaterial Research Units, and the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, Thailand. The authors would like to thank Mr. Boonchana Mangkonkarn and Solvay Co, Ltd., for providing the PVDF materials to carry out this research.

The author would like to gratefully give special thanks to his advisors, Dr. Hathaikarn Manuspiya, Dr. Pitak Laoratanakul for their intensive suggestions, valuable guidance and vital help throughout this research. The author deeply thanks to Assoc. Prof. Rathawan Magaraphan and Dr. Mantana Opaprakasit for serving on his thesis committee.

Special thanks go to all of the Petroleum and Petrochemical College's faculties who have tendered invaluable knowledge and go to the college staffs who give him invaluable assistance.

In addition, the author would like to take this opportunity to thank all his PPC friends for their friendly assistance, cheerfulness, creative suggestions, and encouragement.

Finally, the author is greatly indebted to his parents and family for their support, love and understanding. Without them, this work wouldn't have been successful.

TABLE OF CONTENTS

		PAGE
T	itle page	i
А	bstract (in English)	iii
А	bstract (in Thai)	iv
А	cknowledgements	v
T	able of Contents	vi
L	ist of Tables	viii
L	ist of Figures	X
CHAP	ΓER	
I	INTRODUCTION	1
II	LITERATURE REVIEW	22
II	I EXPERIMENTAL	29
IV	V THE CRYSTALLINE PHASE OF POLYVI	NYLIDENE
	FLUORIDE FILM	36
	4.1 Abstract	36
	4.2 Introduction	37
	4.3 Experimental	38
	4.4 Results and Discussion	40
	4.5 Conclusions	49
	4.6 Acknowledgements	50
	4.7 References	50

E. 4

	PAG
0-3 CONNECTIVITY OF PVDF/BST PIEZOELECTRIC	
COMPOSITES	51
5.1 Abstract	51
5.2 Introduction	51
5.3 Experimental	52
5.4 Results and Discussion	54
5.5 Conclusion	68
5.6 Acknowledgement	68
5.7 References	68
DIELECTRIC AND FERROELECTRIC	
PROPERTIES OF PVDF/BT COMPOSITES	70
5.1 Abstract	70
5.2 Introduction	70
5.3 Experimental	71
5.4 Results and Discussion	72
5.5 Conclusion	79
5.6 Acknowledgement	79
5.7 References	79
CONCLUSION	
AND RECOMMENDATIONS	81
	01
REFERENCES	84
APPENDICE	88
	 b.3 CONNECTIVITY OF PVDF/BST PIEZOELECTRIC COMPOSITES 5.1 Abstract 5.2 Introduction 5.3 Experimental 5.4 Results and Discussion 5.5 Conclusion 5.6 Acknowledgement 5.7 References DIELECTRIC AND FERROELECTRIC PROPERTIES OF PVDF/BT COMPOSITES 5.1 Abstract 5.2 Introduction 5.3 Experimental 5.4 Results and Discussion 5.5 Conclusion 5.6 Acknowledgement 5.7 References DIELECTRIC AND FERROELECTRIC PROPERTIES OF PVDF/BT COMPOSITES 5.1 Abstract 5.2 Introduction 5.3 Experimental 5.4 Results and Discussion 5.5 Conclusion 5.6 Acknowledgement 5.7 References CONCLUSION AND RECOMMENDATIONS REFERENCES APPENDICE

CHAPTER

vii

Appendix A	Barium Strontium Titanate Analysis	88
Appendix H	B Polyvinylidene Fluoride Analysis	90

CURRICULUM VITAE

93

LIST OF TABLES

TABLE		PAGE
	CHAPTER I	
1.1	Property comparison for standard piezoelectric polymer	
	and ceramic materials	13
1.2	Comparison between commonly used crystalline	
	piezoelectric materials and PVDF	17
2.1	CHAPTER II Lattice parameter after annealing the thin film at different	
2.1	temperatures calculated using (1, 1, 0) reflection and	
	Pt (1 1 1) peak as the standard	24
3.1	CHAPTER III Weight of each chemicals in preparing	
	barium titanate/barium strontium titanate	33
4.1	CHAPTER IV The variations of F (β) of solution-crystallized	
	PVDF and drawn PVDF with increasing	
	drawn ratio at constant drawn rate of 5min/mm	41
4.2	Comparative data of d ₃₃ between before	
	and after poling for PVDF film	48
	CHAPTER V	
5.1	Lattice parameter of the calcined	
	Ba _{0.7} Sr _{0.3} TiO ₃ at 800° C and 1000°C before sintering	56
5.2	Lattice parameter of the calcined	
	Ba _{0.7} Sr _{0.3} TiO ₃ at 800° C and 1000°C after sintering	57
5.3	Decomposition of PVDF/Ba _{0.7} Sr _{0.3} TiO ₃ at different % weight	59

