DEVELOPMENT OF SOFT AND FLEXIBLE CONDUCTIVE POLYMER FOR ACTUATOR APPLICATIONS

Piyanoot Hiamtup

A Dissertation Submitted in Partial Fulfilment of the Requirements for the degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Francais du Petrole 2007

502041

....

Thesis Title:	Development of Soft and Flexible Conductive Polymer for
	Actuator Applications
By:	Piyanoot Hiamtup
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Anuvat Sirivat
	Prof. Alexander M. Jamieson

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Nantayon Janumit College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Nantago Samemit.

(Assoc. Prof. Nantaya Yanumet)

(Prof. Alexander M. Jamieson)

Areusterival

(Assoc. Prof. Anuvat Sirivat)

10

(Assoc. Prof. Pitt Supaphol)

La

(Dr. Ladawan Ruangchuay Wanatong)

ABSTRACT

4582001063: Polymer Science Program
Piyanoot Hiamtup: Development of Conductive Polymer
for Actuator Applications
Thesis Advisors: Assoc. Prof. Anuvat Sirivat and Prof. Alexander M.
Jamieson, 150 pp.
Keywords: Polyaniline/ Conductive polymer/ Actuator/ Electrorheological
fluid/ Suspension/ Gelation/ Oscillatory shear/ Steady-state shear/
Yield stress

In this study, polyaniline (PANI) was synthesized via oxidative coupling polymerization in acid conditions and its conductivity was controlled by doping in camphorsulfonic acid (CSA) solution and de-doping in solution of ammonia. Under oscillatory shear, the dynamic moduli, G' and G", dramatically increase and the suspensions of PANI/silicone oil reach liquid to solid transition occurs at a critical electric field strength, whose value depends on particle concentration and host fluid viscosity as well as the shearing amplitude and the shearing frequency. The critical dimensionless parameter, the Mason number (Mn), varies with Peclet number (Pe) at the critical point according to a scaling relation $Mn \sim Pe^{0.091}$. The formation structure has a static yield strength $\tau_y,$ whose value scales with electric field strength as $\tau_y \sim$ $E^{1.88}$. When the field is switched off a residual structure remains, whose yield stress increases with the strength of the applied field and particle concentration. The creep response of the suspensions was also studied. Creep resistance of the suspensions generally increases with the effects of electric field strength, particle concentration, and operating temperature. Electromechanical response of camphorsulfonic acid (CSA) - doped polyaniline (PANI) particles embedded in an elastic cross-linked PDMS matrix on the effects of electric field strength, particle concentration, and operating temperature was finally studied.

บทคัดย่อ

ปียนุช เพี้ยมทัพ : การพัฒนาพอลิเมอร์นำไฟฟ้าสำหรับประยุกต์เป็นแอกชูเอเตอร์ (Development of Conductive Polymer for Actuator Applications) อ. ที่ปรึกษา : รศ.คร. อนุวัฒน์ ศิริวัฒน์ และ ศ.คร. อเลกซานเคอร์ เอ็ม จาไมซัน 150 หน้า