TABLE

CHAPTER VI

6.1	X-ray diffraction patterns of calcined and sintered of BT	
	ceramic powder	76
6.2	Comparative data of d ₃₃ between calcined and	
	sintered BT powder embedded in PVDF matrix	78

LIST OF FIGURES

FIGURE

- - -

CHAPTER I

1.1	System of Crystals in 32 class	4
1.2	Crystal structure of tradition piezoelectric	6
1.3	Polarizing (poling) a piezoelectric ceramic	7
1.4	Effects of Electric Field (E) on Polarization (P)	
	and Corresponding Elongation / Contraction of a Ceramic Element	7
1.5	Generator and motor actions of a piezoelectric element	
	generator action is used in fuel-igniting devices, solid	
	state batteries, and other products; motor action	
	is adapted to piezoelectric motors, sound or	
	ultrasound generating devices, and many other products	9
1.6	(a) A cubic ABO ₃ (BaTiO ₃) perovskite-type unit cell	
	and (b) three dimensional network of corner sharing octahedra of	
	O ² -ions	10
1.7	The crystal structure of $BaTiO_3$ (a) above	
	the Curie point the cell is cubic; (b) below the Curie point the	
	structure is tetragonal with Ba ²⁺ and Ti ⁴⁺ ions displaced	
	relative to O ²⁻ ions	11
1.8	The effect of isovalent substitutions on the transition	
	temperatures of BT ceramic	11
1.9	Structure of PVDF	12
1.10	R andom stacks of amorphous and crystal lamellae in PVDF polymer.	
	(a) represents the morphology after the film is melt cast;	
	(b) is after orientation of the film by mechanically stretching to	
	several times its original length;	
	(c) is after depositing metal electrodes and poling through	
	the film thickness	15
1.11	T ypical ferroelectric hysteresis loop for PVDF	16

FIGURE

1.12 Two of the PVDF ph ases,	
the alpha-phase consists of a series of non-polar anti-parallel chains,	
whereas beta-phase phase consists of a series of polar parallel chain	17
1.13 Piezoelectric d constant as function of dielectric permittivity	
Abbreviations: PVC (polyvinylehloride),	
PAN(poiyacryionitrite), PVF (polyvinylfluouride), PMMA	
(polymethylmethacrylate),	
FEP (fluorinated ethylenepropylene), and PE (polyethylene)	18
1.14 Connectivit y patterns for a diphasic solid A-B	
The shaded parts represent the A phase while the	
white parts show the B phase	19
1.15 0 -3 composite: the separated ceramic particles	
randomly dispersed in a host polymer matrix.	20
1.16 Pauer cube model for 0-3 composites	21

.

CHAPTER II

2.1	The lattice constant decreases linearly with increasing x value.	22
2.2	Variation of the thickness of the 500 °C pyrolysed film after	
	annealing at different temperatures determined	
	using SEM cross-sectional image	24
2.3	Variation of 100 kHz dielectric constant and loss tangent	
	of the BST thin film prepared from 0.28M solution as	
	a function of thickness	26
2.4	Piezoelectric constant of Uniaxially stretched sample	
	in the longitudinal direction at various superimposed	
	loads for frequency of 12 Hz	26

FIGURE

...

PAGE

CHAPTER III

3.1	Temperature program for the 2-step thermal decomposition	
	method	32
3.2	Barium Strontium Titanate Preparation	33
3.3	Temperature program for the sintering process of ceramic pellet.	34

CHAPTER IV

4.1	FTIR spectra of undrawn PVDF, DMF solution-crystallized PVDF	
	and drawn PVDF in the different drawn ratio from 2 to 4	41
4.2	SEM (a) of solution-crystallized PVDF	
	(b) of compressed PVDF at 174 ° C	42
4.3	X-ray diffraction patterns of undrawn and drawn of PVDF film.	43
4.4	The frequency dependence of the dielectric constant of	
	undrawn and drawn PVDF with ratio2 and ratio 4	44
4.5	The frequency dependence of the dielectric loss	
	tangent of undrawn and drawn PVDF with ratio 2 and ratio 4	44
4.6	The temperature dependence of dielectric constant for undrawn	
	PVDF at different frequency	45
4.7	The temperature dependence of loss tangent for undrawn PVDF at	
	different frequency.	45
4.8	Hysteresis loop of (a) undrawn PVDF (b)drawn PVDF	
	with ratio2 (c) drawn PVDF with ratio 4.	47
4.9	DSC thermograms of undrawn and drawn PVDF	49
4.10	P ercent crystallinity versus draw ratio of PVDF	49

CHAPTER V

5.1	X-ray diffraction patterns of PVDF film.	54
5.2	X-ray diffraction patterns of calcined Ba0.7Sr0.3TiO3	
	at 800°C and 1000 °C before sintering.	55