ในงานวิจัยนี้ อนุภาคพอลิอะนีลีน ได้ถูกสังเคราะห์ด้วยการพอลิเมอร์ไรซ์แบบออกซิเค ทีฟ ค่าการนำไฟฟ้าของอนุภาคจะถูกควบคุมโดยกระบวนการการโคปและดีโคปซึ่งหมายถึง กระบวนการแช่อนภาคในสารละลายกรคแคมฟอร์ซัลโฟนิคแอซิคและค่างโซเคียมไฮครอกไซด์ ้งากการทคลองภายใต้แรงเฉือนแบบกลับไปกลับมา พบว่าของไหลดังกล่าวแสดงสมบัติวิสโคอีลา สติก โคยค่าสตอเรจและลอสมอดูลัสมีค่าเพิ่มขึ้น และเมื่อเพิ่มความแรงของสนามไฟฟ้าเมื่อให้ ้สนามไฟฟ้ามีความแรงมากพอ พฤติกรรมของของไหลพอลิอะนี้ลื่นจะเปลี่ยนไป โดยเปลี่ยนจาก ้งองไหลที่มีสมบัติคล้ายของเหลวเป็นของไหลที่มีสมบัติคล้ายของแข็งขึ้นอยู่กับความเข้มข้นของ ้อนุภาคในสารแขวนลอย ความหนืดของซิลลิโคนออยล์ รวมทั้งแรงเฉือนและความถี่ในการให้แรง เฉือนกับระบบ โดยได้มีการศึกษาค่าตัวแปรไร้หน่วยสองตัวคือ ค่าตัวเลขเมสัน และ ค่าตัวเลขเพค เล่ท์ ณ จุดวิกฤตที่เกิดการเปลี่ยนแปลงดังกล่าวด้วย ภายใต้แรงเฉือนแบบต่อเนื่อง พบว่า ของไหล ้มีพฤติกรรมแบบของไหลบิงแฮมภายใต้สนามไฟฟ้าโคยของโคยจะมีก่าความเค้นวิกฤตก่าหนึ่งซึ่ง มีความสัมพันธ์กับความแรงของสนามไฟฟ้าเป็นฟังก์ชันยกกำลังโดยเลขดัชนีซี้กำลังของ ความสัมพันธ์ระหว่างค่าความเค้นวิกฤตและความแรงของสนามไฟฟ้ามีค่าเท่ากับ 1.88 จากการ ทคลองเปิค-ปิคสนามไฟฟ้าสลับไปมาพบว่าโครงสร้างสายโซ่ของอนุภาคที่จัดเรียงตัวกันภายใต้ ้สนามไฟฟ้านั้นยังคงสภาพอยู่บางส่วน นอกจากนี้ยังได้ศึกษาปัจจัยด้านความเข้มของสนามไฟฟ้า ้ปริมาณอนุภาค และอุณหภูมิที่มีผลต่อการเกิคครีบของสารแขวนลอย และสุดท้ายได้เปลี่ยนตัว ึกลางจากน้ำมันเหลวเป็นตัวกลางที่มีเป็นยางมีความอ่อนนุ่ม โดยผสมผงอนุภาคพอลิอะนีลึนที่โคป ด้วยกรดแคมฟอร์ซัลโฟนิคแอซิดในขางพอลิไดเมธิลไซลอกเซน และศึกษาการตอบสนองของ สารผสมดังกล่าว ภายใต้สนามไฟฟ้า

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. First the author gratefully acknowledges her advisors, Assoc. Prof. Anuvat Sirivat from The Petroleum and Petrochemical College, Chulalongkorn University and Prof. Alexander M. Jamieson from Department of Macromolecular Science, Case Western Reserve University, for giving her the opportunity to be in the interesting avenue of research, their attention to the development of this work, invaluable knowledge, meaningful guidance, tolerance, and their encouragement all along the way. She also thank Professor Massood Tabib-Azar of Case Western Reserve University for useful comments.

She gratefully acknowledges all faculty members and staffs at The Petroleum and Petrochemical College, Chulalongkorn University for their knowledge and assistances.

Assoc. Prof. Nantaya Yanumet, Assist. Prof. Pitt Supaphol, and Dr. Ladawan Ruangchuay Wanatong are further acknowledged for being her dissertation committee, making comments, and their helpful ideas and suggestion.

She wishes to express her deep gratitude to her family for their unconditional love, continual encouragement, understanding, and for being her limitless inspiration source during all these years she has spent for her PhD study.

She owes her special thanks to all of her teachers in her life for giving her knowledge and supports. She is thankful for the contributions, wonderful friendship, liveliness, and supports from her friends and the other members of her research groups.

This work would not be carried out successfully without financial supports provided by the Thailand Research Fund (the RGJ grant no. PHD/0234/2544; the Conductive & Electroactive Polymers Research Unit and KFAS of Chulalongkorn University; the Thai Royal Government (Budget of Fiscal Year 2550); the Petroleum and Petrochemical and Advanced Materials Consortium; and the US National Science Foundation, Polymers Program, through grant DMR 0513010; the Petroleum and Petrochemical College; and the National Excellence Center for Petroleum, Petreochemicals, and Advanced Materials, Thailand.

TABLE OF CONTENTS

10

		PAGE
Title	e Page	i
Abst	rract (in English)	iii
Abst	ract (in Thai)	iv
Ack	nowledgements	v
Tabl	le of Contents	vi
List	of Tables	iv
List	of Figures	x
Abb	reviations	xv
List	of Symbols	xx
СНАРТЕ	R	
Ι	INTRODUCTION	1
II	LITERATURE SURVEY	11
III	EXPERIMENTAL	19
IV	ELECTRORHEOLOGICAL PROPERTIES	
	OF POLYANILINE SUSPENSIONS:	
	FIELD-INDUCED LIQUID TO SOLID	
	TRANSITION AND RESIDUAL STRUCTURE	24
	4.1 Abstract	24
	4.2 Introduction	25
	4.3 Experimental	26
	4.4 Results and Discussion	29
	4.5 Conclusions	36
	4.6 Acknowledgements	37
	4.7 References	37

vii

	CRITICAL ELECTRIC FIELD STRENGTH FOR LIQUID TO SOLID TRANSITION OF		
	POLYANILINE/SILICONE OIL SUSPENSIONS	5	
	5.1 Abstract	5	
	5.2 Introduction	5	
	5.3 Experimental	5	
	5.4 Results and Discussion	5	
	5.5 Conclusions	5	
	5.6 Acknowledgements	6	
	5.7 References	6	

CREEP RESPONSE OF A POLYANILINE ER FLUID	66
6.1 Abstract	66
6.2 Introduction	67
6.3 Experimental	68
6.4 Results and Discussion	69
6.5 Conclusions	78
6.6 Acknowledgements	79
6.7 References	80

VII	STRAIN-HARDENING IN THE OSCILLATORY
	SHEAR DEFORMATION OF A POLYANILINE
	ELECTRORHEOLOGICAL FLUID
	7.1 Abstract
	7.2 Introduction
	7.3 Experimental
	7.4 Results and Discussion

i e

96

96

97

98

99

CHAPTER		PAGE
	7.5 Conclusions	102
	7.6 Acknowledgements	102
	7.7 References	103
VIII	ELECTROMECHANICAL RESPONSE OF A SOFT	
	AND FLEXIBLE ACTUATOR BASED ON A CROSS-	
	LINKED POLY(DIMETHYL SILOXANE) NETWORK	109
	8.1 Abstract	109
	8.2 Introduction	110
	8.3 Experimental	112
	8.4 Results and Discussion	114
	8.5 Conclusions	120
	8.6 Acknowledgements	121
	8.7 References	122
IX	CONCLUSIONS AND RECOMMENDATIONS	135
	REFERENCES	144
	APPENDICES	145
	Appendix A The FTIR Spectrum of Polyaniline	145
	Appendix B The UV-Visible Spectra of Polyaniline	148
	Appendix C The XRD Pattern of Polyaniline	151
	Appendix D The Thermal Analysis	153
	Appendix E Morphological Observation	155
	Appendix F Particle Size Analyzer	156
	Appendix G Density Determination by Pycnometer	157
	Appendix H Four-point Probe System for Conductivity	

Appendix I Determination of the Geometric

Measurement

viii

158

.

Correction Factor (K)	160
Appendix J Determination of Ohmic's Law Regime	161
Appendix K Specific Conductivity Measurement	162
Appendix L The Electrorheological Properties under	
the Oscillatory Shear Measurement	163

CURRICULUM VITAE 173

- •

.

LIST OF TABLES

CHAPTER IV 4.1 Properties of dedoped PANI suspensions in silicone oil with electrical conductivity value of PANI particle of 2.93 x 10⁻⁹ S/cm 41 **CHAPTER VI** 6.1 Characteristic parameters describing yield behavior of PANI/Silicone oil suspensions as a function of particle concentration, temperature and electric field strengths 83 **CHAPTER VII** Values of σ_y and γ_y of PANI/Silicone oil suspensions, 7.1 105 determined after all ten test runs. **CHAPTER VIII**

8.1 Effect of PANI particle volume fraction on dielectrophoretic
 response of PANI/PDMS composite films
 125

TABLE

0.0

PAGE

LIST OF FIGURES

FIGURE

PAGE

CHAPTER I

1.1	(a) Mechanism of chains formation and alignment of dipole	
	particles. The interactions of these dipoles cause attraction,	
	repulsion, rotation, and alignment of particles, creating	
	chains that align with the applied electric field; (b) In the	
	presence of an electric field, the particles in an ER fluid form	
	chains or fibrillated structure. Approach for classification of	
	smart or active materials	4
1.2	Schematic illustration of the electroviscoelastic effect	7
1.3	The chemical structures of the neutral forms of: a)	
	polyacetylene; b) polythiophene; c) PPy; d) polyaniline	7