GURE		PAG
5.3	X-ray diffraction patterns of calcined Ba _{0.7} Sr _{0.3} TiO ₃	
	at 800°C and 1000 °C after sintering	56
5.4	X-ray diffractrograms of PVDF/Ba _{0.7} Sr _{0.3} TiO ₃	57
	composites in weight proportion	
	100/0, 70/30, 50/50, 30/70 and 0/100	57
5.5	Weight loss (%) in function of the temperature ($^{\circ}$ C)	
	for PVDF Polymer and Ba _{0.7} Sr _{0.3} TiO ₃ powder	
	films	58
5.6	TGA thermo grams of PVDF/ Ba _{0.7} Sr _{0.3} TiO ₃	
	composites in weight proportions	
	00/0, 70/30, 50/50, 30/70 and 0/100	59
5.7	DSC thermograms of PVDF/ Ba _{0.7} Sr _{0.3} TiO ₃	
	weight proportions 100/0, 70/30, 50/50 and 30/70	60
5.8	Scanning electron microscope (SEM) of	
	the calcined $Ba_{0.7}Sr_{0.3}TiO_3$ at (a) 800 ° C	
	and (b) 1000 ° C before sintering	60
5.9	Scanning electron microscope (SEM) of	
	the calcined Ba _{0.7} Sr _{0.3} TiO ₃ at	
	(a) 800°C and (b) 1000°C after sintering	61
5.10	Scanning electron microscope (SEM)	
	of the PVDF/ Ba _{0.7} Sr _{0.3} TiO ₃ composites	
	at weight proportions	
	(a) 100/0 (b) 70/30, (c) 50/50and (d) 30/70.	61
5.11	Transmission electron microscopes (TEM)	
	of calcined $Ba_{0.7}Sr_{0.3}TiO_3$ at (a) 800°C and (b)1000°C	62
5.12	The frequency dependence of	
	the dielectric constant of sintered Ba _{0.7} Sr _{0.3} TiO ₃	
	at 1350 °C at different calcine temperature.	63

4

FIGURE

5.13 The frequ ency dependence of		
the dielectric loss tangent of sintered Ba _{0.7} Sr _{0.3} TiO ₃		
at 1350 °C at different calcine temperature	63	
5.14 The temperature dependence of the dielectric constnat of sintered		
Ba _{0.7} Sr _{0.3} TiO ₃ at 1350 °C at different frequency	64	
5.15 The temperature dependence of the dielectric loss		
tangent of sintered $Ba_{0.7}Sr_{0.3}TiO_3$ at 1350 °C at different frequency	64	
5.16 The frequ ency dependence of the dielectric constant		
of PVDF/ Ba _{0.7} Sr _{0.3} TiO ₃ composites weight proportions		
100/0, 70/30, 50/50 and 30/70	65	
5.17 The f requency dependence of the dielectric loss tangent		
of undrawn PVDF/ Ba _{0.7} Sr _{0.3} TiO ₃ composites		
weight proportions 100/0, 70/30, 50/50 and 30/70	65	
5.18 The frequ ency dependence of the dielectric constant of		
$PVDF/Ba_{0.7}Sr_{0.3}TiO_3$ composites at different calcine temperature	66	
5.19 The frequ ency dependence of the dielectric loss tangent of		
PVDF/Ba _{0.7} Sr _{0.3} TiO ₃ composites at different calcine temperature	67	
5.20 The temperature dependence of the dielectric constant of		
PVDF/ Ba _{0.7} Sr _{0.3} TiO ₃ composites at 1 kHz	67	

CHAPTER V

6.1	The frequency dependence of the dielectric constant of	
	PVDF/ calcined BT composites weight proportions	
	100/0, 70/30, 50/50 and 30/70	73
6.2	The frequency dependence of the dielectric loss tangent of	
	PVDF/ calcined BT composites weight proportions	
	100/0, 70/30, 50/50 and 30/70	73

IGUR	Ε	PAGE
6.3	The frequency dependence of the dielectric constant of	
	PVDF/ sintered BT composites weight proportions	
	100/0, 70/30, 50/50 and 30/70	74
6.4	The frequency dependence of the dielectric loss tangent of	
	PVDF/ sintered BT composites weight proportions	
	100/0, 70/30, 50/50 and 30/70	74
6.5	The % of PVDF content versus dielectric constant at 1 kHz	75
6.6	X-ray diffraction patterns of calcined and sintered of BT	
	ceramic powder	76
6.7	Hysteresis loop of (a) PVDF/ calcined BT (b)	
	PVDF/ sintered BT at ratio between PVDF and BT is 30/70	77
6.8	Scanning electron microscope (SEM) of	
	the PVDF/ BT composites at weight proportions	
	(a) 70/30, (b) 50/50and (d) 30/70	78

.

F

E