CHAPTER IV

4.1	Scanning electron microscopy of polyaniline (emeraldine	
	base) particles, average particle size is 23.5 µm	42
4.2	Strain dependence of G' and G" for PANI048/500 at	
	temperature of 25 ± 1 °C. Gap = 0.399-0.558 mm, frequency	
	= 1 rad/s: open symbols for G' and shaded symbols for G" $=$	43
4.3	Frequency dependence of shear moduli of PANI /Silicone	
	oil suspension: (a) storage modulus, G'; (b) loss modulus,	
	G", at temperature of $25 + 1$ oC. Gap = 0.399-0.558 mm,	
	strain 0.3-500%: openvsymbols for PANI024; shaded	
	symbols,for PANI048	44

FIGURE

PAGE

CHAPTER IV

4.4	Electric field dependence of G' and G" measured at	
	frequency 0.1 rad/s: (a) effect of silicone oil viscosity, open	
	symbols are for $\eta = 100$ cSt; shaded symbols are for $\eta = 500$	
	cSt; (b) effect of particle concentration, open symbols for	
	PANI024/100; shaded symbols are for PANI048/100	45
4.5	Temporal ER switching response of 2.4 % and 4.8 %vol	
	PANI/Silicone oil suspensions (PANI024/100 and	
	PANI048/100) at various electric field strengths. $Gap = 0.2$	
	mm, stress 40 Pa, temperature 25 °C: (a) complex	
	viscosity, η^* ; (b) the shear strain	46
4.6	Measurement of the static yield stress at different electric	
	field strengths for PANI048/100 at 25oC: (a) equilibrium	
	structure under electric field; (b) measured immediately after	
	the electric field was switched off; and (c) measured 10	
	minutes after the electric field was switched off	47
4.7	Static yield stress of PANI /Silicone oil suspension: (a) \bullet	
	measured in the presence of an electric field, \blacktriangle measured	
	immediately after the electric field was switched off, and \bigcirc	
	measured 10 minutes after the electric field was switched	
	off; (b) \bigcirc for PANI048/100, \Box for PANI048/500, and \blacktriangle	
	for PANI048/1000	

FIGURE

CHAPTER V

5.1	Frequency dependence of the shear moduli of PANI/500	
	suspension at various electric field strengths, measured at	
	strain amplitude of 2%, temperature of 27 ± 1 °C, and gap =	
	0.2 mm	63
5.2	The dependence of critical electric field strength on: (a)	
	frequency; and (b) strain amplitude of various PANI	
	suspensions having different silicone oil viscosities,	
	measured at temperature of 27 ± 1 °C, gap = 0.2 mm	64
5.3	The dimensionless parameters Mn versus Pe of PANI	
	suspensions of different silicone oil viscosities	65

CHAPTER VI

a é cu

6.1	Thixotropic loop tests performed on a dispersion of 0.048	
	volume fraction PANI in silicone oil at three electric field	84
	strengths: (a) 0 kV/mm, (b) 1 kV/mm, (c) 2 kV/mm, and (d)	
	4 kV/mm.	
6.2	The dependence of yield stress on temperature of	
	PANI/Silicone oil suspension, vol% = 9.2 at $E = 2 \text{ kV/mm}$ at	
	various temperatures.	86
6.3	Schematic illustration of the creep and recovery behavior of	
	a nonlinear viscoelastic liquid.	87
6.4	Creep and recovery curve of PANI /Silicone oil suspension,	
	vol% = 4.8 under an electric field strength of 2 kV/mm at	

50

PAGE

FIGURE

PAGE

88

CHAPTER VI

6.5	Percentage of the recoverable strain is plotted versus the	
	total strain sustained by the PANI suspensions at various	
	electric field strengths, concentrations and temperatures	89
6.6	Creep compliance parameter Je of PANI/Silicone oil	
	suspension at various particle concentrations and various	
	electric field strengths, where oil viscosity was fixed at 100	
	cSt, measured at T = 298 K: (\Box) vol% = 2.4 at E = 2	
	kV/mm; (Δ) vol% = 4.8 at E = 2 kV/mm; (O) vol% = 9.2	
	at E = 2 kV/mm; (\triangle) vol% = 4.8 at E = 1 kV/mm; (\triangle)	
	vol% = 4.8 at $E = 4$ kV/mm.	90
6.7	(a) Dependence of creep compliance on applied stress for 9.2	
	vol% PANI at various temperatures; (b) data in Fig. 6(a)	
	replotted in the form $\ln J_e^{app}$ versus applied stress.	91
6.8	Creep and recovery of PANI /Silicone oil suspension, vol%	
	= 9.2 under the electric field strength of 2 kV/mm at various	
	applied stress values, $T = 328K$.	92
6.9	Thixotropic loop experiments performed at $T = 328K$ (a)	
	before shear annealing), and after shear annealing at applied	
	stresses of (b) 110 Pa, (c) 140 Pa, and (d) 170 Pa.	93
6.10	The static yield stress values measured after strain annealing	
	at various applied stresses, measured at $T = 328$ K.	95

CHAPTER VII

7.1	Strain dependence of G', G", and shear stress for	
	PANI/silicone oil ER fluid (concentration = 5% vol.) at	
	temperature of 298 K in the presence of an electric field of E	
	= 1000 V/mm. Gap = 0.2 mm.	106
7.2	Time dependences of G', G" and tan δ for PANI/silicone oil	
	ER fluid (concentration = 5% vol.) at temperature of 298 K	
	in the presence of an electric field of $E = 1000 \text{ V/mm}$. Gap =	
	0.2 mm.	107
7.3	Strain dependence of shear stress for PANI/silicone oil ER	
	fluid (concentration = 5% vol.) at temperature of 298 K in	
	the presence of an electric field of $E = 1000 \text{ V/mm}$. Gap =	
	0.2 mm.	108

CHAPTER VIII

8.1	XRD patterns of undoped and CSA-doped polyaniline	126
8.2	Scanning electron microscopy of: (a) CSA doped PANI	
	particles, average particle size is 23.5 μ m; (b) PANI/PDMS	
	composite containing 5 vol% PANI particles dispersed in a	
	PDMS matrix (C/M = 0.053)	127
8.3	(a) Temporal ER switching response of PANI/PDMS	
	composites containing 10 vol% CSA doped PANI particles	
	at E = 1kV/mm, ω = 1 rad/s, γ = 1%, temperature 27 °C; (b)	
	D-E hysteresis loops for 10 %vol CSA doped PANI/PDMS	128
8.4	a) Frequency dependence of storage modulus G' at zero	
	electric field; (b) particle concentration dependence of G'	
	and modulus change $\Box G' = G'(E)-G'(E=0)$ (at $\omega = 1 \text{ rad/s}$)	
	of PANI /PDMS composites (C/M = 0.053) of different	
	electric field strengths, measured at $T = 27 \ ^{\circ}C$	129

8.5	Dependence of $\Delta G' = G'(E)-G'(E=0)$ (at $\omega = 1$ rad/s) of	
	PANI /PDMS composites on: (a) particle concentration; and	
	(b) electric field strength, measured at $T = 27$ °C, and C/M =	
	0.053	130
8.6	Temperature dependence of $\Delta G' = G'(E)-G'(E=0)$ (at $\omega = 1$	
	rad/s) for blends with particle concentration of 20 % v/v,	
	C/M = 0.053, at various temperatures	131
8.7	The dependence of PANI pellet conductivity on temperature	132
8.8	Schematic diagram of the apparatus to used observe the	
	dielectrophoretic of PANI/PDMS composite films. The	
	PDMS/PANI films are suspended vertically in a silicon oil	
	bath, with a dc electric field applied horizontally, a	
	deflection of the film occurs from its original position (solid	
	line) to a new position (dotted line)	133
8.9	Deflection of a 10 vol% PANI/PDMS composite film (C/M	
	= 0.053) as a function of electric field strength (V/mm)	134

ABBREVIATIONS

. .

- ER Electrorheology
- DC Direct current
- AC Alternate current
- PANI Polyaniline
- FT-IR Fourier transform infrared spectrometer
- NMR Nuclear magnetic resonance spectrometer
- UV-Vis Ultraviolet-visible spectrometer
- TGA Thermogravimetric analysis
- CSS Controlled shear stress

LIST OF SYMBOLS

- τ shear stress
- τ_y yield stress
- γ shear rate
- E_o applied electric field strength
- η shear viscosity
- G' storage modulus (Pa/s)
- G" loss modulus (Pa/s)
- t_{ind} induction time
- t_{rec} recovery time
- ϕ volume fraction
- α scalling exponent
- γ scalling exponent
- σ electrical conductivity
- R resistant
- t disk thickness
- K geometric correction fractor
- β relative polarizability
- K_f dielectric permittivity of medium
- η^* complex oscillatory steady shear viscosity
- **ω** frequency
- Hz Hertz
- J_C equilibrium creep compliance
- J_R equilibrium recovery compliance

÷